dm-integrity.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648
  1. /*
  2. * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
  3. * Copyright (C) 2016-2017 Milan Broz
  4. * Copyright (C) 2016-2017 Mikulas Patocka
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include "dm-bio-record.h"
  9. #include <linux/compiler.h>
  10. #include <linux/module.h>
  11. #include <linux/device-mapper.h>
  12. #include <linux/dm-io.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/sort.h>
  15. #include <linux/rbtree.h>
  16. #include <linux/delay.h>
  17. #include <linux/random.h>
  18. #include <crypto/hash.h>
  19. #include <crypto/skcipher.h>
  20. #include <linux/async_tx.h>
  21. #include <linux/dm-bufio.h>
  22. #define DM_MSG_PREFIX "integrity"
  23. #define DEFAULT_INTERLEAVE_SECTORS 32768
  24. #define DEFAULT_JOURNAL_SIZE_FACTOR 7
  25. #define DEFAULT_BUFFER_SECTORS 128
  26. #define DEFAULT_JOURNAL_WATERMARK 50
  27. #define DEFAULT_SYNC_MSEC 10000
  28. #define DEFAULT_MAX_JOURNAL_SECTORS 131072
  29. #define MIN_LOG2_INTERLEAVE_SECTORS 3
  30. #define MAX_LOG2_INTERLEAVE_SECTORS 31
  31. #define METADATA_WORKQUEUE_MAX_ACTIVE 16
  32. #define RECALC_SECTORS 8192
  33. #define RECALC_WRITE_SUPER 16
  34. /*
  35. * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  36. * so it should not be enabled in the official kernel
  37. */
  38. //#define DEBUG_PRINT
  39. //#define INTERNAL_VERIFY
  40. /*
  41. * On disk structures
  42. */
  43. #define SB_MAGIC "integrt"
  44. #define SB_VERSION_1 1
  45. #define SB_VERSION_2 2
  46. #define SB_SECTORS 8
  47. #define MAX_SECTORS_PER_BLOCK 8
  48. struct superblock {
  49. __u8 magic[8];
  50. __u8 version;
  51. __u8 log2_interleave_sectors;
  52. __u16 integrity_tag_size;
  53. __u32 journal_sections;
  54. __u64 provided_data_sectors; /* userspace uses this value */
  55. __u32 flags;
  56. __u8 log2_sectors_per_block;
  57. __u8 pad[3];
  58. __u64 recalc_sector;
  59. };
  60. #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
  61. #define SB_FLAG_RECALCULATING 0x2
  62. #define JOURNAL_ENTRY_ROUNDUP 8
  63. typedef __u64 commit_id_t;
  64. #define JOURNAL_MAC_PER_SECTOR 8
  65. struct journal_entry {
  66. union {
  67. struct {
  68. __u32 sector_lo;
  69. __u32 sector_hi;
  70. } s;
  71. __u64 sector;
  72. } u;
  73. commit_id_t last_bytes[0];
  74. /* __u8 tag[0]; */
  75. };
  76. #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
  77. #if BITS_PER_LONG == 64
  78. #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
  79. #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
  80. #elif defined(CONFIG_LBDAF)
  81. #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
  82. #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
  83. #else
  84. #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
  85. #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
  86. #endif
  87. #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
  88. #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
  89. #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
  90. #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
  91. #define JOURNAL_BLOCK_SECTORS 8
  92. #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
  93. #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
  94. struct journal_sector {
  95. __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
  96. __u8 mac[JOURNAL_MAC_PER_SECTOR];
  97. commit_id_t commit_id;
  98. };
  99. #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
  100. #define METADATA_PADDING_SECTORS 8
  101. #define N_COMMIT_IDS 4
  102. static unsigned char prev_commit_seq(unsigned char seq)
  103. {
  104. return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
  105. }
  106. static unsigned char next_commit_seq(unsigned char seq)
  107. {
  108. return (seq + 1) % N_COMMIT_IDS;
  109. }
  110. /*
  111. * In-memory structures
  112. */
  113. struct journal_node {
  114. struct rb_node node;
  115. sector_t sector;
  116. };
  117. struct alg_spec {
  118. char *alg_string;
  119. char *key_string;
  120. __u8 *key;
  121. unsigned key_size;
  122. };
  123. struct dm_integrity_c {
  124. struct dm_dev *dev;
  125. struct dm_dev *meta_dev;
  126. unsigned tag_size;
  127. __s8 log2_tag_size;
  128. sector_t start;
  129. mempool_t journal_io_mempool;
  130. struct dm_io_client *io;
  131. struct dm_bufio_client *bufio;
  132. struct workqueue_struct *metadata_wq;
  133. struct superblock *sb;
  134. unsigned journal_pages;
  135. struct page_list *journal;
  136. struct page_list *journal_io;
  137. struct page_list *journal_xor;
  138. struct crypto_skcipher *journal_crypt;
  139. struct scatterlist **journal_scatterlist;
  140. struct scatterlist **journal_io_scatterlist;
  141. struct skcipher_request **sk_requests;
  142. struct crypto_shash *journal_mac;
  143. struct journal_node *journal_tree;
  144. struct rb_root journal_tree_root;
  145. sector_t provided_data_sectors;
  146. unsigned short journal_entry_size;
  147. unsigned char journal_entries_per_sector;
  148. unsigned char journal_section_entries;
  149. unsigned short journal_section_sectors;
  150. unsigned journal_sections;
  151. unsigned journal_entries;
  152. sector_t data_device_sectors;
  153. sector_t meta_device_sectors;
  154. unsigned initial_sectors;
  155. unsigned metadata_run;
  156. __s8 log2_metadata_run;
  157. __u8 log2_buffer_sectors;
  158. __u8 sectors_per_block;
  159. unsigned char mode;
  160. int failed;
  161. struct crypto_shash *internal_hash;
  162. struct dm_target *ti;
  163. /* these variables are locked with endio_wait.lock */
  164. struct rb_root in_progress;
  165. struct list_head wait_list;
  166. wait_queue_head_t endio_wait;
  167. struct workqueue_struct *wait_wq;
  168. struct workqueue_struct *offload_wq;
  169. unsigned char commit_seq;
  170. commit_id_t commit_ids[N_COMMIT_IDS];
  171. unsigned committed_section;
  172. unsigned n_committed_sections;
  173. unsigned uncommitted_section;
  174. unsigned n_uncommitted_sections;
  175. unsigned free_section;
  176. unsigned char free_section_entry;
  177. unsigned free_sectors;
  178. unsigned free_sectors_threshold;
  179. struct workqueue_struct *commit_wq;
  180. struct work_struct commit_work;
  181. struct workqueue_struct *writer_wq;
  182. struct work_struct writer_work;
  183. struct workqueue_struct *recalc_wq;
  184. struct work_struct recalc_work;
  185. u8 *recalc_buffer;
  186. u8 *recalc_tags;
  187. struct bio_list flush_bio_list;
  188. unsigned long autocommit_jiffies;
  189. struct timer_list autocommit_timer;
  190. unsigned autocommit_msec;
  191. wait_queue_head_t copy_to_journal_wait;
  192. struct completion crypto_backoff;
  193. bool journal_uptodate;
  194. bool just_formatted;
  195. struct alg_spec internal_hash_alg;
  196. struct alg_spec journal_crypt_alg;
  197. struct alg_spec journal_mac_alg;
  198. atomic64_t number_of_mismatches;
  199. };
  200. struct dm_integrity_range {
  201. sector_t logical_sector;
  202. unsigned n_sectors;
  203. bool waiting;
  204. union {
  205. struct rb_node node;
  206. struct {
  207. struct task_struct *task;
  208. struct list_head wait_entry;
  209. };
  210. };
  211. };
  212. struct dm_integrity_io {
  213. struct work_struct work;
  214. struct dm_integrity_c *ic;
  215. bool write;
  216. bool fua;
  217. struct dm_integrity_range range;
  218. sector_t metadata_block;
  219. unsigned metadata_offset;
  220. atomic_t in_flight;
  221. blk_status_t bi_status;
  222. struct completion *completion;
  223. struct dm_bio_details bio_details;
  224. };
  225. struct journal_completion {
  226. struct dm_integrity_c *ic;
  227. atomic_t in_flight;
  228. struct completion comp;
  229. };
  230. struct journal_io {
  231. struct dm_integrity_range range;
  232. struct journal_completion *comp;
  233. };
  234. static struct kmem_cache *journal_io_cache;
  235. #define JOURNAL_IO_MEMPOOL 32
  236. #ifdef DEBUG_PRINT
  237. #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
  238. static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
  239. {
  240. va_list args;
  241. va_start(args, msg);
  242. vprintk(msg, args);
  243. va_end(args);
  244. if (len)
  245. pr_cont(":");
  246. while (len) {
  247. pr_cont(" %02x", *bytes);
  248. bytes++;
  249. len--;
  250. }
  251. pr_cont("\n");
  252. }
  253. #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
  254. #else
  255. #define DEBUG_print(x, ...) do { } while (0)
  256. #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
  257. #endif
  258. /*
  259. * DM Integrity profile, protection is performed layer above (dm-crypt)
  260. */
  261. static const struct blk_integrity_profile dm_integrity_profile = {
  262. .name = "DM-DIF-EXT-TAG",
  263. .generate_fn = NULL,
  264. .verify_fn = NULL,
  265. };
  266. static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
  267. static void integrity_bio_wait(struct work_struct *w);
  268. static void dm_integrity_dtr(struct dm_target *ti);
  269. static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
  270. {
  271. if (err == -EILSEQ)
  272. atomic64_inc(&ic->number_of_mismatches);
  273. if (!cmpxchg(&ic->failed, 0, err))
  274. DMERR("Error on %s: %d", msg, err);
  275. }
  276. static int dm_integrity_failed(struct dm_integrity_c *ic)
  277. {
  278. return READ_ONCE(ic->failed);
  279. }
  280. static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
  281. unsigned j, unsigned char seq)
  282. {
  283. /*
  284. * Xor the number with section and sector, so that if a piece of
  285. * journal is written at wrong place, it is detected.
