mb86a16.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869
  1. /*
  2. Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
  3. Copyright (C) Manu Abraham (abraham.manu@gmail.com)
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/slab.h>
  21. #include <media/dvb_frontend.h>
  22. #include "mb86a16.h"
  23. #include "mb86a16_priv.h"
  24. static unsigned int verbose = 5;
  25. module_param(verbose, int, 0644);
  26. struct mb86a16_state {
  27. struct i2c_adapter *i2c_adap;
  28. const struct mb86a16_config *config;
  29. struct dvb_frontend frontend;
  30. /* tuning parameters */
  31. int frequency;
  32. int srate;
  33. /* Internal stuff */
  34. int master_clk;
  35. int deci;
  36. int csel;
  37. int rsel;
  38. };
  39. #define MB86A16_ERROR 0
  40. #define MB86A16_NOTICE 1
  41. #define MB86A16_INFO 2
  42. #define MB86A16_DEBUG 3
  43. #define dprintk(x, y, z, format, arg...) do { \
  44. if (z) { \
  45. if ((x > MB86A16_ERROR) && (x > y)) \
  46. printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \
  47. else if ((x > MB86A16_NOTICE) && (x > y)) \
  48. printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \
  49. else if ((x > MB86A16_INFO) && (x > y)) \
  50. printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \
  51. else if ((x > MB86A16_DEBUG) && (x > y)) \
  52. printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \
  53. } else { \
  54. if (x > y) \
  55. printk(format, ##arg); \
  56. } \
  57. } while (0)
  58. #define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
  59. #define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
  60. static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
  61. {
  62. int ret;
  63. u8 buf[] = { reg, val };
  64. struct i2c_msg msg = {
  65. .addr = state->config->demod_address,
  66. .flags = 0,
  67. .buf = buf,
  68. .len = 2
  69. };
  70. dprintk(verbose, MB86A16_DEBUG, 1,
  71. "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
  72. state->config->demod_address, buf[0], buf[1]);
  73. ret = i2c_transfer(state->i2c_adap, &msg, 1);
  74. return (ret != 1) ? -EREMOTEIO : 0;
  75. }
  76. static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
  77. {
  78. int ret;
  79. u8 b0[] = { reg };
  80. u8 b1[] = { 0 };
  81. struct i2c_msg msg[] = {
  82. {
  83. .addr = state->config->demod_address,
  84. .flags = 0,
  85. .buf = b0,
  86. .len = 1
  87. }, {
  88. .addr = state->config->demod_address,
  89. .flags = I2C_M_RD,
  90. .buf = b1,
  91. .len = 1
  92. }
  93. };
  94. ret = i2c_transfer(state->i2c_adap, msg, 2);
  95. if (ret != 2) {
  96. dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
  97. reg, ret);
  98. if (ret < 0)
  99. return ret;
  100. return -EREMOTEIO;
  101. }
  102. *val = b1[0];
  103. return ret;
  104. }
  105. static int CNTM_set(struct mb86a16_state *state,
  106. unsigned char timint1,
  107. unsigned char timint2,
  108. unsigned char cnext)
  109. {
  110. unsigned char val;
  111. val = (timint1 << 4) | (timint2 << 2) | cnext;
  112. if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
  113. goto err;
  114. return 0;
  115. err:
  116. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  117. return -EREMOTEIO;
  118. }
  119. static int smrt_set(struct mb86a16_state *state, int rate)
  120. {
  121. int tmp ;
  122. int m ;
  123. unsigned char STOFS0, STOFS1;
  124. m = 1 << state->deci;
  125. tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
  126. STOFS0 = tmp & 0x0ff;
  127. STOFS1 = (tmp & 0xf00) >> 8;
  128. if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
  129. (state->csel << 1) |
  130. state->rsel) < 0)
  131. goto err;
  132. if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
  133. goto err;
  134. if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
  135. goto err;
  136. return 0;
  137. err:
  138. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  139. return -1;
  140. }
  141. static int srst(struct mb86a16_state *state)
  142. {
  143. if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
  144. goto err;
  145. return 0;
  146. err:
  147. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  148. return -EREMOTEIO;
  149. }
  150. static int afcex_data_set(struct mb86a16_state *state,
  151. unsigned char AFCEX_L,
  152. unsigned char AFCEX_H)
  153. {
  154. if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
  155. goto err;
  156. if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
  157. goto err;
  158. return 0;
  159. err:
  160. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  161. return -1;
  162. }
  163. static int afcofs_data_set(struct mb86a16_state *state,
  164. unsigned char AFCEX_L,
  165. unsigned char AFCEX_H)
  166. {
  167. if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
  168. goto err;
  169. if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
  170. goto err;
  171. return 0;
  172. err:
  173. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  174. return -EREMOTEIO;
  175. }
  176. static int stlp_set(struct mb86a16_state *state,
  177. unsigned char STRAS,
  178. unsigned char STRBS)
  179. {
  180. if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
  181. goto err;
  182. return 0;
  183. err:
  184. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  185. return -EREMOTEIO;
  186. }
  187. static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
  188. {
  189. if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
  190. goto err;
  191. if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
  192. goto err;
  193. return 0;
  194. err:
  195. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  196. return -EREMOTEIO;
  197. }
  198. static int initial_set(struct mb86a16_state *state)
  199. {
  200. if (stlp_set(state, 5, 7))
  201. goto err;
  202. udelay(100);
  203. if (afcex_data_set(state, 0, 0))
  204. goto err;
  205. udelay(100);
  206. if (afcofs_data_set(state, 0, 0))
  207. goto err;
  208. udelay(100);
  209. if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
  210. goto err;
  211. if (mb86a16_write(state, 0x2f, 0x21) < 0)
  212. goto err;
  213. if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
  214. goto err;
  215. if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
  216. goto err;
  217. if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
  218. goto err;
  219. if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
  220. goto err;
  221. if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
  222. goto err;
  223. if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
  224. goto err;
  225. if (mb86a16_write(state, 0x54, 0xff) < 0)
  226. goto err;
  227. if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