  286. */
  287. return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
  288. }
  289. static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
  290. sector_t *area, sector_t *offset)
  291. {
  292. if (!ic->meta_dev) {
  293. __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
  294. *area = data_sector >> log2_interleave_sectors;
  295. *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
  296. } else {
  297. *area = 0;
  298. *offset = data_sector;
  299. }
  300. }
  301. #define sector_to_block(ic, n) \
  302. do { \
  303. BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
  304. (n) >>= (ic)->sb->log2_sectors_per_block; \
  305. } while (0)
  306. static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
  307. sector_t offset, unsigned *metadata_offset)
  308. {
  309. __u64 ms;
  310. unsigned mo;
  311. ms = area << ic->sb->log2_interleave_sectors;
  312. if (likely(ic->log2_metadata_run >= 0))
  313. ms += area << ic->log2_metadata_run;
  314. else
  315. ms += area * ic->metadata_run;
  316. ms >>= ic->log2_buffer_sectors;
  317. sector_to_block(ic, offset);
  318. if (likely(ic->log2_tag_size >= 0)) {
  319. ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
  320. mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
  321. } else {
  322. ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
  323. mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
  324. }
  325. *metadata_offset = mo;
  326. return ms;
  327. }
  328. static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
  329. {
  330. sector_t result;
  331. if (ic->meta_dev)
  332. return offset;
  333. result = area << ic->sb->log2_interleave_sectors;
  334. if (likely(ic->log2_metadata_run >= 0))
  335. result += (area + 1) << ic->log2_metadata_run;
  336. else
  337. result += (area + 1) * ic->metadata_run;
  338. result += (sector_t)ic->initial_sectors + offset;
  339. result += ic->start;
  340. return result;
  341. }
  342. static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
  343. {
  344. if (unlikely(*sec_ptr >= ic->journal_sections))
  345. *sec_ptr -= ic->journal_sections;
  346. }
  347. static void sb_set_version(struct dm_integrity_c *ic)
  348. {
  349. if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  350. ic->sb->version = SB_VERSION_2;
  351. else
  352. ic->sb->version = SB_VERSION_1;
  353. }
  354. static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
  355. {
  356. struct dm_io_request io_req;
  357. struct dm_io_region io_loc;
  358. io_req.bi_op = op;
  359. io_req.bi_op_flags = op_flags;
  360. io_req.mem.type = DM_IO_KMEM;
  361. io_req.mem.ptr.addr = ic->sb;
  362. io_req.notify.fn = NULL;
  363. io_req.client = ic->io;
  364. io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
  365. io_loc.sector = ic->start;
  366. io_loc.count = SB_SECTORS;
  367. return dm_io(&io_req, 1, &io_loc, NULL);
  368. }
  369. static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  370. bool e, const char *function)
  371. {
  372. #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
  373. unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
  374. if (unlikely(section >= ic->journal_sections) ||
  375. unlikely(offset >= limit)) {
  376. printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
  377. function, section, offset, ic->journal_sections, limit);
  378. BUG();
  379. }
  380. #endif
  381. }
  382. static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  383. unsigned *pl_index, unsigned *pl_offset)
  384. {
  385. unsigned sector;
  386. access_journal_check(ic, section, offset, false, "page_list_location");
  387. sector = section * ic->journal_section_sectors + offset;
  388. *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  389. *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  390. }
  391. static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
  392. unsigned section, unsigned offset, unsigned *n_sectors)
  393. {
  394. unsigned pl_index, pl_offset;
  395. char *va;
  396. page_list_location(ic, section, offset, &pl_index, &pl_offset);
  397. if (n_sectors)
  398. *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
  399. va = lowmem_page_address(pl[pl_index].page);
  400. return (struct journal_sector *)(va + pl_offset);
  401. }
  402. static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
  403. {
  404. return access_page_list(ic, ic->journal, section, offset, NULL);
  405. }
  406. static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
  407. {
  408. unsigned rel_sector, offset;
  409. struct journal_sector *js;
  410. access_journal_check(ic, section, n, true, "access_journal_entry");
  411. rel_sector = n % JOURNAL_BLOCK_SECTORS;
  412. offset = n / JOURNAL_BLOCK_SECTORS;
  413. js = access_journal(ic, section, rel_sector);
  414. return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
  415. }
  416. static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
  417. {
  418. n <<= ic->sb->log2_sectors_per_block;
  419. n += JOURNAL_BLOCK_SECTORS;
  420. access_journal_check(ic, section, n, false, "access_journal_data");
  421. return access_journal(ic, section, n);
  422. }
  423. static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
  424. {
  425. SHASH_DESC_ON_STACK(desc, ic->journal_mac);
  426. int r;
  427. unsigned j, size;
  428. desc->tfm = ic->journal_mac;
  429. desc->flags = 0;
  430. r = crypto_shash_init(desc);
  431. if (unlikely(r)) {
  432. dm_integrity_io_error(ic, "crypto_shash_init", r);
  433. goto err;
  434. }
  435. for (j = 0; j < ic->journal_section_entries; j++) {
  436. struct journal_entry *je = access_journal_entry(ic, section, j);
  437. r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
  438. if (unlikely(r)) {
  439. dm_integrity_io_error(ic, "crypto_shash_update", r);
  440. goto err;
  441. }
  442. }
  443. size = crypto_shash_digestsize(ic->journal_mac);
  444. if (likely(size <= JOURNAL_MAC_SIZE)) {
  445. r = crypto_shash_final(desc, result);
  446. if (unlikely(r)) {
  447. dm_integrity_io_error(ic, "crypto_shash_final", r);
  448. goto err;
  449. }
  450. memset(result + size, 0, JOURNAL_MAC_SIZE - size);
  451. } else {
  452. __u8 digest[size];
  453. r = crypto_shash_final(desc, digest);
  454. if (unlikely(r)) {
  455. dm_integrity_io_error(ic, "crypto_shash_final", r);
  456. goto err;
  457. }
  458. memcpy(result, digest, JOURNAL_MAC_SIZE);
  459. }
  460. return;
  461. err:
  462. memset(result, 0, JOURNAL_MAC_SIZE);
  463. }
  464. static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
  465. {
  466. __u8 result[JOURNAL_MAC_SIZE];
  467. unsigned j;
  468. if (!ic->journal_mac)
  469. return;
  470. section_mac(ic, section, result);
  471. for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
  472. struct journal_sector *js = access_journal(ic, section, j);
  473. if (likely(wr))
  474. memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
  475. else {
  476. if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
  477. dm_integrity_io_error(ic, "journal mac", -EILSEQ);
  478. }
  479. }
  480. }
  481. static void complete_journal_op(void *context)
  482. {
  483. struct journal_completion *comp = context;
  484. BUG_ON(!atomic_read(&comp->in_flight));
  485. if (likely(atomic_dec_and_test(&comp->in_flight)))
  486. complete(&comp->comp);
  487. }
  488. static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  489. unsigned n_sections, struct journal_completion *comp)
  490. {
  491. struct async_submit_ctl submit;
  492. size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
  493. unsigned pl_index, pl_offset, section_index;
  494. struct page_list *source_pl, *target_pl;
  495. if (likely(encrypt)) {
  496. source_pl = ic->journal;
  497. target_pl = ic->journal_io;
  498. } else {
  499. source_pl = ic->journal_io;
  500. target_pl = ic->journal;
  501. }
  502. page_list_location(ic, section, 0, &pl_index, &pl_offset);
  503. atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
  504. init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
  505. section_index = pl_index;
  506. do {
  507. size_t this_step;
  508. struct page *src_pages[2];
  509. struct page *dst_page;
  510. while (unlikely(pl_index == section_index)) {
  511. unsigned dummy;
  512. if (likely(encrypt))
  513. rw_section_mac(ic, section, true);
  514. section++;
  515. n_sections--;
  516. if (!n_sections)
  517. break;
  518. page_list_location(ic, section, 0, &section_index, &dummy);
  519. }
  520. this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
  521. dst_page = target_pl[pl_index].page;
  522. src_pages[0] = source_pl[pl_index].page;
  523. src_pages[1] = ic->journal_xor[pl_index].page;
  524. async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
  525. pl_index++;
  526. pl_offset = 0;
  527. n_bytes -= this_step;
  528. } while (n_bytes);
  529. BUG_ON(n_sections);
  530. async_tx_issue_pending_all();
  531. }
  532. static void complete_journal_encrypt(struct crypto_async_request *req, int err)
  533. {
  534. struct journal_completion *comp = req->data;
  535. if (unlikely(err)) {
  536. if (likely(err == -EINPROGRESS)) {
  537. complete(&comp->ic->crypto_backoff);
  538. return;
  539. }
  540. dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
  541. }
  542. complete_journal_op(comp);
  543. }
  544. static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
  545. {
  546. int r;
  547. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  548. complete_journal_encrypt, comp);
  549. if (likely(encrypt))
  550. r = crypto_skcipher_encrypt(req);
  551. else
  552. r = crypto_skcipher_decrypt(req);
  553. if (likely(!r))
  554. return false;
  555. if (likely(r == -EINPROGRESS))
  556. return true;
  557. if (likely(r == -EBUSY)) {
  558. wait_for_completion(&comp->ic->crypto_backoff);
  559. reinit_completion(&comp->ic->crypto_backoff);
  560. return true;
  561. }
  562. dm_integrity_io_error(comp->ic, "encrypt", r);
  563. return false;
  564. }
  565. static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  566. unsigned n_sections, struct journal_completion *comp)
  567. {
  568. struct scatterlist **source_sg;
  569. struct scatterlist **target_sg;
  570. atomic_add(2, &comp->in_flight);
  571. if (likely(encrypt)) {
  572. source_sg = ic->journal_scatterlist;
  573. target_sg = ic->journal_io_scatterlist;
  574. } else {
  575. source_sg = ic->journal_io_scatterlist;
  576. target_sg = ic->journal_scatterlist;
  577. }
  578. do {
  579. struct skcipher_request *req;
  580. unsigned ivsize;
  581. char *iv;
  582. if (likely(encrypt))
  583. rw_section_mac(ic, section, true);
  584. req = ic->sk_requests[section];
  585. ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
  586. iv = req->iv;
  587. memcpy(iv, iv + ivsize, ivsize);
  588. req->src = source_sg[section];
  589. req->dst = target_sg[section];
  590. if (unlikely(do_crypt(encrypt, req, comp)))
  591. atomic_inc(&comp->in_flight);
  592. section++;
  593. n_sections--;
  594. } while (n_sections);
  595. atomic_dec(&comp->in_flight);
  596. complete_journal_op(comp);
  597. }
  598. static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
  599. unsigned n_sections, struct journal_completion *comp)
  600. {
  601. if (ic->journal_xor)
  602. return xor_journal(ic, encrypt, section, n_sections, comp);
  603. else
  604. return crypt_journal(ic, encrypt, section, n_sections, comp);
  605. }
  606. static void complete_journal_io(unsigned long error, void *context)
  607. {
  608. struct journal_completion *comp = context;
  609. if (unlikely(error != 0))
  610. dm_integrity_io_error(comp->ic, "writing journal", -EIO);
  611. complete_journal_op(comp);
  612. }
  613. static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
  614. unsigned n_sections, struct journal_completion *comp)
  615. {
  616. struct dm_io_request io_req;
  617. struct dm_io_region io_loc;
  618. unsigned sector, n_sectors, pl_index, pl_offset;
  619. int r;
  620. if (unlikely(dm_integrity_failed(ic))) {
  621. if (comp)
  622. complete_journal_io(-1UL, comp);
  623. return;
  624. }
  625. sector = section * ic->journal_section_sectors;
  626. n_sectors = n_sections * ic->journal_section_sectors;
  627. pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  628. pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  629. io_req.bi_op = op;
  630. io_req.bi_op_flags = op_flags;
  631. io_req.mem.type = DM_IO_PAGE_LIST;
  632. if (ic->journal_io)
  633. io_req.mem.ptr.pl = &ic->journal_io[pl_index];
  634. else
  635. io_req.mem.ptr.pl = &ic->journal[pl_index];
  636. io_req.mem.offset = pl_offset;
  637. if (likely(comp != NULL)) {
  638. io_req.notify.fn = complete_journal_io;
  639. io_req.notify.context = comp;
  640. } else {
  641. io_req.notify.fn = NULL;
  642. }
  643. io_req.client = ic->io;
  644. io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
  645. io_loc.sector = ic->start + SB_SECTORS + sector;
  646. io_loc.count = n_sectors;
  647. r = dm_io(&io_req, 1, &io_loc, NULL);
  648. if (unlikely(r)) {
  649. dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
  650. if (comp) {
  651. WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
  652. complete_journal_io(-1UL, comp);
  653. }
  654. }
  655. }
  656. static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
  657. {
  658. struct journal_completion io_comp;
  659. struct journal_completion crypt_comp_1;
  660. struct journal_completion crypt_comp_2;
  661. unsigned i;
  662. io_comp.ic = ic;
  663. init_completion(&io_comp.comp);
  664. if (commit_start + commit_sections <= ic->journal_sections) {
  665. io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  666. if (ic->journal_io) {
  667. crypt_comp_1.ic = ic;
  668. init_completion(&crypt_comp_1.comp);
  669. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  670. encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
  671. wait_for_completion_io(&crypt_comp_1.comp);
  672. } else {
  673. for (i = 0; i < commit_sections; i++)
  674. rw_section_mac(ic, commit_start + i, true);
  675. }
  676. rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
  677. commit_sections, &io_comp);
  678. } else {
  679. unsigned to_end;
  680. io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
  681. to_end = ic->journal_sections - commit_start;
  682. if (ic->journal_io) {
  683. crypt_comp_1.ic = ic;
  684. init_completion(&crypt_comp_1.comp);
  685. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  686. encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
  687. if (try_wait_for_completion(&crypt_comp_1.comp)) {
  688. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  689. reinit_completion(&crypt_comp_1.comp);
  690. crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
  691. encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
  692. wait_for_completion_io(&crypt_comp_1.comp);
  693. } else {
  694. crypt_comp_2.ic = ic;
  695. init_completion(&crypt_comp_2.comp);
  696. crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
  697. encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
  698. wait_for_completion_io(&crypt_comp_1.comp);
  699. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  700. wait_for_completion_io(&crypt_comp_2.comp);
  701. }
  702. } else {
  703. for (i = 0; i < to_end; i++)
  704. rw_section_mac(ic, commit_start + i, true);
  705. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
  706. for (i = 0; i < commit_sections - to_end; i++)
  707. rw_section_mac(ic, i, true);
  708. }
  709. rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
  710. }
  711. wait_for_completion_io(&io_comp.comp);
  712. }
  713. static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
  714. unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
  715. {
  716. struct dm_io_request io_req;
  717. struct dm_io_region io_loc;
  718. int r;
  719. unsigned sector, pl_index, pl_offset;
  720. BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
  721. if (unlikely(dm_integrity_failed(ic))) {
  722. fn(-1UL, data);
  723. return;
  724. }
  725. sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
  726. pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
  727. pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
  728. io_req.bi_op = REQ_OP_WRITE;
  729. io_req.bi_op_flags = 0;
  730. io_req.mem.type = DM_IO_PAGE_LIST;
  731. io_req.mem.ptr.pl = &ic->journal[pl_index];
  732. io_req.mem.offset = pl_offset;
  733. io_req.notify.fn = fn;
  734. io_req.notify.context = data;
  735. io_req.client = ic->io;
  736. io_loc.bdev = ic->dev->bdev;
  737. io_loc.sector = target;
  738. io_loc.count = n_sectors;
  739. r = dm_io(&io_req, 1, &io_loc, NULL);
  740. if (unlikely(r)) {
  741. WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
  742. fn(-1UL, data);
  743. }
  744. }
  745. static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
  746. {
  747. return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
  748. range1->logical_sector + range1->n_sectors > range2->logical_sector;
  749. }
  750. static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
  751. {
  752. struct rb_node **n = &ic->in_progress.rb_node;
  753. struct rb_node *parent;
  754. BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
  755. if (likely(check_waiting)) {
  756. struct dm_integrity_range *range;
  757. list_for_each_entry(range, &ic->wait_list, wait_entry) {
  758. if (unlikely(ranges_overlap(range, new_range)))
  759. return false;
  760. }
  761. }
  762. parent = NULL;
  763. while (*n) {
  764. struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
  765. parent = *n;
  766. if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
  767. n = &range->node.rb_left;
  768. } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
  769. n = &range->node.rb_right;
  770. } else {
  771. return false;
  772. }
  773. }
  774. rb_link_node(&new_range->node, parent, n);
  775. rb_insert_color(&new_range->node, &ic->in_progress);
  776. return true;
  777. }
  778. static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
  779. {
  780. rb_erase(&range->node, &ic->in_progress);
  781. while (unlikely(!list_empty(&ic->wait_list))) {
  782. struct dm_integrity_range *last_range =
  783. list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
  784. struct task_struct *last_range_task;
  785. last_range_task = last_range->task;
  786. list_del(&last_range->wait_entry);
  787. if (!add_new_range(ic, last_range, false)) {
  788. last_range->task = last_range_task;
  789. list_add(&last_range->wait_entry, &ic->wait_list);
  790. break;
  791. }
  792. last_range->waiting = false;
  793. wake_up_process(last_range_task);
  794. }
  795. }
  796. static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
  797. {
  798. unsigned long flags;
  799. spin_lock_irqsave(&ic->endio_wait.lock, flags);
  800. remove_range_unlocked(ic, range);
  801. spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
  802. }
  803. static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
  804. {
  805. new_range->waiting = true;
  806. list_add_tail(&new_range->wait_entry, &ic->wait_list);
  807. new_range->task = current;
  808. do {
  809. __set_current_state(TASK_UNINTERRUPTIBLE);
  810. spin_unlock_irq(&ic->endio_wait.lock);
  811. io_schedule();
  812. spin_lock_irq(&ic->endio_wait.lock);
  813. } while (unlikely(new_range->waiting));
  814. }
  815. static void init_journal_node(struct journal_node *node)
  816. {
  817. RB_CLEAR_NODE(&node->node);
  818. node->sector = (sector_t)-1;
  819. }
  820. static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
  821. {
  822. struct rb_node **link;
  823. struct rb_node *parent;
  824. node->sector = sector;
  825. BUG_ON(!RB_EMPTY_NODE(&node->node));
  826. link = &ic->journal_tree_root.rb_node;
  827. parent = NULL;
  828. while (*link) {
  829. struct journal_node *j;
  830. parent = *link;
  831. j = container_of(parent, struct journal_node, node);
  832. if (sector < j->sector)
  833. link = &j->node.rb_left;
  834. else
  835. link = &j->node.rb_right;
  836. }
  837. rb_link_node(&node->node, parent, link);
  838. rb_insert_color(&node->node, &ic->journal_tree_root);
  839. }
  840. static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
  841. {
  842. BUG_ON(RB_EMPTY_NODE(&node->node));
  843. rb_erase(&node->node, &ic->journal_tree_root);
  844. init_journal_node(node);
  845. }
  846. #define NOT_FOUND (-1U)
  847. static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
  848. {
  849. struct rb_node *n = ic->journal_tree_root.rb_node;
  850. unsigned found = NOT_FOUND;
  851. *next_sector = (sector_t)-1;
  852. while (n) {
  853. struct journal_node *j = container_of(n, struct journal_node, node);
  854. if (sector == j->sector) {
  855. found = j - ic->journal_tree;
  856. }
  857. if (sector < j->sector) {
  858. *next_sector = j->sector;
  859. n = j->node.rb_left;
  860. } else {
  861. n = j->node.rb_right;
  862. }
  863. }
  864. return found;
  865. }
  866. static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
  867. {
  868. struct journal_node *node, *next_node;
  869. struct rb_node *next;
  870. if (unlikely(pos >= ic->journal_entries))
  871. return false;
  872. node = &ic->journal_tree[pos];
  873. if (unlikely(RB_EMPTY_NODE(&node->node)))
  874. return false;
  875. if (unlikely(node->sector != sector))
  876. return false;
  877. next = rb_next(&node->node);
  878. if (unlikely(!next))
  879. return true;
  880. next_node = container_of(next, struct journal_node, node);
  881. return next_node->sector != sector;
  882. }
  883. static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
  884. {
  885. struct rb_node *next;
  886. struct journal_node *next_node;
  887. unsigned next_section;
  888. BUG_ON(RB_EMPTY_NODE(&node->node));
  889. next = rb_next(&node->node);
  890. if (unlikely(!next))
  891. return false;
  892. next_node = container_of(next, struct journal_node, node);
  893. if (next_node->sector != node->sector)
  894. return false;
  895. next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
  896. if (next_section >= ic->committed_section &&
  897. next_section < ic->committed_section + ic->n_committed_sections)
  898. return true;
  899. if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
  900. return true;
  901. return false;
  902. }
  903. #define TAG_READ 0
  904. #define TAG_WRITE 1
  905. #define TAG_CMP 2
  906. static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
  907. unsigned *metadata_offset, unsigned total_size, int op)
  908. {
  909. do {
  910. unsigned char *data, *dp;
  911. struct dm_buffer *b;
  912. unsigned to_copy;
  913. int r;
  914. r = dm_integrity_failed(ic);
  915. if (unlikely(r))
  916. return r;
  917. data = dm_bufio_read(ic->bufio, *metadata_block, &b);
  918. if (unlikely(IS_ERR(data)))
  919. return PTR_ERR(data);
  920. to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
  921. dp = data + *metadata_offset;
  922. if (op == TAG_READ) {
  923. memcpy(tag, dp, to_copy);
  924. } else if (op == TAG_WRITE) {
  925. memcpy(dp, tag, to_copy);
  926. dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
  927. } else {
  928. /* e.g.: op == TAG_CMP */
  929. if (unlikely(memcmp(dp, tag, to_copy))) {
  930. unsigned i;
  931. for (i = 0; i < to_copy; i++) {
  932. if (dp[i] != tag[i])
  933. break;
  934. total_size--;
  935. }
  936. dm_bufio_release(b);
  937. return total_size;
  938. }
  939. }
  940. dm_bufio_release(b);
  941. tag += to_copy;
  942. *metadata_offset += to_copy;
  943. if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
  944. (*metadata_block)++;
  945. *metadata_offset = 0;
  946. }
  947. total_size -= to_copy;
  948. } while (unlikely(total_size));
  949. return 0;
  950. }
  951. static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
  952. {
  953. int r;
  954. r = dm_bufio_write_dirty_buffers(ic->bufio);
  955. if (unlikely(r))
  956. dm_integrity_io_error(ic, "writing tags", r);
  957. }
  958. static void sleep_on_endio_wait(struct dm_integrity_c *ic)
  959. {
  960. DECLARE_WAITQUEUE(wait, current);
  961. __add_wait_queue(&ic->endio_wait, &wait);
  962. __set_current_state(TASK_UNINTERRUPTIBLE);
  963. spin_unlock_irq(&ic->endio_wait.lock);
  964. io_schedule();
  965. spin_lock_irq(&ic->endio_wait.lock);
  966. __remove_wait_queue(&ic->endio_wait, &wait);
  967. }
  968. static void autocommit_fn(struct timer_list *t)
  969. {
  970. struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
  971. if (likely(!dm_integrity_failed(ic)))
  972. queue_work(ic->commit_wq, &ic->commit_work);
  973. }
  974. static void schedule_autocommit(struct dm_integrity_c *ic)
  975. {
  976. if (!timer_pending(&ic->autocommit_timer))
  977. mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
  978. }
  979. static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
  980. {
  981. struct bio *bio;
  982. unsigned long flags;
  983. spin_lock_irqsave(&ic->endio_wait.lock, flags);
  984. bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  985. bio_list_add(&ic->flush_bio_list, bio);
  986. spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
  987. queue_work(ic->commit_wq, &ic->commit_work);
  988. }
  989. static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
  990. {
  991. int r = dm_integrity_failed(ic);
  992. if (unlikely(r) && !bio->bi_status)
  993. bio->bi_status = errno_to_blk_status(r);
  994. bio_endio(bio);
  995. }
  996. static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
  997. {
  998. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  999. if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
  1000. submit_flush_bio(ic, dio);
  1001. else
  1002. do_endio(ic, bio);
  1003. }
  1004. static void dec_in_flight(struct dm_integrity_io *dio)
  1005. {
  1006. if (atomic_dec_and_test(&dio->in_flight)) {
  1007. struct dm_integrity_c *ic = dio->ic;
  1008. struct bio *bio;
  1009. remove_range(ic, &dio->range);
  1010. if (unlikely(dio->write))
  1011. schedule_autocommit(ic);
  1012. bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1013. if (unlikely(dio->bi_status) && !bio->bi_status)
  1014. bio->bi_status = dio->bi_status;
  1015. if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
  1016. dio->range.logical_sector += dio->range.n_sectors;
  1017. bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
  1018. INIT_WORK(&dio->work, integrity_bio_wait);
  1019. queue_work(ic->offload_wq, &dio->work);
  1020. return;
  1021. }
  1022. do_endio_flush(ic, dio);
  1023. }
  1024. }
  1025. static void integrity_end_io(struct bio *bio)
  1026. {
  1027. struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
  1028. dm_bio_restore(&dio->bio_details, bio);
  1029. if (bio->bi_integrity)
  1030. bio->bi_opf |= REQ_INTEGRITY;
  1031. if (dio->completion)
  1032. complete(dio->completion);
  1033. dec_in_flight(dio);
  1034. }
  1035. static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
  1036. const char *data, char *result)
  1037. {
  1038. __u64 sector_le = cpu_to_le64(sector);
  1039. SHASH_DESC_ON_STACK(req, ic->internal_hash);
  1040. int r;
  1041. unsigned digest_size;
  1042. req->tfm = ic->internal_hash;
  1043. req->flags = 0;
  1044. r = crypto_shash_init(req);
  1045. if (unlikely(r < 0)) {
  1046. dm_integrity_io_error(ic, "crypto_shash_init", r);
  1047. goto failed;
  1048. }
  1049. r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
  1050. if (unlikely(r < 0)) {
  1051. dm_integrity_io_error(ic, "crypto_shash_update", r);
  1052. goto failed;
  1053. }
  1054. r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
  1055. if (unlikely(r < 0)) {
  1056. dm_integrity_io_error(ic, "crypto_shash_update", r);
  1057. goto failed;
  1058. }
  1059. r = crypto_shash_final(req, result);
  1060. if (unlikely(r < 0)) {
  1061. dm_integrity_io_error(ic, "crypto_shash_final", r);
  1062. goto failed;
  1063. }
  1064. digest_size = crypto_shash_digestsize(ic->internal_hash);
  1065. if (unlikely(digest_size < ic->tag_size))
  1066. memset(result + digest_size, 0, ic->tag_size - digest_size);
  1067. return;
  1068. failed:
  1069. /* this shouldn't happen anyway, the hash functions have no reason to fail */
  1070. get_random_bytes(result, ic->tag_size);
  1071. }
  1072. static void integrity_metadata(struct work_struct *w)
  1073. {
  1074. struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
  1075. struct dm_integrity_c *ic = dio->ic;
  1076. int r;
  1077. if (ic->internal_hash) {
  1078. struct bvec_iter iter;
  1079. struct bio_vec bv;
  1080. unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
  1081. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1082. char *checksums;
  1083. unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
  1084. char checksums_onstack[ic->tag_size + extra_space];
  1085. unsigned sectors_to_process = dio->range.n_sectors;
  1086. sector_t sector = dio->range.logical_sector;
  1087. if (unlikely(ic->mode == 'R'))
  1088. goto skip_io;
  1089. checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
  1090. GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
  1091. if (!checksums)
  1092. checksums = checksums_onstack;
  1093. __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
  1094. unsigned pos;
  1095. char *mem, *checksums_ptr;
  1096. again:
  1097. mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
  1098. pos = 0;
  1099. checksums_ptr = checksums;
  1100. do {
  1101. integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
  1102. checksums_ptr += ic->tag_size;
  1103. sectors_to_process -= ic->sectors_per_block;
  1104. pos += ic->sectors_per_block << SECTOR_SHIFT;
  1105. sector += ic->sectors_per_block;
  1106. } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
  1107. kunmap_atomic(mem);
  1108. r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
  1109. checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
  1110. if (unlikely(r)) {
  1111. if (r > 0) {
  1112. DMERR_LIMIT("Checksum failed at sector 0x%llx",
  1113. (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
  1114. r = -EILSEQ;
  1115. atomic64_inc(&ic->number_of_mismatches);
  1116. }
  1117. if (likely(checksums != checksums_onstack))
  1118. kfree(checksums);
  1119. goto error;
  1120. }
  1121. if (!sectors_to_process)
  1122. break;
  1123. if (unlikely(pos < bv.bv_len)) {
  1124. bv.bv_offset += pos;
  1125. bv.bv_len -= pos;
  1126. goto again;
  1127. }
  1128. }
  1129. if (likely(checksums != checksums_onstack))
  1130. kfree(checksums);
  1131. } else {
  1132. struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
  1133. if (bip) {
  1134. struct bio_vec biv;
  1135. struct bvec_iter iter;
  1136. unsigned data_to_process = dio->range.n_sectors;
  1137. sector_to_block(ic, data_to_process);
  1138. data_to_process *= ic->tag_size;
  1139. bip_for_each_vec(biv, bip, iter) {
  1140. unsigned char *tag;
  1141. unsigned this_len;
  1142. BUG_ON(PageHighMem(biv.bv_page));
  1143. tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
  1144. this_len = min(biv.bv_len, data_to_process);
  1145. r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
  1146. this_len, !dio->write ? TAG_READ : TAG_WRITE);
  1147. if (unlikely(r))
  1148. goto error;
  1149. data_to_process -= this_len;
  1150. if (!data_to_process)
  1151. break;
  1152. }
  1153. }
  1154. }
  1155. skip_io:
  1156. dec_in_flight(dio);
  1157. return;
  1158. error:
  1159. dio->bi_status = errno_to_blk_status(r);
  1160. dec_in_flight(dio);
  1161. }
  1162. static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
  1163. {
  1164. struct dm_integrity_c *ic = ti->private;
  1165. struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
  1166. struct bio_integrity_payload *bip;
  1167. sector_t area, offset;
  1168. dio->ic = ic;
  1169. dio->bi_status = 0;
  1170. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  1171. submit_flush_bio(ic, dio);
  1172. return DM_MAPIO_SUBMITTED;
  1173. }
  1174. dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  1175. dio->write = bio_op(bio) == REQ_OP_WRITE;
  1176. dio->fua = dio->write && bio->bi_opf & REQ_FUA;
  1177. if (unlikely(dio->fua)) {
  1178. /*
  1179. * Don't pass down the FUA flag because we have to flush
  1180. * disk cache anyway.