  228. goto err;
  229. return 0;
  230. err:
  231. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  232. return -EREMOTEIO;
  233. }
  234. static int S01T_set(struct mb86a16_state *state,
  235. unsigned char s1t,
  236. unsigned s0t)
  237. {
  238. if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
  239. goto err;
  240. return 0;
  241. err:
  242. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  243. return -EREMOTEIO;
  244. }
  245. static int EN_set(struct mb86a16_state *state,
  246. int cren,
  247. int afcen)
  248. {
  249. unsigned char val;
  250. val = 0x7a | (cren << 7) | (afcen << 2);
  251. if (mb86a16_write(state, 0x49, val) < 0)
  252. goto err;
  253. return 0;
  254. err:
  255. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  256. return -EREMOTEIO;
  257. }
  258. static int AFCEXEN_set(struct mb86a16_state *state,
  259. int afcexen,
  260. int smrt)
  261. {
  262. unsigned char AFCA ;
  263. if (smrt > 18875)
  264. AFCA = 4;
  265. else if (smrt > 9375)
  266. AFCA = 3;
  267. else if (smrt > 2250)
  268. AFCA = 2;
  269. else
  270. AFCA = 1;
  271. if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
  272. goto err;
  273. return 0;
  274. err:
  275. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  276. return -EREMOTEIO;
  277. }
  278. static int DAGC_data_set(struct mb86a16_state *state,
  279. unsigned char DAGCA,
  280. unsigned char DAGCW)
  281. {
  282. if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
  283. goto err;
  284. return 0;
  285. err:
  286. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  287. return -EREMOTEIO;
  288. }
  289. static void smrt_info_get(struct mb86a16_state *state, int rate)
  290. {
  291. if (rate >= 37501) {
  292. state->deci = 0; state->csel = 0; state->rsel = 0;
  293. } else if (rate >= 30001) {
  294. state->deci = 0; state->csel = 0; state->rsel = 1;
  295. } else if (rate >= 26251) {
  296. state->deci = 0; state->csel = 1; state->rsel = 0;
  297. } else if (rate >= 22501) {
  298. state->deci = 0; state->csel = 1; state->rsel = 1;
  299. } else if (rate >= 18751) {
  300. state->deci = 1; state->csel = 0; state->rsel = 0;
  301. } else if (rate >= 15001) {
  302. state->deci = 1; state->csel = 0; state->rsel = 1;
  303. } else if (rate >= 13126) {
  304. state->deci = 1; state->csel = 1; state->rsel = 0;
  305. } else if (rate >= 11251) {
  306. state->deci = 1; state->csel = 1; state->rsel = 1;
  307. } else if (rate >= 9376) {
  308. state->deci = 2; state->csel = 0; state->rsel = 0;
  309. } else if (rate >= 7501) {
  310. state->deci = 2; state->csel = 0; state->rsel = 1;
  311. } else if (rate >= 6563) {
  312. state->deci = 2; state->csel = 1; state->rsel = 0;
  313. } else if (rate >= 5626) {
  314. state->deci = 2; state->csel = 1; state->rsel = 1;
  315. } else if (rate >= 4688) {
  316. state->deci = 3; state->csel = 0; state->rsel = 0;
  317. } else if (rate >= 3751) {
  318. state->deci = 3; state->csel = 0; state->rsel = 1;
  319. } else if (rate >= 3282) {
  320. state->deci = 3; state->csel = 1; state->rsel = 0;
  321. } else if (rate >= 2814) {
  322. state->deci = 3; state->csel = 1; state->rsel = 1;
  323. } else if (rate >= 2344) {
  324. state->deci = 4; state->csel = 0; state->rsel = 0;
  325. } else if (rate >= 1876) {
  326. state->deci = 4; state->csel = 0; state->rsel = 1;
  327. } else if (rate >= 1641) {
  328. state->deci = 4; state->csel = 1; state->rsel = 0;
  329. } else if (rate >= 1407) {
  330. state->deci = 4; state->csel = 1; state->rsel = 1;
  331. } else if (rate >= 1172) {
  332. state->deci = 5; state->csel = 0; state->rsel = 0;
  333. } else if (rate >= 939) {
  334. state->deci = 5; state->csel = 0; state->rsel = 1;
  335. } else if (rate >= 821) {
  336. state->deci = 5; state->csel = 1; state->rsel = 0;
  337. } else {
  338. state->deci = 5; state->csel = 1; state->rsel = 1;
  339. }
  340. if (state->csel == 0)
  341. state->master_clk = 92000;
  342. else
  343. state->master_clk = 61333;
  344. }
  345. static int signal_det(struct mb86a16_state *state,
  346. int smrt,
  347. unsigned char *SIG)
  348. {
  349. int ret;
  350. int smrtd;
  351. unsigned char S[3];
  352. int i;
  353. if (*SIG > 45) {
  354. if (CNTM_set(state, 2, 1, 2) < 0) {
  355. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
  356. return -1;
  357. }
  358. } else {
  359. if (CNTM_set(state, 3, 1, 2) < 0) {
  360. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
  361. return -1;
  362. }
  363. }
  364. for (i = 0; i < 3; i++) {
  365. if (i == 0)
  366. smrtd = smrt * 98 / 100;
  367. else if (i == 1)
  368. smrtd = smrt;
  369. else
  370. smrtd = smrt * 102 / 100;
  371. smrt_info_get(state, smrtd);
  372. smrt_set(state, smrtd);
  373. srst(state);
  374. msleep_interruptible(10);
  375. if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
  376. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  377. return -EREMOTEIO;
  378. }
  379. }
  380. if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
  381. ret = 1;
  382. else
  383. ret = 0;
  384. *SIG = S[1];
  385. if (CNTM_set(state, 0, 1, 2) < 0) {
  386. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
  387. return -1;
  388. }
  389. return ret;
  390. }
  391. static int rf_val_set(struct mb86a16_state *state,
  392. int f,
  393. int smrt,
  394. unsigned char R)
  395. {
  396. unsigned char C, F, B;
  397. int M;
  398. unsigned char rf_val[5];
  399. int ack = -1;
  400. if (smrt > 37750)
  401. C = 1;
  402. else if (smrt > 18875)
  403. C = 2;
  404. else if (smrt > 5500)
  405. C = 3;
  406. else
  407. C = 4;
  408. if (smrt > 30500)
  409. F = 3;
  410. else if (smrt > 9375)
  411. F = 1;
  412. else if (smrt > 4625)
  413. F = 0;
  414. else
  415. F = 2;
  416. if (f < 1060)
  417. B = 0;
  418. else if (f < 1175)
  419. B = 1;
  420. else if (f < 1305)
  421. B = 2;
  422. else if (f < 1435)
  423. B = 3;
  424. else if (f < 1570)
  425. B = 4;
  426. else if (f < 1715)
  427. B = 5;
  428. else if (f < 1845)
  429. B = 6;
  430. else if (f < 1980)
  431. B = 7;
  432. else if (f < 2080)
  433. B = 8;
  434. else
  435. B = 9;
  436. M = f * (1 << R) / 2;
  437. rf_val[0] = 0x01 | (C << 3) | (F << 1);
  438. rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
  439. rf_val[2] = (M & 0x00ff0) >> 4;
  440. rf_val[3] = ((M & 0x0000f) << 4) | B;
  441. /* Frequency Set */
  442. if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
  443. ack = 0;
  444. if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
  445. ack = 0;
  446. if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
  447. ack = 0;
  448. if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
  449. ack = 0;