  1181. */
  1182. bio->bi_opf &= ~REQ_FUA;
  1183. }
  1184. if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
  1185. DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
  1186. (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
  1187. (unsigned long long)ic->provided_data_sectors);
  1188. return DM_MAPIO_KILL;
  1189. }
  1190. if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
  1191. DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
  1192. ic->sectors_per_block,
  1193. (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
  1194. return DM_MAPIO_KILL;
  1195. }
  1196. if (ic->sectors_per_block > 1) {
  1197. struct bvec_iter iter;
  1198. struct bio_vec bv;
  1199. bio_for_each_segment(bv, bio, iter) {
  1200. if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
  1201. DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
  1202. bv.bv_offset, bv.bv_len, ic->sectors_per_block);
  1203. return DM_MAPIO_KILL;
  1204. }
  1205. }
  1206. }
  1207. bip = bio_integrity(bio);
  1208. if (!ic->internal_hash) {
  1209. if (bip) {
  1210. unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
  1211. if (ic->log2_tag_size >= 0)
  1212. wanted_tag_size <<= ic->log2_tag_size;
  1213. else
  1214. wanted_tag_size *= ic->tag_size;
  1215. if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
  1216. DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
  1217. return DM_MAPIO_KILL;
  1218. }
  1219. }
  1220. } else {
  1221. if (unlikely(bip != NULL)) {
  1222. DMERR("Unexpected integrity data when using internal hash");
  1223. return DM_MAPIO_KILL;
  1224. }
  1225. }
  1226. if (unlikely(ic->mode == 'R') && unlikely(dio->write))
  1227. return DM_MAPIO_KILL;
  1228. get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
  1229. dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
  1230. bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
  1231. dm_integrity_map_continue(dio, true);
  1232. return DM_MAPIO_SUBMITTED;
  1233. }
  1234. static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
  1235. unsigned journal_section, unsigned journal_entry)
  1236. {
  1237. struct dm_integrity_c *ic = dio->ic;
  1238. sector_t logical_sector;
  1239. unsigned n_sectors;
  1240. logical_sector = dio->range.logical_sector;
  1241. n_sectors = dio->range.n_sectors;
  1242. do {
  1243. struct bio_vec bv = bio_iovec(bio);
  1244. char *mem;
  1245. if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
  1246. bv.bv_len = n_sectors << SECTOR_SHIFT;
  1247. n_sectors -= bv.bv_len >> SECTOR_SHIFT;
  1248. bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
  1249. retry_kmap:
  1250. mem = kmap_atomic(bv.bv_page);
  1251. if (likely(dio->write))
  1252. flush_dcache_page(bv.bv_page);
  1253. do {
  1254. struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
  1255. if (unlikely(!dio->write)) {
  1256. struct journal_sector *js;
  1257. char *mem_ptr;
  1258. unsigned s;
  1259. if (unlikely(journal_entry_is_inprogress(je))) {
  1260. flush_dcache_page(bv.bv_page);
  1261. kunmap_atomic(mem);
  1262. __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
  1263. goto retry_kmap;
  1264. }
  1265. smp_rmb();
  1266. BUG_ON(journal_entry_get_sector(je) != logical_sector);
  1267. js = access_journal_data(ic, journal_section, journal_entry);
  1268. mem_ptr = mem + bv.bv_offset;
  1269. s = 0;
  1270. do {
  1271. memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
  1272. *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
  1273. js++;
  1274. mem_ptr += 1 << SECTOR_SHIFT;
  1275. } while (++s < ic->sectors_per_block);
  1276. #ifdef INTERNAL_VERIFY
  1277. if (ic->internal_hash) {
  1278. char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
  1279. integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
  1280. if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
  1281. DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
  1282. (unsigned long long)logical_sector);
  1283. }
  1284. }
  1285. #endif
  1286. }
  1287. if (!ic->internal_hash) {
  1288. struct bio_integrity_payload *bip = bio_integrity(bio);
  1289. unsigned tag_todo = ic->tag_size;
  1290. char *tag_ptr = journal_entry_tag(ic, je);
  1291. if (bip) do {
  1292. struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
  1293. unsigned tag_now = min(biv.bv_len, tag_todo);
  1294. char *tag_addr;
  1295. BUG_ON(PageHighMem(biv.bv_page));
  1296. tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
  1297. if (likely(dio->write))
  1298. memcpy(tag_ptr, tag_addr, tag_now);
  1299. else
  1300. memcpy(tag_addr, tag_ptr, tag_now);
  1301. bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
  1302. tag_ptr += tag_now;
  1303. tag_todo -= tag_now;
  1304. } while (unlikely(tag_todo)); else {
  1305. if (likely(dio->write))
  1306. memset(tag_ptr, 0, tag_todo);
  1307. }
  1308. }
  1309. if (likely(dio->write)) {
  1310. struct journal_sector *js;
  1311. unsigned s;
  1312. js = access_journal_data(ic, journal_section, journal_entry);
  1313. memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
  1314. s = 0;
  1315. do {
  1316. je->last_bytes[s] = js[s].commit_id;
  1317. } while (++s < ic->sectors_per_block);
  1318. if (ic->internal_hash) {
  1319. unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
  1320. if (unlikely(digest_size > ic->tag_size)) {
  1321. char checksums_onstack[digest_size];
  1322. integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
  1323. memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
  1324. } else
  1325. integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
  1326. }
  1327. journal_entry_set_sector(je, logical_sector);
  1328. }
  1329. logical_sector += ic->sectors_per_block;
  1330. journal_entry++;
  1331. if (unlikely(journal_entry == ic->journal_section_entries)) {
  1332. journal_entry = 0;
  1333. journal_section++;
  1334. wraparound_section(ic, &journal_section);
  1335. }
  1336. bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
  1337. } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
  1338. if (unlikely(!dio->write))
  1339. flush_dcache_page(bv.bv_page);
  1340. kunmap_atomic(mem);
  1341. } while (n_sectors);
  1342. if (likely(dio->write)) {
  1343. smp_mb();
  1344. if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
  1345. wake_up(&ic->copy_to_journal_wait);
  1346. if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
  1347. queue_work(ic->commit_wq, &ic->commit_work);
  1348. } else {
  1349. schedule_autocommit(ic);
  1350. }
  1351. } else {
  1352. remove_range(ic, &dio->range);
  1353. }
  1354. if (unlikely(bio->bi_iter.bi_size)) {
  1355. sector_t area, offset;
  1356. dio->range.logical_sector = logical_sector;
  1357. get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
  1358. dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
  1359. return true;
  1360. }
  1361. return false;
  1362. }
  1363. static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
  1364. {
  1365. struct dm_integrity_c *ic = dio->ic;
  1366. struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
  1367. unsigned journal_section, journal_entry;
  1368. unsigned journal_read_pos;
  1369. struct completion read_comp;
  1370. bool need_sync_io = ic->internal_hash && !dio->write;
  1371. if (need_sync_io && from_map) {
  1372. INIT_WORK(&dio->work, integrity_bio_wait);
  1373. queue_work(ic->offload_wq, &dio->work);
  1374. return;
  1375. }
  1376. lock_retry:
  1377. spin_lock_irq(&ic->endio_wait.lock);
  1378. retry:
  1379. if (unlikely(dm_integrity_failed(ic))) {
  1380. spin_unlock_irq(&ic->endio_wait.lock);
  1381. do_endio(ic, bio);
  1382. return;
  1383. }
  1384. dio->range.n_sectors = bio_sectors(bio);
  1385. journal_read_pos = NOT_FOUND;
  1386. if (likely(ic->mode == 'J')) {
  1387. if (dio->write) {
  1388. unsigned next_entry, i, pos;
  1389. unsigned ws, we, range_sectors;
  1390. dio->range.n_sectors = min(dio->range.n_sectors,
  1391. ic->free_sectors << ic->sb->log2_sectors_per_block);
  1392. if (unlikely(!dio->range.n_sectors)) {
  1393. if (from_map)
  1394. goto offload_to_thread;
  1395. sleep_on_endio_wait(ic);
  1396. goto retry;
  1397. }
  1398. range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
  1399. ic->free_sectors -= range_sectors;
  1400. journal_section = ic->free_section;
  1401. journal_entry = ic->free_section_entry;
  1402. next_entry = ic->free_section_entry + range_sectors;
  1403. ic->free_section_entry = next_entry % ic->journal_section_entries;
  1404. ic->free_section += next_entry / ic->journal_section_entries;
  1405. ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
  1406. wraparound_section(ic, &ic->free_section);
  1407. pos = journal_section * ic->journal_section_entries + journal_entry;
  1408. ws = journal_section;
  1409. we = journal_entry;
  1410. i = 0;
  1411. do {
  1412. struct journal_entry *je;
  1413. add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
  1414. pos++;
  1415. if (unlikely(pos >= ic->journal_entries))
  1416. pos = 0;
  1417. je = access_journal_entry(ic, ws, we);
  1418. BUG_ON(!journal_entry_is_unused(je));
  1419. journal_entry_set_inprogress(je);
  1420. we++;
  1421. if (unlikely(we == ic->journal_section_entries)) {
  1422. we = 0;
  1423. ws++;
  1424. wraparound_section(ic, &ws);
  1425. }
  1426. } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
  1427. spin_unlock_irq(&ic->endio_wait.lock);
  1428. goto journal_read_write;
  1429. } else {
  1430. sector_t next_sector;
  1431. journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
  1432. if (likely(journal_read_pos == NOT_FOUND)) {
  1433. if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
  1434. dio->range.n_sectors = next_sector - dio->range.logical_sector;
  1435. } else {
  1436. unsigned i;
  1437. unsigned jp = journal_read_pos + 1;
  1438. for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
  1439. if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
  1440. break;
  1441. }
  1442. dio->range.n_sectors = i;
  1443. }
  1444. }
  1445. }
  1446. if (unlikely(!add_new_range(ic, &dio->range, true))) {
  1447. /*
  1448. * We must not sleep in the request routine because it could
  1449. * stall bios on current->bio_list.
  1450. * So, we offload the bio to a workqueue if we have to sleep.
  1451. */
  1452. if (from_map) {
  1453. offload_to_thread:
  1454. spin_unlock_irq(&ic->endio_wait.lock);
  1455. INIT_WORK(&dio->work, integrity_bio_wait);
  1456. queue_work(ic->wait_wq, &dio->work);
  1457. return;
  1458. }
  1459. if (journal_read_pos != NOT_FOUND)
  1460. dio->range.n_sectors = ic->sectors_per_block;
  1461. wait_and_add_new_range(ic, &dio->range);
  1462. /*
  1463. * wait_and_add_new_range drops the spinlock, so the journal
  1464. * may have been changed arbitrarily. We need to recheck.
  1465. * To simplify the code, we restrict I/O size to just one block.
  1466. */
  1467. if (journal_read_pos != NOT_FOUND) {
  1468. sector_t next_sector;
  1469. unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
  1470. if (unlikely(new_pos != journal_read_pos)) {
  1471. remove_range_unlocked(ic, &dio->range);
  1472. goto retry;
  1473. }
  1474. }
  1475. }
  1476. spin_unlock_irq(&ic->endio_wait.lock);
  1477. if (unlikely(journal_read_pos != NOT_FOUND)) {
  1478. journal_section = journal_read_pos / ic->journal_section_entries;
  1479. journal_entry = journal_read_pos % ic->journal_section_entries;
  1480. goto journal_read_write;
  1481. }
  1482. dio->in_flight = (atomic_t)ATOMIC_INIT(2);
  1483. if (need_sync_io) {
  1484. init_completion(&read_comp);
  1485. dio->completion = &read_comp;
  1486. } else
  1487. dio->completion = NULL;
  1488. dm_bio_record(&dio->bio_details, bio);
  1489. bio_set_dev(bio, ic->dev->bdev);
  1490. bio->bi_integrity = NULL;
  1491. bio->bi_opf &= ~REQ_INTEGRITY;
  1492. bio->bi_end_io = integrity_end_io;
  1493. bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
  1494. generic_make_request(bio);
  1495. if (need_sync_io) {
  1496. wait_for_completion_io(&read_comp);
  1497. if (unlikely(ic->recalc_wq != NULL) &&
  1498. ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
  1499. dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
  1500. goto skip_check;
  1501. if (likely(!bio->bi_status))
  1502. integrity_metadata(&dio->work);
  1503. else
  1504. skip_check:
  1505. dec_in_flight(dio);
  1506. } else {
  1507. INIT_WORK(&dio->work, integrity_metadata);
  1508. queue_work(ic->metadata_wq, &dio->work);
  1509. }
  1510. return;
  1511. journal_read_write:
  1512. if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
  1513. goto lock_retry;
  1514. do_endio_flush(ic, dio);
  1515. }
  1516. static void integrity_bio_wait(struct work_struct *w)
  1517. {
  1518. struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
  1519. dm_integrity_map_continue(dio, false);
  1520. }
  1521. static void pad_uncommitted(struct dm_integrity_c *ic)
  1522. {
  1523. if (ic->free_section_entry) {
  1524. ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
  1525. ic->free_section_entry = 0;
  1526. ic->free_section++;
  1527. wraparound_section(ic, &ic->free_section);
  1528. ic->n_uncommitted_sections++;
  1529. }
  1530. WARN_ON(ic->journal_sections * ic->journal_section_entries !=
  1531. (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
  1532. }
  1533. static void integrity_commit(struct work_struct *w)
  1534. {
  1535. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
  1536. unsigned commit_start, commit_sections;
  1537. unsigned i, j, n;
  1538. struct bio *flushes;
  1539. del_timer(&ic->autocommit_timer);
  1540. spin_lock_irq(&ic->endio_wait.lock);
  1541. flushes = bio_list_get(&ic->flush_bio_list);
  1542. if (unlikely(ic->mode != 'J')) {
  1543. spin_unlock_irq(&ic->endio_wait.lock);
  1544. dm_integrity_flush_buffers(ic);
  1545. goto release_flush_bios;
  1546. }
  1547. pad_uncommitted(ic);
  1548. commit_start = ic->uncommitted_section;
  1549. commit_sections = ic->n_uncommitted_sections;
  1550. spin_unlock_irq(&ic->endio_wait.lock);
  1551. if (!commit_sections)
  1552. goto release_flush_bios;
  1553. i = commit_start;
  1554. for (n = 0; n < commit_sections; n++) {
  1555. for (j = 0; j < ic->journal_section_entries; j++) {
  1556. struct journal_entry *je;
  1557. je = access_journal_entry(ic, i, j);
  1558. io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
  1559. }
  1560. for (j = 0; j < ic->journal_section_sectors; j++) {
  1561. struct journal_sector *js;
  1562. js = access_journal(ic, i, j);
  1563. js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
  1564. }
  1565. i++;
  1566. if (unlikely(i >= ic->journal_sections))
  1567. ic->commit_seq = next_commit_seq(ic->commit_seq);
  1568. wraparound_section(ic, &i);
  1569. }
  1570. smp_rmb();
  1571. write_journal(ic, commit_start, commit_sections);
  1572. spin_lock_irq(&ic->endio_wait.lock);
  1573. ic->uncommitted_section += commit_sections;
  1574. wraparound_section(ic, &ic->uncommitted_section);
  1575. ic->n_uncommitted_sections -= commit_sections;
  1576. ic->n_committed_sections += commit_sections;
  1577. spin_unlock_irq(&ic->endio_wait.lock);
  1578. if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
  1579. queue_work(ic->writer_wq, &ic->writer_work);
  1580. release_flush_bios:
  1581. while (flushes) {
  1582. struct bio *next = flushes->bi_next;
  1583. flushes->bi_next = NULL;
  1584. do_endio(ic, flushes);
  1585. flushes = next;
  1586. }
  1587. }
  1588. static void complete_copy_from_journal(unsigned long error, void *context)
  1589. {
  1590. struct journal_io *io = context;
  1591. struct journal_completion *comp = io->comp;
  1592. struct dm_integrity_c *ic = comp->ic;
  1593. remove_range(ic, &io->range);
  1594. mempool_free(io, &ic->journal_io_mempool);
  1595. if (unlikely(error != 0))
  1596. dm_integrity_io_error(ic, "copying from journal", -EIO);
  1597. complete_journal_op(comp);
  1598. }
  1599. static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
  1600. struct journal_entry *je)
  1601. {
  1602. unsigned s = 0;
  1603. do {
  1604. js->commit_id = je->last_bytes[s];
  1605. js++;
  1606. } while (++s < ic->sectors_per_block);
  1607. }
  1608. static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
  1609. unsigned write_sections, bool from_replay)
  1610. {
  1611. unsigned i, j, n;
  1612. struct journal_completion comp;
  1613. struct blk_plug plug;
  1614. blk_start_plug(&plug);
  1615. comp.ic = ic;
  1616. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  1617. init_completion(&comp.comp);
  1618. i = write_start;
  1619. for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
  1620. #ifndef INTERNAL_VERIFY
  1621. if (unlikely(from_replay))
  1622. #endif
  1623. rw_section_mac(ic, i, false);
  1624. for (j = 0; j < ic->journal_section_entries; j++) {
  1625. struct journal_entry *je = access_journal_entry(ic, i, j);
  1626. sector_t sec, area, offset;
  1627. unsigned k, l, next_loop;
  1628. sector_t metadata_block;
  1629. unsigned metadata_offset;
  1630. struct journal_io *io;
  1631. if (journal_entry_is_unused(je))
  1632. continue;
  1633. BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
  1634. sec = journal_entry_get_sector(je);
  1635. if (unlikely(from_replay)) {
  1636. if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
  1637. dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
  1638. sec &= ~(sector_t)(ic->sectors_per_block - 1);
  1639. }
  1640. }
  1641. get_area_and_offset(ic, sec, &area, &offset);
  1642. restore_last_bytes(ic, access_journal_data(ic, i, j), je);
  1643. for (k = j + 1; k < ic->journal_section_entries; k++) {
  1644. struct journal_entry *je2 = access_journal_entry(ic, i, k);
  1645. sector_t sec2, area2, offset2;
  1646. if (journal_entry_is_unused(je2))
  1647. break;
  1648. BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
  1649. sec2 = journal_entry_get_sector(je2);
  1650. get_area_and_offset(ic, sec2, &area2, &offset2);
  1651. if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
  1652. break;
  1653. restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
  1654. }
  1655. next_loop = k - 1;
  1656. io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
  1657. io->comp = &comp;
  1658. io->range.logical_sector = sec;
  1659. io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
  1660. spin_lock_irq(&ic->endio_wait.lock);
  1661. if (unlikely(!add_new_range(ic, &io->range, true)))
  1662. wait_and_add_new_range(ic, &io->range);
  1663. if (likely(!from_replay)) {
  1664. struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
  1665. /* don't write if there is newer committed sector */
  1666. while (j < k && find_newer_committed_node(ic, &section_node[j])) {
  1667. struct journal_entry *je2 = access_journal_entry(ic, i, j);
  1668. journal_entry_set_unused(je2);
  1669. remove_journal_node(ic, &section_node[j]);
  1670. j++;
  1671. sec += ic->sectors_per_block;
  1672. offset += ic->sectors_per_block;
  1673. }
  1674. while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
  1675. struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
  1676. journal_entry_set_unused(je2);
  1677. remove_journal_node(ic, &section_node[k - 1]);
  1678. k--;
  1679. }
  1680. if (j == k) {
  1681. remove_range_unlocked(ic, &io->range);
  1682. spin_unlock_irq(&ic->endio_wait.lock);
  1683. mempool_free(io, &ic->journal_io_mempool);
  1684. goto skip_io;
  1685. }
  1686. for (l = j; l < k; l++) {
  1687. remove_journal_node(ic, &section_node[l]);
  1688. }
  1689. }
  1690. spin_unlock_irq(&ic->endio_wait.lock);
  1691. metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
  1692. for (l = j; l < k; l++) {
  1693. int r;
  1694. struct journal_entry *je2 = access_journal_entry(ic, i, l);
  1695. if (
  1696. #ifndef INTERNAL_VERIFY
  1697. unlikely(from_replay) &&
  1698. #endif
  1699. ic->internal_hash) {
  1700. char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
  1701. integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
  1702. (char *)access_journal_data(ic, i, l), test_tag);
  1703. if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
  1704. dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
  1705. }
  1706. journal_entry_set_unused(je2);
  1707. r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
  1708. ic->tag_size, TAG_WRITE);
  1709. if (unlikely(r)) {
  1710. dm_integrity_io_error(ic, "reading tags", r);
  1711. }
  1712. }
  1713. atomic_inc(&comp.in_flight);
  1714. copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
  1715. (k - j) << ic->sb->log2_sectors_per_block,
  1716. get_data_sector(ic, area, offset),
  1717. complete_copy_from_journal, io);
  1718. skip_io:
  1719. j = next_loop;
  1720. }
  1721. }
  1722. dm_bufio_write_dirty_buffers_async(ic->bufio);
  1723. blk_finish_plug(&plug);
  1724. complete_journal_op(&comp);
  1725. wait_for_completion_io(&comp.comp);
  1726. dm_integrity_flush_buffers(ic);
  1727. }
  1728. static void integrity_writer(struct work_struct *w)
  1729. {
  1730. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
  1731. unsigned write_start, write_sections;
  1732. unsigned prev_free_sectors;
  1733. /* the following test is not needed, but it tests the replay code */
  1734. if (unlikely(dm_suspended(ic->ti)) && !ic->meta_dev)
  1735. return;
  1736. spin_lock_irq(&ic->endio_wait.lock);
  1737. write_start = ic->committed_section;
  1738. write_sections = ic->n_committed_sections;
  1739. spin_unlock_irq(&ic->endio_wait.lock);
  1740. if (!write_sections)
  1741. return;
  1742. do_journal_write(ic, write_start, write_sections, false);
  1743. spin_lock_irq(&ic->endio_wait.lock);
  1744. ic->committed_section += write_sections;
  1745. wraparound_section(ic, &ic->committed_section);
  1746. ic->n_committed_sections -= write_sections;
  1747. prev_free_sectors = ic->free_sectors;
  1748. ic->free_sectors += write_sections * ic->journal_section_entries;
  1749. if (unlikely(!prev_free_sectors))
  1750. wake_up_locked(&ic->endio_wait);
  1751. spin_unlock_irq(&ic->endio_wait.lock);
  1752. }
  1753. static void recalc_write_super(struct dm_integrity_c *ic)
  1754. {
  1755. int r;
  1756. dm_integrity_flush_buffers(ic);
  1757. if (dm_integrity_failed(ic))
  1758. return;
  1759. sb_set_version(ic);
  1760. r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
  1761. if (unlikely(r))
  1762. dm_integrity_io_error(ic, "writing superblock", r);
  1763. }
  1764. static void integrity_recalc(struct work_struct *w)
  1765. {
  1766. struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
  1767. struct dm_integrity_range range;
  1768. struct dm_io_request io_req;
  1769. struct dm_io_region io_loc;
  1770. sector_t area, offset;
  1771. sector_t metadata_block;
  1772. unsigned metadata_offset;
  1773. __u8 *t;
  1774. unsigned i;
  1775. int r;
  1776. unsigned super_counter = 0;
  1777. spin_lock_irq(&ic->endio_wait.lock);
  1778. next_chunk:
  1779. if (unlikely(dm_suspended(ic->ti)))
  1780. goto unlock_ret;
  1781. range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
  1782. if (unlikely(range.logical_sector >= ic->provided_data_sectors))
  1783. goto unlock_ret;
  1784. get_area_and_offset(ic, range.logical_sector, &area, &offset);
  1785. range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
  1786. if (!ic->meta_dev)
  1787. range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
  1788. if (unlikely(!add_new_range(ic, &range, true)))
  1789. wait_and_add_new_range(ic, &range);
  1790. spin_unlock_irq(&ic->endio_wait.lock);
  1791. if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
  1792. recalc_write_super(ic);
  1793. super_counter = 0;
  1794. }
  1795. if (unlikely(dm_integrity_failed(ic)))
  1796. goto err;
  1797. io_req.bi_op = REQ_OP_READ;
  1798. io_req.bi_op_flags = 0;
  1799. io_req.mem.type = DM_IO_VMA;
  1800. io_req.mem.ptr.addr = ic->recalc_buffer;
  1801. io_req.notify.fn = NULL;
  1802. io_req.client = ic->io;
  1803. io_loc.bdev = ic->dev->bdev;
  1804. io_loc.sector = get_data_sector(ic, area, offset);
  1805. io_loc.count = range.n_sectors;
  1806. r = dm_io(&io_req, 1, &io_loc, NULL);
  1807. if (unlikely(r)) {
  1808. dm_integrity_io_error(ic, "reading data", r);
  1809. goto err;
  1810. }
  1811. t = ic->recalc_tags;
  1812. for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
  1813. integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
  1814. t += ic->tag_size;
  1815. }
  1816. metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
  1817. r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
  1818. if (unlikely(r)) {
  1819. dm_integrity_io_error(ic, "writing tags", r);
  1820. goto err;
  1821. }
  1822. spin_lock_irq(&ic->endio_wait.lock);
  1823. remove_range_unlocked(ic, &range);
  1824. ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
  1825. goto next_chunk;
  1826. err:
  1827. remove_range(ic, &range);
  1828. return;
  1829. unlock_ret:
  1830. spin_unlock_irq(&ic->endio_wait.lock);
  1831. recalc_write_super(ic);
  1832. }
  1833. static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
  1834. unsigned n_sections, unsigned char commit_seq)
  1835. {
  1836. unsigned i, j, n;
  1837. if (!n_sections)
  1838. return;
  1839. for (n = 0; n < n_sections; n++) {
  1840. i = start_section + n;
  1841. wraparound_section(ic, &i);
  1842. for (j = 0; j < ic->journal_section_sectors; j++) {
  1843. struct journal_sector *js = access_journal(ic, i, j);
  1844. memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
  1845. js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
  1846. }
  1847. for (j = 0; j < ic->journal_section_entries; j++) {
  1848. struct journal_entry *je = access_journal_entry(ic, i, j);
  1849. journal_entry_set_unused(je);
  1850. }
  1851. }
  1852. write_journal(ic, start_section, n_sections);
  1853. }
  1854. static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
  1855. {
  1856. unsigned char k;
  1857. for (k = 0; k < N_COMMIT_IDS; k++) {
  1858. if (dm_integrity_commit_id(ic, i, j, k) == id)
  1859. return k;
  1860. }
  1861. dm_integrity_io_error(ic, "journal commit id", -EIO);
  1862. return -EIO;
  1863. }
  1864. static void replay_journal(struct dm_integrity_c *ic)
  1865. {
  1866. unsigned i, j;
  1867. bool used_commit_ids[N_COMMIT_IDS];
  1868. unsigned max_commit_id_sections[N_COMMIT_IDS];
  1869. unsigned write_start, write_sections;
  1870. unsigned continue_section;
  1871. bool journal_empty;
  1872. unsigned char unused, last_used, want_commit_seq;
  1873. if (ic->mode == 'R')
  1874. return;
  1875. if (ic->journal_uptodate)
  1876. return;
  1877. last_used = 0;
  1878. write_start = 0;
  1879. if (!ic->just_formatted) {
  1880. DEBUG_print("reading journal\n");
  1881. rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
  1882. if (ic->journal_io)
  1883. DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
  1884. if (ic->journal_io) {
  1885. struct journal_completion crypt_comp;
  1886. crypt_comp.ic = ic;
  1887. init_completion(&crypt_comp.comp);
  1888. crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
  1889. encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
  1890. wait_for_completion(&crypt_comp.comp);
  1891. }
  1892. DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
  1893. }
  1894. if (dm_integrity_failed(ic))
  1895. goto clear_journal;
  1896. journal_empty = true;
  1897. memset(used_commit_ids, 0, sizeof used_commit_ids);
  1898. memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
  1899. for (i = 0; i < ic->journal_sections; i++) {
  1900. for (j = 0; j < ic->journal_section_sectors; j++) {
  1901. int k;
  1902. struct journal_sector *js = access_journal(ic, i, j);
  1903. k = find_commit_seq(ic, i, j, js->commit_id);
  1904. if (k < 0)
  1905. goto clear_journal;
  1906. used_commit_ids[k] = true;
  1907. max_commit_id_sections[k] = i;
  1908. }
  1909. if (journal_empty) {
  1910. for (j = 0; j < ic->journal_section_entries; j++) {
  1911. struct journal_entry *je = access_journal_entry(ic, i, j);
  1912. if (!journal_entry_is_unused(je)) {
  1913. journal_empty = false;
  1914. break;
  1915. }
  1916. }
  1917. }
  1918. }
  1919. if (!used_commit_ids[N_COMMIT_IDS - 1]) {
  1920. unused = N_COMMIT_IDS - 1;
  1921. while (unused && !used_commit_ids[unused - 1])
  1922. unused--;
  1923. } else {
  1924. for (unused = 0; unused < N_COMMIT_IDS; unused++)
  1925. if (!used_commit_ids[unused])
  1926. break;
  1927. if (unused == N_COMMIT_IDS) {
  1928. dm_integrity_io_error(ic, "journal commit ids", -EIO);
  1929. goto clear_journal;
  1930. }
  1931. }
  1932. DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
  1933. unused, used_commit_ids[0], used_commit_ids[1],
  1934. used_commit_ids[2], used_commit_ids[3]);
  1935. last_used = prev_commit_seq(unused);
  1936. want_commit_seq = prev_commit_seq(last_used);
  1937. if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
  1938. journal_empty = true;
  1939. write_start = max_commit_id_sections[last_used] + 1;
  1940. if (unlikely(write_start >= ic->journal_sections))
  1941. want_commit_seq = next_commit_seq(want_commit_seq);
  1942. wraparound_section(ic, &write_start);
  1943. i = write_start;
  1944. for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
  1945. for (j = 0; j < ic->journal_section_sectors; j++) {
  1946. struct journal_sector *js = access_journal(ic, i, j);
  1947. if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
  1948. /*
  1949. * This could be caused by crash during writing.