  450. if (mb86a16_write(state, 0x25, 0x01) < 0)
  451. ack = 0;
  452. if (ack == 0) {
  453. dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
  454. return -EREMOTEIO;
  455. }
  456. return 0;
  457. }
  458. static int afcerr_chk(struct mb86a16_state *state)
  459. {
  460. unsigned char AFCM_L, AFCM_H ;
  461. int AFCM ;
  462. int afcm, afcerr ;
  463. if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
  464. goto err;
  465. if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
  466. goto err;
  467. AFCM = (AFCM_H << 8) + AFCM_L;
  468. if (AFCM > 2048)
  469. afcm = AFCM - 4096;
  470. else
  471. afcm = AFCM;
  472. afcerr = afcm * state->master_clk / 8192;
  473. return afcerr;
  474. err:
  475. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  476. return -EREMOTEIO;
  477. }
  478. static int dagcm_val_get(struct mb86a16_state *state)
  479. {
  480. int DAGCM;
  481. unsigned char DAGCM_H, DAGCM_L;
  482. if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
  483. goto err;
  484. if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
  485. goto err;
  486. DAGCM = (DAGCM_H << 8) + DAGCM_L;
  487. return DAGCM;
  488. err:
  489. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  490. return -EREMOTEIO;
  491. }
  492. static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
  493. {
  494. u8 stat, stat2;
  495. struct mb86a16_state *state = fe->demodulator_priv;
  496. *status = 0;
  497. if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
  498. goto err;
  499. if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
  500. goto err;
  501. if ((stat > 25) && (stat2 > 25))
  502. *status |= FE_HAS_SIGNAL;
  503. if ((stat > 45) && (stat2 > 45))
  504. *status |= FE_HAS_CARRIER;
  505. if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
  506. goto err;
  507. if (stat & 0x01)
  508. *status |= FE_HAS_SYNC;
  509. if (stat & 0x01)
  510. *status |= FE_HAS_VITERBI;
  511. if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
  512. goto err;
  513. if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
  514. *status |= FE_HAS_LOCK;
  515. return 0;
  516. err:
  517. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  518. return -EREMOTEIO;
  519. }
  520. static int sync_chk(struct mb86a16_state *state,
  521. unsigned char *VIRM)
  522. {
  523. unsigned char val;
  524. int sync;
  525. if (mb86a16_read(state, 0x0d, &val) != 2)
  526. goto err;
  527. dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
  528. sync = val & 0x01;
  529. *VIRM = (val & 0x1c) >> 2;
  530. return sync;
  531. err:
  532. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  533. *VIRM = 0;
  534. return -EREMOTEIO;
  535. }
  536. static int freqerr_chk(struct mb86a16_state *state,
  537. int fTP,
  538. int smrt,
  539. int unit)
  540. {
  541. unsigned char CRM, AFCML, AFCMH;
  542. unsigned char temp1, temp2, temp3;
  543. int crm, afcm, AFCM;
  544. int crrerr, afcerr; /* kHz */
  545. int frqerr; /* MHz */
  546. int afcen, afcexen = 0;
  547. int R, M, fOSC, fOSC_OFS;
  548. if (mb86a16_read(state, 0x43, &CRM) != 2)
  549. goto err;
  550. if (CRM > 127)
  551. crm = CRM - 256;
  552. else
  553. crm = CRM;
  554. crrerr = smrt * crm / 256;
  555. if (mb86a16_read(state, 0x49, &temp1) != 2)
  556. goto err;
  557. afcen = (temp1 & 0x04) >> 2;
  558. if (afcen == 0) {
  559. if (mb86a16_read(state, 0x2a, &temp1) != 2)
  560. goto err;
  561. afcexen = (temp1 & 0x20) >> 5;
  562. }
  563. if (afcen == 1) {
  564. if (mb86a16_read(state, 0x0e, &AFCML) != 2)
  565. goto err;
  566. if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
  567. goto err;
  568. } else if (afcexen == 1) {
  569. if (mb86a16_read(state, 0x2b, &AFCML) != 2)
  570. goto err;
  571. if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
  572. goto err;
  573. }
  574. if ((afcen == 1) || (afcexen == 1)) {
  575. smrt_info_get(state, smrt);
  576. AFCM = ((AFCMH & 0x01) << 8) + AFCML;
  577. if (AFCM > 255)
  578. afcm = AFCM - 512;
  579. else
  580. afcm = AFCM;
  581. afcerr = afcm * state->master_clk / 8192;
  582. } else
  583. afcerr = 0;
  584. if (mb86a16_read(state, 0x22, &temp1) != 2)
  585. goto err;
  586. if (mb86a16_read(state, 0x23, &temp2) != 2)
  587. goto err;
  588. if (mb86a16_read(state, 0x24, &temp3) != 2)
  589. goto err;
  590. R = (temp1 & 0xe0) >> 5;
  591. M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
  592. if (R == 0)
  593. fOSC = 2 * M;
  594. else
  595. fOSC = M;
  596. fOSC_OFS = fOSC - fTP;
  597. if (unit == 0) { /* MHz */
  598. if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
  599. frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
  600. else
  601. frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
  602. } else { /* kHz */
  603. frqerr = crrerr + afcerr + fOSC_OFS * 1000;
  604. }
  605. return frqerr;
  606. err:
  607. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  608. return -EREMOTEIO;
  609. }
  610. static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
  611. {
  612. unsigned char R;
  613. if (smrt > 9375)
  614. R = 0;
  615. else
  616. R = 1;
  617. return R;
  618. }
  619. static void swp_info_get(struct mb86a16_state *state,
  620. int fOSC_start,
  621. int smrt,
  622. int v, int R,
  623. int swp_ofs,
  624. int *fOSC,
  625. int *afcex_freq,
  626. unsigned char *AFCEX_L,
  627. unsigned char *AFCEX_H)
  628. {
  629. int AFCEX ;
  630. int crnt_swp_freq ;
  631. crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
  632. if (R == 0)
  633. *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
  634. else
  635. *fOSC = (crnt_swp_freq + 500) / 1000;
  636. if (*fOSC >= crnt_swp_freq)
  637. *afcex_freq = *fOSC * 1000 - crnt_swp_freq;
  638. else
  639. *afcex_freq = crnt_swp_freq - *fOSC * 1000;
  640. AFCEX = *afcex_freq * 8192 / state->master_clk;
  641. *AFCEX_L = AFCEX & 0x00ff;
  642. *AFCEX_H = (AFCEX & 0x0f00) >> 8;
  643. }
  644. static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin,
  645. int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
  646. {
  647. int swp_freq ;
  648. if ((i % 2 == 1) && (v <= vmax)) {
  649. /* positive v (case 1) */
  650. if ((v - 1 == vmin) &&
  651. (*(V + 30 + v) >= 0) &&
  652. (*(V + 30 + v - 1) >= 0) &&
  653. (*(V + 30 + v - 1) > *(V + 30 + v)) &&
  654. (*(V + 30 + v - 1) > SIGMIN)) {
  655. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
  656. *SIG1 = *(V + 30 + v - 1);
  657. } else if ((v == vmax) &&
  658. (*(V + 30 + v) >= 0) &&
  659. (*(V + 30 + v - 1) >= 0) &&
  660. (*(V + 30 + v) > *(V + 30 + v - 1)) &&
  661. (*(V + 30 + v) > SIGMIN)) {
  662. /* (case 2) */
  663. swp_freq = fOSC * 1000 + afcex_freq;
  664. *SIG1 = *(V + 30 + v);