  1950. * We won't replay the inconsistent part of the
  1951. * journal.
  1952. */
  1953. DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
  1954. i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
  1955. goto brk;
  1956. }
  1957. }
  1958. i++;
  1959. if (unlikely(i >= ic->journal_sections))
  1960. want_commit_seq = next_commit_seq(want_commit_seq);
  1961. wraparound_section(ic, &i);
  1962. }
  1963. brk:
  1964. if (!journal_empty) {
  1965. DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
  1966. write_sections, write_start, want_commit_seq);
  1967. do_journal_write(ic, write_start, write_sections, true);
  1968. }
  1969. if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
  1970. continue_section = write_start;
  1971. ic->commit_seq = want_commit_seq;
  1972. DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
  1973. } else {
  1974. unsigned s;
  1975. unsigned char erase_seq;
  1976. clear_journal:
  1977. DEBUG_print("clearing journal\n");
  1978. erase_seq = prev_commit_seq(prev_commit_seq(last_used));
  1979. s = write_start;
  1980. init_journal(ic, s, 1, erase_seq);
  1981. s++;
  1982. wraparound_section(ic, &s);
  1983. if (ic->journal_sections >= 2) {
  1984. init_journal(ic, s, ic->journal_sections - 2, erase_seq);
  1985. s += ic->journal_sections - 2;
  1986. wraparound_section(ic, &s);
  1987. init_journal(ic, s, 1, erase_seq);
  1988. }
  1989. continue_section = 0;
  1990. ic->commit_seq = next_commit_seq(erase_seq);
  1991. }
  1992. ic->committed_section = continue_section;
  1993. ic->n_committed_sections = 0;
  1994. ic->uncommitted_section = continue_section;
  1995. ic->n_uncommitted_sections = 0;
  1996. ic->free_section = continue_section;
  1997. ic->free_section_entry = 0;
  1998. ic->free_sectors = ic->journal_entries;
  1999. ic->journal_tree_root = RB_ROOT;
  2000. for (i = 0; i < ic->journal_entries; i++)
  2001. init_journal_node(&ic->journal_tree[i]);
  2002. }
  2003. static void dm_integrity_postsuspend(struct dm_target *ti)
  2004. {
  2005. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2006. del_timer_sync(&ic->autocommit_timer);
  2007. if (ic->recalc_wq)
  2008. drain_workqueue(ic->recalc_wq);
  2009. queue_work(ic->commit_wq, &ic->commit_work);
  2010. drain_workqueue(ic->commit_wq);
  2011. if (ic->mode == 'J') {
  2012. if (ic->meta_dev)
  2013. queue_work(ic->writer_wq, &ic->writer_work);
  2014. drain_workqueue(ic->writer_wq);
  2015. dm_integrity_flush_buffers(ic);
  2016. }
  2017. BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
  2018. ic->journal_uptodate = true;
  2019. }
  2020. static void dm_integrity_resume(struct dm_target *ti)
  2021. {
  2022. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2023. replay_journal(ic);
  2024. if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  2025. __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
  2026. if (recalc_pos < ic->provided_data_sectors) {
  2027. queue_work(ic->recalc_wq, &ic->recalc_work);
  2028. } else if (recalc_pos > ic->provided_data_sectors) {
  2029. ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
  2030. recalc_write_super(ic);
  2031. }
  2032. }
  2033. }
  2034. static void dm_integrity_status(struct dm_target *ti, status_type_t type,
  2035. unsigned status_flags, char *result, unsigned maxlen)
  2036. {
  2037. struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
  2038. unsigned arg_count;
  2039. size_t sz = 0;
  2040. switch (type) {
  2041. case STATUSTYPE_INFO:
  2042. DMEMIT("%llu %llu",
  2043. (unsigned long long)atomic64_read(&ic->number_of_mismatches),
  2044. (unsigned long long)ic->provided_data_sectors);
  2045. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  2046. DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
  2047. else
  2048. DMEMIT(" -");
  2049. break;
  2050. case STATUSTYPE_TABLE: {
  2051. __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
  2052. watermark_percentage += ic->journal_entries / 2;
  2053. do_div(watermark_percentage, ic->journal_entries);
  2054. arg_count = 5;
  2055. arg_count += !!ic->meta_dev;
  2056. arg_count += ic->sectors_per_block != 1;
  2057. arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
  2058. arg_count += !!ic->internal_hash_alg.alg_string;
  2059. arg_count += !!ic->journal_crypt_alg.alg_string;
  2060. arg_count += !!ic->journal_mac_alg.alg_string;
  2061. DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
  2062. ic->tag_size, ic->mode, arg_count);
  2063. if (ic->meta_dev)
  2064. DMEMIT(" meta_device:%s", ic->meta_dev->name);
  2065. if (ic->sectors_per_block != 1)
  2066. DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
  2067. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
  2068. DMEMIT(" recalculate");
  2069. DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
  2070. DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
  2071. DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
  2072. DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
  2073. DMEMIT(" commit_time:%u", ic->autocommit_msec);
  2074. #define EMIT_ALG(a, n) \
  2075. do { \
  2076. if (ic->a.alg_string) { \
  2077. DMEMIT(" %s:%s", n, ic->a.alg_string); \
  2078. if (ic->a.key_string) \
  2079. DMEMIT(":%s", ic->a.key_string);\
  2080. } \
  2081. } while (0)
  2082. EMIT_ALG(internal_hash_alg, "internal_hash");
  2083. EMIT_ALG(journal_crypt_alg, "journal_crypt");
  2084. EMIT_ALG(journal_mac_alg, "journal_mac");
  2085. break;
  2086. }
  2087. }
  2088. }
  2089. static int dm_integrity_iterate_devices(struct dm_target *ti,
  2090. iterate_devices_callout_fn fn, void *data)
  2091. {
  2092. struct dm_integrity_c *ic = ti->private;
  2093. if (!ic->meta_dev)
  2094. return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
  2095. else
  2096. return fn(ti, ic->dev, 0, ti->len, data);
  2097. }
  2098. static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2099. {
  2100. struct dm_integrity_c *ic = ti->private;
  2101. if (ic->sectors_per_block > 1) {
  2102. limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
  2103. limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
  2104. blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
  2105. }
  2106. }
  2107. static void calculate_journal_section_size(struct dm_integrity_c *ic)
  2108. {
  2109. unsigned sector_space = JOURNAL_SECTOR_DATA;
  2110. ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
  2111. ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
  2112. JOURNAL_ENTRY_ROUNDUP);
  2113. if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
  2114. sector_space -= JOURNAL_MAC_PER_SECTOR;
  2115. ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
  2116. ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
  2117. ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
  2118. ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
  2119. }
  2120. static int calculate_device_limits(struct dm_integrity_c *ic)
  2121. {
  2122. __u64 initial_sectors;
  2123. calculate_journal_section_size(ic);
  2124. initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
  2125. if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
  2126. return -EINVAL;
  2127. ic->initial_sectors = initial_sectors;
  2128. if (!ic->meta_dev) {
  2129. sector_t last_sector, last_area, last_offset;
  2130. ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
  2131. (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
  2132. if (!(ic->metadata_run & (ic->metadata_run - 1)))
  2133. ic->log2_metadata_run = __ffs(ic->metadata_run);
  2134. else
  2135. ic->log2_metadata_run = -1;
  2136. get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
  2137. last_sector = get_data_sector(ic, last_area, last_offset);
  2138. if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
  2139. return -EINVAL;
  2140. } else {
  2141. __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
  2142. meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
  2143. >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
  2144. meta_size <<= ic->log2_buffer_sectors;
  2145. if (ic->initial_sectors + meta_size < ic->initial_sectors ||
  2146. ic->initial_sectors + meta_size > ic->meta_device_sectors)
  2147. return -EINVAL;
  2148. ic->metadata_run = 1;
  2149. ic->log2_metadata_run = 0;
  2150. }
  2151. return 0;
  2152. }
  2153. static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
  2154. {
  2155. unsigned journal_sections;
  2156. int test_bit;
  2157. memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
  2158. memcpy(ic->sb->magic, SB_MAGIC, 8);
  2159. ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
  2160. ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
  2161. if (ic->journal_mac_alg.alg_string)
  2162. ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
  2163. calculate_journal_section_size(ic);
  2164. journal_sections = journal_sectors / ic->journal_section_sectors;
  2165. if (!journal_sections)
  2166. journal_sections = 1;
  2167. if (!ic->meta_dev) {
  2168. ic->sb->journal_sections = cpu_to_le32(journal_sections);
  2169. if (!interleave_sectors)
  2170. interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
  2171. ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
  2172. ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
  2173. ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
  2174. ic->provided_data_sectors = 0;
  2175. for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
  2176. __u64 prev_data_sectors = ic->provided_data_sectors;
  2177. ic->provided_data_sectors |= (sector_t)1 << test_bit;
  2178. if (calculate_device_limits(ic))
  2179. ic->provided_data_sectors = prev_data_sectors;
  2180. }
  2181. if (!ic->provided_data_sectors)
  2182. return -EINVAL;
  2183. } else {
  2184. ic->sb->log2_interleave_sectors = 0;
  2185. ic->provided_data_sectors = ic->data_device_sectors;
  2186. ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
  2187. try_smaller_buffer:
  2188. ic->sb->journal_sections = cpu_to_le32(0);
  2189. for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
  2190. __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
  2191. __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
  2192. if (test_journal_sections > journal_sections)
  2193. continue;
  2194. ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
  2195. if (calculate_device_limits(ic))
  2196. ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
  2197. }
  2198. if (!le32_to_cpu(ic->sb->journal_sections)) {
  2199. if (ic->log2_buffer_sectors > 3) {
  2200. ic->log2_buffer_sectors--;
  2201. goto try_smaller_buffer;
  2202. }
  2203. return -EINVAL;
  2204. }
  2205. }
  2206. ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
  2207. sb_set_version(ic);
  2208. return 0;
  2209. }
  2210. static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
  2211. {
  2212. struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
  2213. struct blk_integrity bi;
  2214. memset(&bi, 0, sizeof(bi));
  2215. bi.profile = &dm_integrity_profile;
  2216. bi.tuple_size = ic->tag_size;
  2217. bi.tag_size = bi.tuple_size;
  2218. bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
  2219. blk_integrity_register(disk, &bi);
  2220. blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
  2221. }
  2222. static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
  2223. {
  2224. unsigned i;
  2225. if (!pl)
  2226. return;
  2227. for (i = 0; i < ic->journal_pages; i++)
  2228. if (pl[i].page)
  2229. __free_page(pl[i].page);
  2230. kvfree(pl);
  2231. }
  2232. static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
  2233. {
  2234. size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
  2235. struct page_list *pl;
  2236. unsigned i;
  2237. pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
  2238. if (!pl)
  2239. return NULL;
  2240. for (i = 0; i < ic->journal_pages; i++) {
  2241. pl[i].page = alloc_page(GFP_KERNEL);
  2242. if (!pl[i].page) {
  2243. dm_integrity_free_page_list(ic, pl);
  2244. return NULL;
  2245. }
  2246. if (i)
  2247. pl[i - 1].next = &pl[i];
  2248. }
  2249. return pl;
  2250. }
  2251. static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
  2252. {
  2253. unsigned i;
  2254. for (i = 0; i < ic->journal_sections; i++)
  2255. kvfree(sl[i]);
  2256. kvfree(sl);
  2257. }
  2258. static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
  2259. {
  2260. struct scatterlist **sl;
  2261. unsigned i;
  2262. sl = kvmalloc_array(ic->journal_sections,
  2263. sizeof(struct scatterlist *),
  2264. GFP_KERNEL | __GFP_ZERO);
  2265. if (!sl)
  2266. return NULL;
  2267. for (i = 0; i < ic->journal_sections; i++) {
  2268. struct scatterlist *s;
  2269. unsigned start_index, start_offset;
  2270. unsigned end_index, end_offset;
  2271. unsigned n_pages;
  2272. unsigned idx;
  2273. page_list_location(ic, i, 0, &start_index, &start_offset);
  2274. page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
  2275. n_pages = (end_index - start_index + 1);
  2276. s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
  2277. GFP_KERNEL);
  2278. if (!s) {
  2279. dm_integrity_free_journal_scatterlist(ic, sl);
  2280. return NULL;
  2281. }
  2282. sg_init_table(s, n_pages);
  2283. for (idx = start_index; idx <= end_index; idx++) {
  2284. char *va = lowmem_page_address(pl[idx].page);
  2285. unsigned start = 0, end = PAGE_SIZE;
  2286. if (idx == start_index)
  2287. start = start_offset;
  2288. if (idx == end_index)
  2289. end = end_offset + (1 << SECTOR_SHIFT);
  2290. sg_set_buf(&s[idx - start_index], va + start, end - start);
  2291. }
  2292. sl[i] = s;
  2293. }
  2294. return sl;
  2295. }
  2296. static void free_alg(struct alg_spec *a)
  2297. {
  2298. kzfree(a->alg_string);
  2299. kzfree(a->key);
  2300. memset(a, 0, sizeof *a);
  2301. }
  2302. static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
  2303. {
  2304. char *k;
  2305. free_alg(a);
  2306. a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
  2307. if (!a->alg_string)
  2308. goto nomem;
  2309. k = strchr(a->alg_string, ':');
  2310. if (k) {
  2311. *k = 0;
  2312. a->key_string = k + 1;
  2313. if (strlen(a->key_string) & 1)
  2314. goto inval;
  2315. a->key_size = strlen(a->key_string) / 2;
  2316. a->key = kmalloc(a->key_size, GFP_KERNEL);
  2317. if (!a->key)
  2318. goto nomem;
  2319. if (hex2bin(a->key, a->key_string, a->key_size))
  2320. goto inval;
  2321. }
  2322. return 0;
  2323. inval:
  2324. *error = error_inval;
  2325. return -EINVAL;
  2326. nomem:
  2327. *error = "Out of memory for an argument";
  2328. return -ENOMEM;
  2329. }
  2330. static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
  2331. char *error_alg, char *error_key)
  2332. {
  2333. int r;
  2334. if (a->alg_string) {
  2335. *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
  2336. if (IS_ERR(*hash)) {
  2337. *error = error_alg;
  2338. r = PTR_ERR(*hash);
  2339. *hash = NULL;
  2340. return r;
  2341. }
  2342. if (a->key) {
  2343. r = crypto_shash_setkey(*hash, a->key, a->key_size);
  2344. if (r) {
  2345. *error = error_key;