  665. } else if ((*(V + 30 + v) > 0) &&
  666. (*(V + 30 + v - 1) > 0) &&
  667. (*(V + 30 + v - 2) > 0) &&
  668. (*(V + 30 + v - 3) > 0) &&
  669. (*(V + 30 + v - 1) > *(V + 30 + v)) &&
  670. (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
  671. ((*(V + 30 + v - 1) > SIGMIN) ||
  672. (*(V + 30 + v - 2) > SIGMIN))) {
  673. /* (case 3) */
  674. if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
  675. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
  676. *SIG1 = *(V + 30 + v - 1);
  677. } else {
  678. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
  679. *SIG1 = *(V + 30 + v - 2);
  680. }
  681. } else if ((v == vmax) &&
  682. (*(V + 30 + v) >= 0) &&
  683. (*(V + 30 + v - 1) >= 0) &&
  684. (*(V + 30 + v - 2) >= 0) &&
  685. (*(V + 30 + v) > *(V + 30 + v - 2)) &&
  686. (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
  687. ((*(V + 30 + v) > SIGMIN) ||
  688. (*(V + 30 + v - 1) > SIGMIN))) {
  689. /* (case 4) */
  690. if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
  691. swp_freq = fOSC * 1000 + afcex_freq;
  692. *SIG1 = *(V + 30 + v);
  693. } else {
  694. swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
  695. *SIG1 = *(V + 30 + v - 1);
  696. }
  697. } else {
  698. swp_freq = -1 ;
  699. }
  700. } else if ((i % 2 == 0) && (v >= vmin)) {
  701. /* Negative v (case 1) */
  702. if ((*(V + 30 + v) > 0) &&
  703. (*(V + 30 + v + 1) > 0) &&
  704. (*(V + 30 + v + 2) > 0) &&
  705. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  706. (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
  707. (*(V + 30 + v + 1) > SIGMIN)) {
  708. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  709. *SIG1 = *(V + 30 + v + 1);
  710. } else if ((v + 1 == vmax) &&
  711. (*(V + 30 + v) >= 0) &&
  712. (*(V + 30 + v + 1) >= 0) &&
  713. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  714. (*(V + 30 + v + 1) > SIGMIN)) {
  715. /* (case 2) */
  716. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  717. *SIG1 = *(V + 30 + v);
  718. } else if ((v == vmin) &&
  719. (*(V + 30 + v) > 0) &&
  720. (*(V + 30 + v + 1) > 0) &&
  721. (*(V + 30 + v + 2) > 0) &&
  722. (*(V + 30 + v) > *(V + 30 + v + 1)) &&
  723. (*(V + 30 + v) > *(V + 30 + v + 2)) &&
  724. (*(V + 30 + v) > SIGMIN)) {
  725. /* (case 3) */
  726. swp_freq = fOSC * 1000 + afcex_freq;
  727. *SIG1 = *(V + 30 + v);
  728. } else if ((*(V + 30 + v) >= 0) &&
  729. (*(V + 30 + v + 1) >= 0) &&
  730. (*(V + 30 + v + 2) >= 0) &&
  731. (*(V + 30 + v + 3) >= 0) &&
  732. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  733. (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
  734. ((*(V + 30 + v + 1) > SIGMIN) ||
  735. (*(V + 30 + v + 2) > SIGMIN))) {
  736. /* (case 4) */
  737. if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
  738. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  739. *SIG1 = *(V + 30 + v + 1);
  740. } else {
  741. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
  742. *SIG1 = *(V + 30 + v + 2);
  743. }
  744. } else if ((*(V + 30 + v) >= 0) &&
  745. (*(V + 30 + v + 1) >= 0) &&
  746. (*(V + 30 + v + 2) >= 0) &&
  747. (*(V + 30 + v + 3) >= 0) &&
  748. (*(V + 30 + v) > *(V + 30 + v + 2)) &&
  749. (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
  750. (*(V + 30 + v) > *(V + 30 + v + 3)) &&
  751. (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
  752. ((*(V + 30 + v) > SIGMIN) ||
  753. (*(V + 30 + v + 1) > SIGMIN))) {
  754. /* (case 5) */
  755. if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
  756. swp_freq = fOSC * 1000 + afcex_freq;
  757. *SIG1 = *(V + 30 + v);
  758. } else {
  759. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  760. *SIG1 = *(V + 30 + v + 1);
  761. }
  762. } else if ((v + 2 == vmin) &&
  763. (*(V + 30 + v) >= 0) &&
  764. (*(V + 30 + v + 1) >= 0) &&
  765. (*(V + 30 + v + 2) >= 0) &&
  766. (*(V + 30 + v + 1) > *(V + 30 + v)) &&
  767. (*(V + 30 + v + 2) > *(V + 30 + v)) &&
  768. ((*(V + 30 + v + 1) > SIGMIN) ||
  769. (*(V + 30 + v + 2) > SIGMIN))) {
  770. /* (case 6) */
  771. if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
  772. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
  773. *SIG1 = *(V + 30 + v + 1);
  774. } else {
  775. swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
  776. *SIG1 = *(V + 30 + v + 2);
  777. }
  778. } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
  779. swp_freq = fOSC * 1000;
  780. *SIG1 = *(V + 30 + v);
  781. } else
  782. swp_freq = -1;
  783. } else
  784. swp_freq = -1;
  785. return swp_freq;
  786. }
  787. static void swp_info_get2(struct mb86a16_state *state,
  788. int smrt,
  789. int R,
  790. int swp_freq,
  791. int *afcex_freq,
  792. int *fOSC,
  793. unsigned char *AFCEX_L,
  794. unsigned char *AFCEX_H)
  795. {
  796. int AFCEX ;
  797. if (R == 0)
  798. *fOSC = (swp_freq + 1000) / 2000 * 2;
  799. else
  800. *fOSC = (swp_freq + 500) / 1000;
  801. if (*fOSC >= swp_freq)
  802. *afcex_freq = *fOSC * 1000 - swp_freq;
  803. else
  804. *afcex_freq = swp_freq - *fOSC * 1000;
  805. AFCEX = *afcex_freq * 8192 / state->master_clk;
  806. *AFCEX_L = AFCEX & 0x00ff;
  807. *AFCEX_H = (AFCEX & 0x0f00) >> 8;
  808. }
  809. static void afcex_info_get(struct mb86a16_state *state,
  810. int afcex_freq,
  811. unsigned char *AFCEX_L,
  812. unsigned char *AFCEX_H)
  813. {
  814. int AFCEX ;
  815. AFCEX = afcex_freq * 8192 / state->master_clk;
  816. *AFCEX_L = AFCEX & 0x00ff;
  817. *AFCEX_H = (AFCEX & 0x0f00) >> 8;
  818. }
  819. static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
  820. {
  821. /* SLOCK0 = 0 */
  822. if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
  823. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  824. return -EREMOTEIO;
  825. }
  826. return 0;
  827. }
  828. static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
  829. {
  830. /* Viterbi Rate, IQ Settings */
  831. if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
  832. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  833. return -EREMOTEIO;
  834. }
  835. return 0;
  836. }
  837. static int FEC_srst(struct mb86a16_state *state)
  838. {
  839. if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
  840. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  841. return -EREMOTEIO;
  842. }
  843. return 0;
  844. }
  845. static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
  846. {
  847. if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
  848. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  849. return -EREMOTEIO;
  850. }
  851. return 0;
  852. }
  853. static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
  854. {
  855. if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
  856. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  857. return -EREMOTEIO;
  858. }
  859. return 0;
  860. }
  861. static int mb86a16_set_fe(struct mb86a16_state *state)
  862. {
  863. u8 agcval, cnmval;
  864. int i, j;
  865. int fOSC = 0;
  866. int fOSC_start = 0;
  867. int wait_t;
  868. int fcp;
  869. int swp_ofs;
  870. int V[60];
  871. u8 SIG1MIN;
  872. unsigned char CREN, AFCEN, AFCEXEN;
  873. unsigned char SIG1;
  874. unsigned char TIMINT1, TIMINT2, TIMEXT;
  875. unsigned char S0T, S1T;
  876. unsigned char S2T;
  877. /* unsigned char S2T, S3T; */
  878. unsigned char S4T, S5T;
  879. unsigned char AFCEX_L, AFCEX_H;
  880. unsigned char R;
  881. unsigned char VIRM;
  882. unsigned char ETH, VIA;
  883. unsigned char junk;
  884. int loop;
  885. int ftemp;
  886. int v, vmax, vmin;
  887. int vmax_his, vmin_his;
  888. int swp_freq, prev_swp_freq[20];
  889. int prev_freq_num;
  890. int signal_dupl;
  891. int afcex_freq;
  892. int signal;
  893. int afcerr;
  894. int temp_freq, delta_freq;
  895. int dagcm[4];
  896. int smrt_d;
  897. /* int freq_err; */
  898. int n;
  899. int ret = -1;
  900. int sync;
  901. dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
  902. fcp = 3000;
  903. swp_ofs = state->srate / 4;
  904. for (i = 0; i < 60; i++)
  905. V[i] = -1;
  906. for (i = 0; i < 20; i++)
  907. prev_swp_freq[i] = 0;
  908. SIG1MIN = 25;
  909. for (n = 0; ((n < 3) && (ret == -1)); n++) {
  910. SEQ_set(state, 0);
  911. iq_vt_set(state, 0);
  912. CREN = 0;
  913. AFCEN = 0;
  914. AFCEXEN = 1;
  915. TIMINT1 = 0;
  916. TIMINT2 = 1;
  917. TIMEXT = 2;
  918. S1T = 0;
  919. S0T = 0;
  920. if (initial_set(state) < 0) {
  921. dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
  922. return -1;
  923. }
  924. if (DAGC_data_set(state, 3, 2) < 0) {
  925. dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
  926. return -1;
  927. }
  928. if (EN_set(state, CREN, AFCEN) < 0) {
  929. dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
  930. return -1; /* (0, 0) */
  931. }
  932. if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
  933. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  934. return -1; /* (1, smrt) = (1, symbolrate) */
  935. }
  936. if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
  937. dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
  938. return -1; /* (0, 1, 2) */
  939. }
  940. if (S01T_set(state, S1T, S0T) < 0) {
  941. dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
  942. return -1; /* (0, 0) */
  943. }
  944. smrt_info_get(state, state->srate);
  945. if (smrt_set(state, state->srate) < 0) {
  946. dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
  947. return -1;
  948. }
  949. R = vco_dev_get(state, state->srate);
  950. if (R == 1)
  951. fOSC_start = state->frequency;
  952. else if (R == 0) {
  953. if (state->frequency % 2 == 0) {
  954. fOSC_start = state->frequency;
  955. } else {
  956. fOSC_start = state->frequency + 1;
  957. if (fOSC_start > 2150)
  958. fOSC_start = state->frequency - 1;
  959. }
  960. }
  961. loop = 1;
  962. ftemp = fOSC_start * 1000;
  963. vmax = 0 ;
  964. while (loop == 1) {
  965. ftemp = ftemp + swp_ofs;
  966. vmax++;
  967. /* Upper bound */
  968. if (ftemp > 2150000) {
  969. loop = 0;
  970. vmax--;
  971. } else {
  972. if ((ftemp == 2150000) ||
  973. (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
  974. loop = 0;
  975. }
  976. }
  977. loop = 1;
  978. ftemp = fOSC_start * 1000;
  979. vmin = 0 ;
  980. while (loop == 1) {
  981. ftemp = ftemp - swp_ofs;
  982. vmin--;
  983. /* Lower bound */
  984. if (ftemp < 950000) {
  985. loop = 0;
  986. vmin++;
  987. } else {
  988. if ((ftemp == 950000) ||
  989. (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
  990. loop = 0;
  991. }
  992. }
  993. wait_t = (8000 + state->srate / 2) / state->srate;
  994. if (wait_t == 0)
  995. wait_t = 1;
  996. i = 0;
  997. j = 0;
  998. prev_freq_num = 0;
  999. loop = 1;
  1000. signal = 0;
  1001. vmax_his = 0;
  1002. vmin_his = 0;
  1003. v = 0;
  1004. while (loop == 1) {
  1005. swp_info_get(state, fOSC_start, state->srate,
  1006. v, R, swp_ofs, &fOSC,
  1007. &afcex_freq, &AFCEX_L, &AFCEX_H);
  1008. udelay(100);
  1009. if (rf_val_set(state, fOSC, state->srate, R) < 0) {
  1010. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1011. return -1;
  1012. }
  1013. udelay(100);
  1014. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1015. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1016. return -1;
  1017. }
  1018. if (srst(state) < 0) {
  1019. dprintk(verbose, MB86A16_ERROR, 1, "srst error");
  1020. return -1;
  1021. }
  1022. msleep_interruptible(wait_t);
  1023. if (mb86a16_read(state, 0x37, &SIG1) != 2) {
  1024. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1025. return -1;
  1026. }
  1027. V[30 + v] = SIG1 ;
  1028. swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
  1029. SIG1MIN, fOSC, afcex_freq,
  1030. swp_ofs, &SIG1); /* changed */
  1031. signal_dupl = 0;
  1032. for (j = 0; j < prev_freq_num; j++) {
  1033. if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
  1034. signal_dupl = 1;
  1035. dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
  1036. }
  1037. }
  1038. if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
  1039. dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
  1040. prev_swp_freq[prev_freq_num] = swp_freq;
  1041. prev_freq_num++;
  1042. swp_info_get2(state, state->srate, R, swp_freq,
  1043. &afcex_freq, &fOSC,
  1044. &AFCEX_L, &AFCEX_H);
  1045. if (rf_val_set(state, fOSC, state->srate, R) < 0) {
  1046. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1047. return -1;
  1048. }
  1049. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1050. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1051. return -1;
  1052. }
  1053. signal = signal_det(state, state->srate, &SIG1);
  1054. if (signal == 1) {
  1055. dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
  1056. loop = 0;
  1057. } else {
  1058. dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
  1059. smrt_info_get(state, state->srate);
  1060. if (smrt_set(state, state->srate) < 0) {
  1061. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1062. return -1;
  1063. }
  1064. }
  1065. }
  1066. if (v > vmax)
  1067. vmax_his = 1 ;
  1068. if (v < vmin)
  1069. vmin_his = 1 ;
  1070. i++;
  1071. if ((i % 2 == 1) && (vmax_his == 1))
  1072. i++;
  1073. if ((i % 2 == 0) && (vmin_his == 1))
  1074. i++;
  1075. if (i % 2 == 1)
  1076. v = (i + 1) / 2;
  1077. else
  1078. v = -i / 2;
  1079. if ((vmax_his == 1) && (vmin_his == 1))
  1080. loop = 0 ;
  1081. }
  1082. if (signal == 1) {