  2346. return r;
  2347. }
  2348. } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
  2349. *error = error_key;
  2350. return -ENOKEY;
  2351. }
  2352. }
  2353. return 0;
  2354. }
  2355. static int create_journal(struct dm_integrity_c *ic, char **error)
  2356. {
  2357. int r = 0;
  2358. unsigned i;
  2359. __u64 journal_pages, journal_desc_size, journal_tree_size;
  2360. unsigned char *crypt_data = NULL, *crypt_iv = NULL;
  2361. struct skcipher_request *req = NULL;
  2362. ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
  2363. ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
  2364. ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
  2365. ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
  2366. journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
  2367. PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
  2368. journal_desc_size = journal_pages * sizeof(struct page_list);
  2369. if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
  2370. *error = "Journal doesn't fit into memory";
  2371. r = -ENOMEM;
  2372. goto bad;
  2373. }
  2374. ic->journal_pages = journal_pages;
  2375. ic->journal = dm_integrity_alloc_page_list(ic);
  2376. if (!ic->journal) {
  2377. *error = "Could not allocate memory for journal";
  2378. r = -ENOMEM;
  2379. goto bad;
  2380. }
  2381. if (ic->journal_crypt_alg.alg_string) {
  2382. unsigned ivsize, blocksize;
  2383. struct journal_completion comp;
  2384. comp.ic = ic;
  2385. ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
  2386. if (IS_ERR(ic->journal_crypt)) {
  2387. *error = "Invalid journal cipher";
  2388. r = PTR_ERR(ic->journal_crypt);
  2389. ic->journal_crypt = NULL;
  2390. goto bad;
  2391. }
  2392. ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
  2393. blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
  2394. if (ic->journal_crypt_alg.key) {
  2395. r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
  2396. ic->journal_crypt_alg.key_size);
  2397. if (r) {
  2398. *error = "Error setting encryption key";
  2399. goto bad;
  2400. }
  2401. }
  2402. DEBUG_print("cipher %s, block size %u iv size %u\n",
  2403. ic->journal_crypt_alg.alg_string, blocksize, ivsize);
  2404. ic->journal_io = dm_integrity_alloc_page_list(ic);
  2405. if (!ic->journal_io) {
  2406. *error = "Could not allocate memory for journal io";
  2407. r = -ENOMEM;
  2408. goto bad;
  2409. }
  2410. if (blocksize == 1) {
  2411. struct scatterlist *sg;
  2412. req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2413. if (!req) {
  2414. *error = "Could not allocate crypt request";
  2415. r = -ENOMEM;
  2416. goto bad;
  2417. }
  2418. crypt_iv = kmalloc(ivsize, GFP_KERNEL);
  2419. if (!crypt_iv) {
  2420. *error = "Could not allocate iv";
  2421. r = -ENOMEM;
  2422. goto bad;
  2423. }
  2424. ic->journal_xor = dm_integrity_alloc_page_list(ic);
  2425. if (!ic->journal_xor) {
  2426. *error = "Could not allocate memory for journal xor";
  2427. r = -ENOMEM;
  2428. goto bad;
  2429. }
  2430. sg = kvmalloc_array(ic->journal_pages + 1,
  2431. sizeof(struct scatterlist),
  2432. GFP_KERNEL);
  2433. if (!sg) {
  2434. *error = "Unable to allocate sg list";
  2435. r = -ENOMEM;
  2436. goto bad;
  2437. }
  2438. sg_init_table(sg, ic->journal_pages + 1);
  2439. for (i = 0; i < ic->journal_pages; i++) {
  2440. char *va = lowmem_page_address(ic->journal_xor[i].page);
  2441. clear_page(va);
  2442. sg_set_buf(&sg[i], va, PAGE_SIZE);
  2443. }
  2444. sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
  2445. memset(crypt_iv, 0x00, ivsize);
  2446. skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
  2447. init_completion(&comp.comp);
  2448. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  2449. if (do_crypt(true, req, &comp))
  2450. wait_for_completion(&comp.comp);
  2451. kvfree(sg);
  2452. r = dm_integrity_failed(ic);
  2453. if (r) {
  2454. *error = "Unable to encrypt journal";
  2455. goto bad;
  2456. }
  2457. DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
  2458. crypto_free_skcipher(ic->journal_crypt);
  2459. ic->journal_crypt = NULL;
  2460. } else {
  2461. unsigned crypt_len = roundup(ivsize, blocksize);
  2462. req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2463. if (!req) {
  2464. *error = "Could not allocate crypt request";
  2465. r = -ENOMEM;
  2466. goto bad;
  2467. }
  2468. crypt_iv = kmalloc(ivsize, GFP_KERNEL);
  2469. if (!crypt_iv) {
  2470. *error = "Could not allocate iv";
  2471. r = -ENOMEM;
  2472. goto bad;
  2473. }
  2474. crypt_data = kmalloc(crypt_len, GFP_KERNEL);
  2475. if (!crypt_data) {
  2476. *error = "Unable to allocate crypt data";
  2477. r = -ENOMEM;
  2478. goto bad;
  2479. }
  2480. ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
  2481. if (!ic->journal_scatterlist) {
  2482. *error = "Unable to allocate sg list";
  2483. r = -ENOMEM;
  2484. goto bad;
  2485. }
  2486. ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
  2487. if (!ic->journal_io_scatterlist) {
  2488. *error = "Unable to allocate sg list";
  2489. r = -ENOMEM;
  2490. goto bad;
  2491. }
  2492. ic->sk_requests = kvmalloc_array(ic->journal_sections,
  2493. sizeof(struct skcipher_request *),
  2494. GFP_KERNEL | __GFP_ZERO);
  2495. if (!ic->sk_requests) {
  2496. *error = "Unable to allocate sk requests";
  2497. r = -ENOMEM;
  2498. goto bad;
  2499. }
  2500. for (i = 0; i < ic->journal_sections; i++) {
  2501. struct scatterlist sg;
  2502. struct skcipher_request *section_req;
  2503. __u32 section_le = cpu_to_le32(i);
  2504. memset(crypt_iv, 0x00, ivsize);
  2505. memset(crypt_data, 0x00, crypt_len);
  2506. memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
  2507. sg_init_one(&sg, crypt_data, crypt_len);
  2508. skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
  2509. init_completion(&comp.comp);
  2510. comp.in_flight = (atomic_t)ATOMIC_INIT(1);
  2511. if (do_crypt(true, req, &comp))
  2512. wait_for_completion(&comp.comp);
  2513. r = dm_integrity_failed(ic);
  2514. if (r) {
  2515. *error = "Unable to generate iv";
  2516. goto bad;
  2517. }
  2518. section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
  2519. if (!section_req) {
  2520. *error = "Unable to allocate crypt request";
  2521. r = -ENOMEM;
  2522. goto bad;
  2523. }
  2524. section_req->iv = kmalloc_array(ivsize, 2,
  2525. GFP_KERNEL);
  2526. if (!section_req->iv) {
  2527. skcipher_request_free(section_req);
  2528. *error = "Unable to allocate iv";
  2529. r = -ENOMEM;
  2530. goto bad;
  2531. }
  2532. memcpy(section_req->iv + ivsize, crypt_data, ivsize);
  2533. section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
  2534. ic->sk_requests[i] = section_req;
  2535. DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
  2536. }
  2537. }
  2538. }
  2539. for (i = 0; i < N_COMMIT_IDS; i++) {
  2540. unsigned j;
  2541. retest_commit_id:
  2542. for (j = 0; j < i; j++) {
  2543. if (ic->commit_ids[j] == ic->commit_ids[i]) {
  2544. ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
  2545. goto retest_commit_id;
  2546. }
  2547. }
  2548. DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
  2549. }
  2550. journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
  2551. if (journal_tree_size > ULONG_MAX) {
  2552. *error = "Journal doesn't fit into memory";
  2553. r = -ENOMEM;
  2554. goto bad;
  2555. }
  2556. ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
  2557. if (!ic->journal_tree) {
  2558. *error = "Could not allocate memory for journal tree";
  2559. r = -ENOMEM;
  2560. }
  2561. bad:
  2562. kfree(crypt_data);
  2563. kfree(crypt_iv);
  2564. skcipher_request_free(req);
  2565. return r;
  2566. }
  2567. /*
  2568. * Construct a integrity mapping
  2569. *
  2570. * Arguments:
  2571. * device
  2572. * offset from the start of the device
  2573. * tag size
  2574. * D - direct writes, J - journal writes, R - recovery mode
  2575. * number of optional arguments
  2576. * optional arguments:
  2577. * journal_sectors
  2578. * interleave_sectors
  2579. * buffer_sectors
  2580. * journal_watermark
  2581. * commit_time
  2582. * internal_hash
  2583. * journal_crypt
  2584. * journal_mac
  2585. * block_size
  2586. */
  2587. static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2588. {
  2589. struct dm_integrity_c *ic;
  2590. char dummy;
  2591. int r;
  2592. unsigned extra_args;
  2593. struct dm_arg_set as;
  2594. static const struct dm_arg _args[] = {
  2595. {0, 9, "Invalid number of feature args"},
  2596. };
  2597. unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
  2598. bool recalculate;
  2599. bool should_write_sb;
  2600. __u64 threshold;
  2601. unsigned long long start;
  2602. #define DIRECT_ARGUMENTS 4
  2603. if (argc <= DIRECT_ARGUMENTS) {
  2604. ti->error = "Invalid argument count";
  2605. return -EINVAL;
  2606. }
  2607. ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
  2608. if (!ic) {
  2609. ti->error = "Cannot allocate integrity context";
  2610. return -ENOMEM;
  2611. }
  2612. ti->private = ic;
  2613. ti->per_io_data_size = sizeof(struct dm_integrity_io);
  2614. ic->ti = ti;
  2615. ic->in_progress = RB_ROOT;
  2616. INIT_LIST_HEAD(&ic->wait_list);
  2617. init_waitqueue_head(&ic->endio_wait);
  2618. bio_list_init(&ic->flush_bio_list);
  2619. init_waitqueue_head(&ic->copy_to_journal_wait);
  2620. init_completion(&ic->crypto_backoff);
  2621. atomic64_set(&ic->number_of_mismatches, 0);
  2622. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
  2623. if (r) {
  2624. ti->error = "Device lookup failed";
  2625. goto bad;
  2626. }
  2627. if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
  2628. ti->error = "Invalid starting offset";
  2629. r = -EINVAL;
  2630. goto bad;
  2631. }
  2632. ic->start = start;
  2633. if (strcmp(argv[2], "-")) {
  2634. if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
  2635. ti->error = "Invalid tag size";
  2636. r = -EINVAL;
  2637. goto bad;
  2638. }
  2639. }
  2640. if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
  2641. ic->mode = argv[3][0];
  2642. else {
  2643. ti->error = "Invalid mode (expecting J, D, R)";
  2644. r = -EINVAL;
  2645. goto bad;
  2646. }
  2647. journal_sectors = 0;
  2648. interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
  2649. buffer_sectors = DEFAULT_BUFFER_SECTORS;
  2650. journal_watermark = DEFAULT_JOURNAL_WATERMARK;
  2651. sync_msec = DEFAULT_SYNC_MSEC;
  2652. recalculate = false;
  2653. ic->sectors_per_block = 1;
  2654. as.argc = argc - DIRECT_ARGUMENTS;
  2655. as.argv = argv + DIRECT_ARGUMENTS;
  2656. r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
  2657. if (r)
  2658. goto bad;
  2659. while (extra_args--) {
  2660. const char *opt_string;
  2661. unsigned val;
  2662. opt_string = dm_shift_arg(&as);
  2663. if (!opt_string) {
  2664. r = -EINVAL;
  2665. ti->error = "Not enough feature arguments";
  2666. goto bad;
  2667. }
  2668. if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
  2669. journal_sectors = val ? val : 1;
  2670. else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
  2671. interleave_sectors = val;
  2672. else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
  2673. buffer_sectors = val;
  2674. else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
  2675. journal_watermark = val;
  2676. else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
  2677. sync_msec = val;
  2678. else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
  2679. if (ic->meta_dev) {
  2680. dm_put_device(ti, ic->meta_dev);
  2681. ic->meta_dev = NULL;
  2682. }
  2683. r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
  2684. if (r) {
  2685. ti->error = "Device lookup failed";
  2686. goto bad;
  2687. }
  2688. } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
  2689. if (val < 1 << SECTOR_SHIFT ||
  2690. val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
  2691. (val & (val -1))) {
  2692. r = -EINVAL;
  2693. ti->error = "Invalid block_size argument";
  2694. goto bad;
  2695. }
  2696. ic->sectors_per_block = val >> SECTOR_SHIFT;
  2697. } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
  2698. r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
  2699. "Invalid internal_hash argument");
  2700. if (r)
  2701. goto bad;
  2702. } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
  2703. r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
  2704. "Invalid journal_crypt argument");
  2705. if (r)
  2706. goto bad;
  2707. } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
  2708. r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
  2709. "Invalid journal_mac argument");
  2710. if (r)
  2711. goto bad;
  2712. } else if (!strcmp(opt_string, "recalculate")) {
  2713. recalculate = true;
  2714. } else {
  2715. r = -EINVAL;
  2716. ti->error = "Invalid argument";
  2717. goto bad;
  2718. }
  2719. }
  2720. ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
  2721. if (!ic->meta_dev)
  2722. ic->meta_device_sectors = ic->data_device_sectors;
  2723. else
  2724. ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  2725. if (!journal_sectors) {
  2726. journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
  2727. ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
  2728. }
  2729. if (!buffer_sectors)
  2730. buffer_sectors = 1;
  2731. ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
  2732. r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
  2733. "Invalid internal hash", "Error setting internal hash key");
  2734. if (r)
  2735. goto bad;
  2736. r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
  2737. "Invalid journal mac", "Error setting journal mac key");
  2738. if (r)
  2739. goto bad;
  2740. if (!ic->tag_size) {
  2741. if (!ic->internal_hash) {
  2742. ti->error = "Unknown tag size";
  2743. r = -EINVAL;
  2744. goto bad;
  2745. }
  2746. ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
  2747. }
  2748. if (ic->tag_size > MAX_TAG_SIZE) {
  2749. ti->error = "Too big tag size";
  2750. r = -EINVAL;
  2751. goto bad;
  2752. }
  2753. if (!(ic->tag_size & (ic->tag_size - 1)))
  2754. ic->log2_tag_size = __ffs(ic->tag_size);
  2755. else
  2756. ic->log2_tag_size = -1;
  2757. ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
  2758. ic->autocommit_msec = sync_msec;
  2759. timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
  2760. ic->io = dm_io_client_create();
  2761. if (IS_ERR(ic->io)) {
  2762. r = PTR_ERR(ic->io);
  2763. ic->io = NULL;
  2764. ti->error = "Cannot allocate dm io";
  2765. goto bad;
  2766. }
  2767. r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
  2768. if (r) {
  2769. ti->error = "Cannot allocate mempool";
  2770. goto bad;
  2771. }
  2772. ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
  2773. WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
  2774. if (!ic->metadata_wq) {
  2775. ti->error = "Cannot allocate workqueue";
  2776. r = -ENOMEM;
  2777. goto bad;
  2778. }
  2779. /*
  2780. * If this workqueue were percpu, it would cause bio reordering
  2781. * and reduced performance.