  1083. dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
  1084. S1T = 7 ;
  1085. S0T = 1 ;
  1086. CREN = 0 ;
  1087. AFCEN = 1 ;
  1088. AFCEXEN = 0 ;
  1089. if (S01T_set(state, S1T, S0T) < 0) {
  1090. dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
  1091. return -1;
  1092. }
  1093. smrt_info_get(state, state->srate);
  1094. if (smrt_set(state, state->srate) < 0) {
  1095. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1096. return -1;
  1097. }
  1098. if (EN_set(state, CREN, AFCEN) < 0) {
  1099. dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
  1100. return -1;
  1101. }
  1102. if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
  1103. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  1104. return -1;
  1105. }
  1106. afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
  1107. if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1108. dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
  1109. return -1;
  1110. }
  1111. if (srst(state) < 0) {
  1112. dprintk(verbose, MB86A16_ERROR, 1, "srst error");
  1113. return -1;
  1114. }
  1115. /* delay 4~200 */
  1116. wait_t = 200000 / state->master_clk + 200000 / state->srate;
  1117. msleep(wait_t);
  1118. afcerr = afcerr_chk(state);
  1119. if (afcerr == -1)
  1120. return -1;
  1121. swp_freq = fOSC * 1000 + afcerr ;
  1122. AFCEXEN = 1 ;
  1123. if (state->srate >= 1500)
  1124. smrt_d = state->srate / 3;
  1125. else
  1126. smrt_d = state->srate / 2;
  1127. smrt_info_get(state, smrt_d);
  1128. if (smrt_set(state, smrt_d) < 0) {
  1129. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1130. return -1;
  1131. }
  1132. if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
  1133. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  1134. return -1;
  1135. }
  1136. R = vco_dev_get(state, smrt_d);
  1137. if (DAGC_data_set(state, 2, 0) < 0) {
  1138. dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
  1139. return -1;
  1140. }
  1141. for (i = 0; i < 3; i++) {
  1142. temp_freq = swp_freq + (i - 1) * state->srate / 8;
  1143. swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1144. if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
  1145. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1146. return -1;
  1147. }
  1148. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1149. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1150. return -1;
  1151. }
  1152. wait_t = 200000 / state->master_clk + 40000 / smrt_d;
  1153. msleep(wait_t);
  1154. dagcm[i] = dagcm_val_get(state);
  1155. }
  1156. if ((dagcm[0] > dagcm[1]) &&
  1157. (dagcm[0] > dagcm[2]) &&
  1158. (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
  1159. temp_freq = swp_freq - 2 * state->srate / 8;
  1160. swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1161. if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
  1162. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1163. return -1;
  1164. }
  1165. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1166. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
  1167. return -1;
  1168. }
  1169. wait_t = 200000 / state->master_clk + 40000 / smrt_d;
  1170. msleep(wait_t);
  1171. dagcm[3] = dagcm_val_get(state);
  1172. if (dagcm[3] > dagcm[1])
  1173. delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
  1174. else
  1175. delta_freq = 0;
  1176. } else if ((dagcm[2] > dagcm[1]) &&
  1177. (dagcm[2] > dagcm[0]) &&
  1178. (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
  1179. temp_freq = swp_freq + 2 * state->srate / 8;
  1180. swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1181. if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
  1182. dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
  1183. return -1;
  1184. }
  1185. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1186. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
  1187. return -1;
  1188. }
  1189. wait_t = 200000 / state->master_clk + 40000 / smrt_d;
  1190. msleep(wait_t);
  1191. dagcm[3] = dagcm_val_get(state);
  1192. if (dagcm[3] > dagcm[1])
  1193. delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
  1194. else
  1195. delta_freq = 0 ;
  1196. } else {
  1197. delta_freq = 0 ;
  1198. }
  1199. dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
  1200. swp_freq += delta_freq;
  1201. dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
  1202. if (abs(state->frequency * 1000 - swp_freq) > 3800) {
  1203. dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !");
  1204. } else {
  1205. S1T = 0;
  1206. S0T = 3;
  1207. CREN = 1;
  1208. AFCEN = 0;
  1209. AFCEXEN = 1;
  1210. if (S01T_set(state, S1T, S0T) < 0) {
  1211. dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
  1212. return -1;
  1213. }
  1214. if (DAGC_data_set(state, 0, 0) < 0) {
  1215. dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
  1216. return -1;
  1217. }
  1218. R = vco_dev_get(state, state->srate);
  1219. smrt_info_get(state, state->srate);
  1220. if (smrt_set(state, state->srate) < 0) {
  1221. dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
  1222. return -1;
  1223. }
  1224. if (EN_set(state, CREN, AFCEN) < 0) {
  1225. dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
  1226. return -1;
  1227. }
  1228. if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
  1229. dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
  1230. return -1;
  1231. }
  1232. swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
  1233. if (rf_val_set(state, fOSC, state->srate, R) < 0) {
  1234. dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
  1235. return -1;
  1236. }
  1237. if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
  1238. dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
  1239. return -1;
  1240. }
  1241. if (srst(state) < 0) {
  1242. dprintk(verbose, MB86A16_ERROR, 1, "srst error");
  1243. return -1;
  1244. }
  1245. wait_t = 7 + (10000 + state->srate / 2) / state->srate;
  1246. if (wait_t == 0)
  1247. wait_t = 1;
  1248. msleep_interruptible(wait_t);
  1249. if (mb86a16_read(state, 0x37, &SIG1) != 2) {
  1250. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1251. return -EREMOTEIO;
  1252. }
  1253. if (SIG1 > 110) {
  1254. S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
  1255. wait_t = 7 + (917504 + state->srate / 2) / state->srate;
  1256. } else if (SIG1 > 105) {
  1257. S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1258. wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
  1259. } else if (SIG1 > 85) {
  1260. S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1261. wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
  1262. } else if (SIG1 > 65) {
  1263. S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1264. wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
  1265. } else {
  1266. S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
  1267. wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
  1268. }
  1269. wait_t *= 2; /* FOS */
  1270. S2T_set(state, S2T);
  1271. S45T_set(state, S4T, S5T);
  1272. Vi_set(state, ETH, VIA);
  1273. srst(state);
  1274. msleep_interruptible(wait_t);
  1275. sync = sync_chk(state, &VIRM);
  1276. dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
  1277. if (VIRM) {
  1278. if (VIRM == 4) {
  1279. /* 5/6 */
  1280. if (SIG1 > 110)
  1281. wait_t = (786432 + state->srate / 2) / state->srate;
  1282. else
  1283. wait_t = (1572864 + state->srate / 2) / state->srate;
  1284. if (state->srate < 5000)
  1285. /* FIXME ! , should be a long wait ! */
  1286. msleep_interruptible(wait_t);
  1287. else
  1288. msleep_interruptible(wait_t);
  1289. if (sync_chk(state, &junk) == 0) {
  1290. iq_vt_set(state, 1);
  1291. FEC_srst(state);
  1292. }
  1293. }
  1294. /* 1/2, 2/3, 3/4, 7/8 */
  1295. if (SIG1 > 110)
  1296. wait_t = (786432 + state->srate / 2) / state->srate;
  1297. else
  1298. wait_t = (1572864 + state->srate / 2) / state->srate;
  1299. msleep_interruptible(wait_t);
  1300. SEQ_set(state, 1);
  1301. } else {
  1302. dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC");
  1303. SEQ_set(state, 1);
  1304. ret = -1;
  1305. }
  1306. }
  1307. } else {
  1308. dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
  1309. ret = -1;
  1310. }
  1311. sync = sync_chk(state, &junk);
  1312. if (sync) {
  1313. dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
  1314. freqerr_chk(state, state->frequency, state->srate, 1);
  1315. ret = 0;
  1316. break;
  1317. }
  1318. }
  1319. mb86a16_read(state, 0x15, &agcval);
  1320. mb86a16_read(state, 0x26, &cnmval);
  1321. dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
  1322. return ret;
  1323. }
  1324. static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
  1325. struct dvb_diseqc_master_cmd *cmd)
  1326. {
  1327. struct mb86a16_state *state = fe->demodulator_priv;
  1328. int i;
  1329. u8 regs;
  1330. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
  1331. goto err;
  1332. if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
  1333. goto err;
  1334. if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
  1335. goto err;
  1336. regs = 0x18;
  1337. if (cmd->msg_len > 5 || cmd->msg_len < 4)
  1338. return -EINVAL;
  1339. for (i = 0; i < cmd->msg_len; i++) {
  1340. if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
  1341. goto err;
  1342. regs++;
  1343. }
  1344. i += 0x90;
  1345. msleep_interruptible(10);
  1346. if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
  1347. goto err;
  1348. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1349. goto err;
  1350. return 0;
  1351. err:
  1352. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1353. return -EREMOTEIO;
  1354. }
  1355. static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
  1356. enum fe_sec_mini_cmd burst)
  1357. {
  1358. struct mb86a16_state *state = fe->demodulator_priv;
  1359. switch (burst) {
  1360. case SEC_MINI_A:
  1361. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
  1362. MB86A16_DCC1_TBEN |
  1363. MB86A16_DCC1_TBO) < 0)
  1364. goto err;
  1365. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1366. goto err;
  1367. break;
  1368. case SEC_MINI_B:
  1369. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
  1370. MB86A16_DCC1_TBEN) < 0)
  1371. goto err;
  1372. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1373. goto err;
  1374. break;
  1375. }
  1376. return 0;
  1377. err:
  1378. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1379. return -EREMOTEIO;
  1380. }
  1381. static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
  1382. {
  1383. struct mb86a16_state *state = fe->demodulator_priv;
  1384. switch (tone) {
  1385. case SEC_TONE_ON:
  1386. if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
  1387. goto err;
  1388. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
  1389. MB86A16_DCC1_CTOE) < 0)
  1390. goto err;
  1391. if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
  1392. goto err;
  1393. break;
  1394. case SEC_TONE_OFF:
  1395. if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
  1396. goto err;
  1397. if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
  1398. goto err;
  1399. if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
  1400. goto err;
  1401. break;
  1402. default:
  1403. return -EINVAL;
  1404. }
  1405. return 0;
  1406. err:
  1407. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1408. return -EREMOTEIO;
  1409. }
  1410. static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
  1411. {
  1412. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  1413. struct mb86a16_state *state = fe->demodulator_priv;
  1414. state->frequency = p->frequency / 1000;
  1415. state->srate = p->symbol_rate / 1000;
  1416. if (!mb86a16_set_fe(state)) {
  1417. dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
  1418. return DVBFE_ALGO_SEARCH_SUCCESS;
  1419. }
  1420. dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
  1421. return DVBFE_ALGO_SEARCH_FAILED;
  1422. }
  1423. static void mb86a16_release(struct dvb_frontend *fe)
  1424. {
  1425. struct mb86a16_state *state = fe->demodulator_priv;
  1426. kfree(state);
  1427. }
  1428. static int mb86a16_init(struct dvb_frontend *fe)
  1429. {
  1430. return 0;
  1431. }
  1432. static int mb86a16_sleep(struct dvb_frontend *fe)
  1433. {
  1434. return 0;
  1435. }
  1436. static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
  1437. {
  1438. u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
  1439. u32 timer;
  1440. struct mb86a16_state *state = fe->demodulator_priv;
  1441. *ber = 0;
  1442. if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
  1443. goto err;
  1444. if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
  1445. goto err;
  1446. if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
  1447. goto err;
  1448. if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
  1449. goto err;
  1450. if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
  1451. goto err;
  1452. /* BER monitor invalid when BER_EN = 0 */
  1453. if (ber_mon & 0x04) {
  1454. /* coarse, fast calculation */
  1455. *ber = ber_tab & 0x1f;
  1456. dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
  1457. if (ber_mon & 0x01) {
  1458. /*
  1459. * BER_SEL = 1, The monitored BER is the estimated
  1460. * value with a Reed-Solomon decoder error amount at
  1461. * the deinterleaver output.