  2782. */
  2783. ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
  2784. if (!ic->wait_wq) {
  2785. ti->error = "Cannot allocate workqueue";
  2786. r = -ENOMEM;
  2787. goto bad;
  2788. }
  2789. ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
  2790. METADATA_WORKQUEUE_MAX_ACTIVE);
  2791. if (!ic->offload_wq) {
  2792. ti->error = "Cannot allocate workqueue";
  2793. r = -ENOMEM;
  2794. goto bad;
  2795. }
  2796. ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
  2797. if (!ic->commit_wq) {
  2798. ti->error = "Cannot allocate workqueue";
  2799. r = -ENOMEM;
  2800. goto bad;
  2801. }
  2802. INIT_WORK(&ic->commit_work, integrity_commit);
  2803. if (ic->mode == 'J') {
  2804. ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
  2805. if (!ic->writer_wq) {
  2806. ti->error = "Cannot allocate workqueue";
  2807. r = -ENOMEM;
  2808. goto bad;
  2809. }
  2810. INIT_WORK(&ic->writer_work, integrity_writer);
  2811. }
  2812. ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
  2813. if (!ic->sb) {
  2814. r = -ENOMEM;
  2815. ti->error = "Cannot allocate superblock area";
  2816. goto bad;
  2817. }
  2818. r = sync_rw_sb(ic, REQ_OP_READ, 0);
  2819. if (r) {
  2820. ti->error = "Error reading superblock";
  2821. goto bad;
  2822. }
  2823. should_write_sb = false;
  2824. if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
  2825. if (ic->mode != 'R') {
  2826. if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
  2827. r = -EINVAL;
  2828. ti->error = "The device is not initialized";
  2829. goto bad;
  2830. }
  2831. }
  2832. r = initialize_superblock(ic, journal_sectors, interleave_sectors);
  2833. if (r) {
  2834. ti->error = "Could not initialize superblock";
  2835. goto bad;
  2836. }
  2837. if (ic->mode != 'R')
  2838. should_write_sb = true;
  2839. }
  2840. if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
  2841. r = -EINVAL;
  2842. ti->error = "Unknown version";
  2843. goto bad;
  2844. }
  2845. if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
  2846. r = -EINVAL;
  2847. ti->error = "Tag size doesn't match the information in superblock";
  2848. goto bad;
  2849. }
  2850. if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
  2851. r = -EINVAL;
  2852. ti->error = "Block size doesn't match the information in superblock";
  2853. goto bad;
  2854. }
  2855. if (!le32_to_cpu(ic->sb->journal_sections)) {
  2856. r = -EINVAL;
  2857. ti->error = "Corrupted superblock, journal_sections is 0";
  2858. goto bad;
  2859. }
  2860. /* make sure that ti->max_io_len doesn't overflow */
  2861. if (!ic->meta_dev) {
  2862. if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
  2863. ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
  2864. r = -EINVAL;
  2865. ti->error = "Invalid interleave_sectors in the superblock";
  2866. goto bad;
  2867. }
  2868. } else {
  2869. if (ic->sb->log2_interleave_sectors) {
  2870. r = -EINVAL;
  2871. ti->error = "Invalid interleave_sectors in the superblock";
  2872. goto bad;
  2873. }
  2874. }
  2875. ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
  2876. if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
  2877. /* test for overflow */
  2878. r = -EINVAL;
  2879. ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
  2880. goto bad;
  2881. }
  2882. if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
  2883. r = -EINVAL;
  2884. ti->error = "Journal mac mismatch";
  2885. goto bad;
  2886. }
  2887. try_smaller_buffer:
  2888. r = calculate_device_limits(ic);
  2889. if (r) {
  2890. if (ic->meta_dev) {
  2891. if (ic->log2_buffer_sectors > 3) {
  2892. ic->log2_buffer_sectors--;
  2893. goto try_smaller_buffer;
  2894. }
  2895. }
  2896. ti->error = "The device is too small";
  2897. goto bad;
  2898. }
  2899. if (!ic->meta_dev)
  2900. ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
  2901. if (ti->len > ic->provided_data_sectors) {
  2902. r = -EINVAL;
  2903. ti->error = "Not enough provided sectors for requested mapping size";
  2904. goto bad;
  2905. }
  2906. threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
  2907. threshold += 50;
  2908. do_div(threshold, 100);
  2909. ic->free_sectors_threshold = threshold;
  2910. DEBUG_print("initialized:\n");
  2911. DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
  2912. DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
  2913. DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
  2914. DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
  2915. DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
  2916. DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
  2917. DEBUG_print(" journal_entries %u\n", ic->journal_entries);
  2918. DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
  2919. DEBUG_print(" data_device_sectors 0x%llx\n", (unsigned long long)ic->data_device_sectors);
  2920. DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
  2921. DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
  2922. DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
  2923. DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
  2924. (unsigned long long)ic->provided_data_sectors);
  2925. DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
  2926. if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
  2927. ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
  2928. ic->sb->recalc_sector = cpu_to_le64(0);
  2929. }
  2930. if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
  2931. if (!ic->internal_hash) {
  2932. r = -EINVAL;
  2933. ti->error = "Recalculate is only valid with internal hash";
  2934. goto bad;
  2935. }
  2936. ic->recalc_wq = alloc_workqueue("dm-intergrity-recalc", WQ_MEM_RECLAIM, 1);
  2937. if (!ic->recalc_wq ) {
  2938. ti->error = "Cannot allocate workqueue";
  2939. r = -ENOMEM;
  2940. goto bad;
  2941. }
  2942. INIT_WORK(&ic->recalc_work, integrity_recalc);
  2943. ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
  2944. if (!ic->recalc_buffer) {
  2945. ti->error = "Cannot allocate buffer for recalculating";
  2946. r = -ENOMEM;
  2947. goto bad;
  2948. }
  2949. ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
  2950. ic->tag_size, GFP_KERNEL);
  2951. if (!ic->recalc_tags) {
  2952. ti->error = "Cannot allocate tags for recalculating";
  2953. r = -ENOMEM;
  2954. goto bad;
  2955. }
  2956. }
  2957. ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
  2958. 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
  2959. if (IS_ERR(ic->bufio)) {
  2960. r = PTR_ERR(ic->bufio);
  2961. ti->error = "Cannot initialize dm-bufio";
  2962. ic->bufio = NULL;
  2963. goto bad;
  2964. }
  2965. dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
  2966. if (ic->mode != 'R') {
  2967. r = create_journal(ic, &ti->error);
  2968. if (r)
  2969. goto bad;
  2970. }
  2971. if (should_write_sb) {
  2972. int r;
  2973. init_journal(ic, 0, ic->journal_sections, 0);
  2974. r = dm_integrity_failed(ic);
  2975. if (unlikely(r)) {
  2976. ti->error = "Error initializing journal";
  2977. goto bad;
  2978. }
  2979. r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
  2980. if (r) {
  2981. ti->error = "Error initializing superblock";
  2982. goto bad;
  2983. }
  2984. ic->just_formatted = true;
  2985. }
  2986. if (!ic->meta_dev) {
  2987. r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
  2988. if (r)
  2989. goto bad;
  2990. }
  2991. if (!ic->internal_hash)
  2992. dm_integrity_set(ti, ic);
  2993. ti->num_flush_bios = 1;
  2994. ti->flush_supported = true;
  2995. return 0;
  2996. bad:
  2997. dm_integrity_dtr(ti);
  2998. return r;
  2999. }
  3000. static void dm_integrity_dtr(struct dm_target *ti)
  3001. {
  3002. struct dm_integrity_c *ic = ti->private;
  3003. BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
  3004. BUG_ON(!list_empty(&ic->wait_list));
  3005. if (ic->metadata_wq)
  3006. destroy_workqueue(ic->metadata_wq);
  3007. if (ic->wait_wq)
  3008. destroy_workqueue(ic->wait_wq);
  3009. if (ic->offload_wq)
  3010. destroy_workqueue(ic->offload_wq);
  3011. if (ic->commit_wq)
  3012. destroy_workqueue(ic->commit_wq);
  3013. if (ic->writer_wq)
  3014. destroy_workqueue(ic->writer_wq);
  3015. if (ic->recalc_wq)
  3016. destroy_workqueue(ic->recalc_wq);
  3017. if (ic->recalc_buffer)
  3018. vfree(ic->recalc_buffer);
  3019. if (ic->recalc_tags)
  3020. kvfree(ic->recalc_tags);
  3021. if (ic->bufio)
  3022. dm_bufio_client_destroy(ic->bufio);
  3023. mempool_exit(&ic->journal_io_mempool);
  3024. if (ic->io)
  3025. dm_io_client_destroy(ic->io);
  3026. if (ic->dev)
  3027. dm_put_device(ti, ic->dev);
  3028. if (ic->meta_dev)
  3029. dm_put_device(ti, ic->meta_dev);
  3030. dm_integrity_free_page_list(ic, ic->journal);
  3031. dm_integrity_free_page_list(ic, ic->journal_io);
  3032. dm_integrity_free_page_list(ic, ic->journal_xor);
  3033. if (ic->journal_scatterlist)
  3034. dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
  3035. if (ic->journal_io_scatterlist)
  3036. dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
  3037. if (ic->sk_requests) {
  3038. unsigned i;
  3039. for (i = 0; i < ic->journal_sections; i++) {
  3040. struct skcipher_request *req = ic->sk_requests[i];
  3041. if (req) {
  3042. kzfree(req->iv);
  3043. skcipher_request_free(req);
  3044. }
  3045. }
  3046. kvfree(ic->sk_requests);
  3047. }
  3048. kvfree(ic->journal_tree);
  3049. if (ic->sb)
  3050. free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
  3051. if (ic->internal_hash)
  3052. crypto_free_shash(ic->internal_hash);
  3053. free_alg(&ic->internal_hash_alg);
  3054. if (ic->journal_crypt)
  3055. crypto_free_skcipher(ic->journal_crypt);
  3056. free_alg(&ic->journal_crypt_alg);
  3057. if (ic->journal_mac)
  3058. crypto_free_shash(ic->journal_mac);
  3059. free_alg(&ic->journal_mac_alg);
  3060. kfree(ic);
  3061. }
  3062. static struct target_type integrity_target = {
  3063. .name = "integrity",
  3064. .version = {1, 2, 0},
  3065. .module = THIS_MODULE,
  3066. .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
  3067. .ctr = dm_integrity_ctr,
  3068. .dtr = dm_integrity_dtr,
  3069. .map = dm_integrity_map,
  3070. .postsuspend = dm_integrity_postsuspend,
  3071. .resume = dm_integrity_resume,
  3072. .status = dm_integrity_status,
  3073. .iterate_devices = dm_integrity_iterate_devices,
  3074. .io_hints = dm_integrity_io_hints,
  3075. };
  3076. int __init dm_integrity_init(void)
  3077. {
  3078. int r;
  3079. journal_io_cache = kmem_cache_create("integrity_journal_io",
  3080. sizeof(struct journal_io), 0, 0, NULL);
  3081. if (!journal_io_cache) {
  3082. DMERR("can't allocate journal io cache");
  3083. return -ENOMEM;
  3084. }
  3085. r = dm_register_target(&integrity_target);
  3086. if (r < 0)
  3087. DMERR("register failed %d", r);
  3088. return r;
  3089. }
  3090. void dm_integrity_exit(void)
  3091. {
  3092. dm_unregister_target(&integrity_target);
  3093. kmem_cache_destroy(journal_io_cache);
  3094. }
  3095. module_init(dm_integrity_init);
  3096. module_exit(dm_integrity_exit);
  3097. MODULE_AUTHOR("Milan Broz");
  3098. MODULE_AUTHOR("Mikulas Patocka");
  3099. MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
  3100. MODULE_LICENSE("GPL");