  1462. * monitored BER is expressed as a 20 bit output in total
  1463. */
  1464. ber_rst = (ber_mon >> 3) & 0x03;
  1465. *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
  1466. if (ber_rst == 0)
  1467. timer = 12500000;
  1468. else if (ber_rst == 1)
  1469. timer = 25000000;
  1470. else if (ber_rst == 2)
  1471. timer = 50000000;
  1472. else /* ber_rst == 3 */
  1473. timer = 100000000;
  1474. *ber /= timer;
  1475. dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
  1476. } else {
  1477. /*
  1478. * BER_SEL = 0, The monitored BER is the estimated
  1479. * value with a Viterbi decoder error amount at the
  1480. * QPSK demodulator output.
  1481. * monitored BER is expressed as a 24 bit output in total
  1482. */
  1483. ber_tim = (ber_mon >> 1) & 0x01;
  1484. *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
  1485. if (ber_tim == 0)
  1486. timer = 16;
  1487. else /* ber_tim == 1 */
  1488. timer = 24;
  1489. *ber /= 2 ^ timer;
  1490. dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
  1491. }
  1492. }
  1493. return 0;
  1494. err:
  1495. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1496. return -EREMOTEIO;
  1497. }
  1498. static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  1499. {
  1500. u8 agcm = 0;
  1501. struct mb86a16_state *state = fe->demodulator_priv;
  1502. *strength = 0;
  1503. if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
  1504. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1505. return -EREMOTEIO;
  1506. }
  1507. *strength = ((0xff - agcm) * 100) / 256;
  1508. dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
  1509. *strength = (0xffff - 0xff) + agcm;
  1510. return 0;
  1511. }
  1512. struct cnr {
  1513. u8 cn_reg;
  1514. u8 cn_val;
  1515. };
  1516. static const struct cnr cnr_tab[] = {
  1517. { 35, 2 },
  1518. { 40, 3 },
  1519. { 50, 4 },
  1520. { 60, 5 },
  1521. { 70, 6 },
  1522. { 80, 7 },
  1523. { 92, 8 },
  1524. { 103, 9 },
  1525. { 115, 10 },
  1526. { 138, 12 },
  1527. { 162, 15 },
  1528. { 180, 18 },
  1529. { 185, 19 },
  1530. { 189, 20 },
  1531. { 195, 22 },
  1532. { 199, 24 },
  1533. { 201, 25 },
  1534. { 202, 26 },
  1535. { 203, 27 },
  1536. { 205, 28 },
  1537. { 208, 30 }
  1538. };
  1539. static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
  1540. {
  1541. struct mb86a16_state *state = fe->demodulator_priv;
  1542. int i = 0;
  1543. int low_tide = 2, high_tide = 30, q_level;
  1544. u8 cn;
  1545. *snr = 0;
  1546. if (mb86a16_read(state, 0x26, &cn) != 2) {
  1547. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1548. return -EREMOTEIO;
  1549. }
  1550. for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
  1551. if (cn < cnr_tab[i].cn_reg) {
  1552. *snr = cnr_tab[i].cn_val;
  1553. break;
  1554. }
  1555. }
  1556. q_level = (*snr * 100) / (high_tide - low_tide);
  1557. dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
  1558. *snr = (0xffff - 0xff) + *snr;
  1559. return 0;
  1560. }
  1561. static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  1562. {
  1563. u8 dist;
  1564. struct mb86a16_state *state = fe->demodulator_priv;
  1565. if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
  1566. dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
  1567. return -EREMOTEIO;
  1568. }
  1569. *ucblocks = dist;
  1570. return 0;
  1571. }
  1572. static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
  1573. {
  1574. return DVBFE_ALGO_CUSTOM;
  1575. }
  1576. static const struct dvb_frontend_ops mb86a16_ops = {
  1577. .delsys = { SYS_DVBS },
  1578. .info = {
  1579. .name = "Fujitsu MB86A16 DVB-S",
  1580. .frequency_min_hz = 950 * MHz,
  1581. .frequency_max_hz = 2150 * MHz,
  1582. .frequency_stepsize_hz = 3 * MHz,
  1583. .symbol_rate_min = 1000000,
  1584. .symbol_rate_max = 45000000,
  1585. .symbol_rate_tolerance = 500,
  1586. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  1587. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
  1588. FE_CAN_FEC_7_8 | FE_CAN_QPSK |
  1589. FE_CAN_FEC_AUTO
  1590. },
  1591. .release = mb86a16_release,
  1592. .get_frontend_algo = mb86a16_frontend_algo,
  1593. .search = mb86a16_search,
  1594. .init = mb86a16_init,
  1595. .sleep = mb86a16_sleep,
  1596. .read_status = mb86a16_read_status,
  1597. .read_ber = mb86a16_read_ber,
  1598. .read_signal_strength = mb86a16_read_signal_strength,
  1599. .read_snr = mb86a16_read_snr,
  1600. .read_ucblocks = mb86a16_read_ucblocks,
  1601. .diseqc_send_master_cmd = mb86a16_send_diseqc_msg,
  1602. .diseqc_send_burst = mb86a16_send_diseqc_burst,
  1603. .set_tone = mb86a16_set_tone,
  1604. };
  1605. struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
  1606. struct i2c_adapter *i2c_adap)
  1607. {
  1608. u8 dev_id = 0;
  1609. struct mb86a16_state *state = NULL;
  1610. state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
  1611. if (state == NULL)
  1612. goto error;
  1613. state->config = config;
  1614. state->i2c_adap = i2c_adap;
  1615. mb86a16_read(state, 0x7f, &dev_id);
  1616. if (dev_id != 0xfe)
  1617. goto error;
  1618. memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
  1619. state->frontend.demodulator_priv = state;
  1620. state->frontend.ops.set_voltage = state->config->set_voltage;
  1621. return &state->frontend;
  1622. error:
  1623. kfree(state);
  1624. return NULL;
  1625. }
  1626. EXPORT_SYMBOL(mb86a16_attach);
  1627. MODULE_LICENSE("GPL");
  1628. MODULE_AUTHOR("Manu Abraham");