avm_pci.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
  2. *
  3. * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
  4. *
  5. * Author Karsten Keil
  6. * Copyright by Karsten Keil <keil@isdn4linux.de>
  7. *
  8. * This software may be used and distributed according to the terms
  9. * of the GNU General Public License, incorporated herein by reference.
  10. *
  11. * Thanks to AVM, Berlin for information
  12. *
  13. */
  14. #include <linux/init.h>
  15. #include "hisax.h"
  16. #include "isac.h"
  17. #include "isdnl1.h"
  18. #include <linux/pci.h>
  19. #include <linux/slab.h>
  20. #include <linux/isapnp.h>
  21. #include <linux/interrupt.h>
  22. static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
  23. #define AVM_FRITZ_PCI 1
  24. #define AVM_FRITZ_PNP 2
  25. #define HDLC_FIFO 0x0
  26. #define HDLC_STATUS 0x4
  27. #define AVM_HDLC_1 0x00
  28. #define AVM_HDLC_2 0x01
  29. #define AVM_ISAC_FIFO 0x02
  30. #define AVM_ISAC_REG_LOW 0x04
  31. #define AVM_ISAC_REG_HIGH 0x06
  32. #define AVM_STATUS0_IRQ_ISAC 0x01
  33. #define AVM_STATUS0_IRQ_HDLC 0x02
  34. #define AVM_STATUS0_IRQ_TIMER 0x04
  35. #define AVM_STATUS0_IRQ_MASK 0x07
  36. #define AVM_STATUS0_RESET 0x01
  37. #define AVM_STATUS0_DIS_TIMER 0x02
  38. #define AVM_STATUS0_RES_TIMER 0x04
  39. #define AVM_STATUS0_ENA_IRQ 0x08
  40. #define AVM_STATUS0_TESTBIT 0x10
  41. #define AVM_STATUS1_INT_SEL 0x0f
  42. #define AVM_STATUS1_ENA_IOM 0x80
  43. #define HDLC_MODE_ITF_FLG 0x01
  44. #define HDLC_MODE_TRANS 0x02
  45. #define HDLC_MODE_CCR_7 0x04
  46. #define HDLC_MODE_CCR_16 0x08
  47. #define HDLC_MODE_TESTLOOP 0x80
  48. #define HDLC_INT_XPR 0x80
  49. #define HDLC_INT_XDU 0x40
  50. #define HDLC_INT_RPR 0x20
  51. #define HDLC_INT_MASK 0xE0
  52. #define HDLC_STAT_RME 0x01
  53. #define HDLC_STAT_RDO 0x10
  54. #define HDLC_STAT_CRCVFRRAB 0x0E
  55. #define HDLC_STAT_CRCVFR 0x06
  56. #define HDLC_STAT_RML_MASK 0x3f00
  57. #define HDLC_CMD_XRS 0x80
  58. #define HDLC_CMD_XME 0x01
  59. #define HDLC_CMD_RRS 0x20
  60. #define HDLC_CMD_XML_MASK 0x3f00
  61. /* Interface functions */
  62. static u_char
  63. ReadISAC(struct IsdnCardState *cs, u_char offset)
  64. {
  65. register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
  66. register u_char val;
  67. outb(idx, cs->hw.avm.cfg_reg + 4);
  68. val = inb(cs->hw.avm.isac + (offset & 0xf));
  69. return (val);
  70. }
  71. static void
  72. WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
  73. {
  74. register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
  75. outb(idx, cs->hw.avm.cfg_reg + 4);
  76. outb(value, cs->hw.avm.isac + (offset & 0xf));
  77. }
  78. static void
  79. ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
  80. {
  81. outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
  82. insb(cs->hw.avm.isac, data, size);
  83. }
  84. static void
  85. WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
  86. {
  87. outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
  88. outsb(cs->hw.avm.isac, data, size);
  89. }
  90. static inline u_int
  91. ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
  92. {
  93. register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  94. register u_int val;
  95. outl(idx, cs->hw.avm.cfg_reg + 4);
  96. val = inl(cs->hw.avm.isac + offset);
  97. return (val);
  98. }
  99. static inline void
  100. WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
  101. {
  102. register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  103. outl(idx, cs->hw.avm.cfg_reg + 4);
  104. outl(value, cs->hw.avm.isac + offset);
  105. }
  106. static inline u_char
  107. ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
  108. {
  109. register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  110. register u_char val;
  111. outb(idx, cs->hw.avm.cfg_reg + 4);
  112. val = inb(cs->hw.avm.isac + offset);
  113. return (val);
  114. }
  115. static inline void
  116. WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
  117. {
  118. register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  119. outb(idx, cs->hw.avm.cfg_reg + 4);
  120. outb(value, cs->hw.avm.isac + offset);
  121. }
  122. static u_char
  123. ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
  124. {
  125. return (0xff & ReadHDLCPCI(cs, chan, offset));
  126. }
  127. static void
  128. WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
  129. {
  130. WriteHDLCPCI(cs, chan, offset, value);
  131. }
  132. static inline
  133. struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
  134. {
  135. if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
  136. return (&cs->bcs[0]);
  137. else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
  138. return (&cs->bcs[1]);
  139. else
  140. return (NULL);
  141. }
  142. static void
  143. write_ctrl(struct BCState *bcs, int which) {
  144. if (bcs->cs->debug & L1_DEB_HSCX)
  145. debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
  146. 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
  147. if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
  148. WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
  149. } else {
  150. if (which & 4)
  151. WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
  152. bcs->hw.hdlc.ctrl.sr.mode);
  153. if (which & 2)
  154. WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
  155. bcs->hw.hdlc.ctrl.sr.xml);
  156. if (which & 1)
  157. WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
  158. bcs->hw.hdlc.ctrl.sr.cmd);
  159. }
  160. }
  161. static void
  162. modehdlc(struct BCState *bcs, int mode, int bc)
  163. {
  164. struct IsdnCardState *cs = bcs->cs;
  165. int hdlc = bcs->channel;
  166. if (cs->debug & L1_DEB_HSCX)
  167. debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
  168. 'A' + hdlc, bcs->mode, mode, hdlc, bc);
  169. bcs->hw.hdlc.ctrl.ctrl = 0;
  170. switch (mode) {
  171. case (-1): /* used for init */
  172. bcs->mode = 1;
  173. bcs->channel = bc;
  174. bc = 0;
  175. /* fall through */
  176. case (L1_MODE_NULL):
  177. if (bcs->mode == L1_MODE_NULL)
  178. return;
  179. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  180. bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
  181. write_ctrl(bcs, 5);
  182. bcs->mode = L1_MODE_NULL;
  183. bcs->channel = bc;
  184. break;
  185. case (L1_MODE_TRANS):
  186. bcs->mode = mode;
  187. bcs->channel = bc;
  188. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  189. bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
  190. write_ctrl(bcs, 5);
  191. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
  192. write_ctrl(bcs, 1);
  193. bcs->hw.hdlc.ctrl.sr.cmd = 0;
  194. schedule_event(bcs, B_XMTBUFREADY);
  195. break;
  196. case (L1_MODE_HDLC):
  197. bcs->mode = mode;
  198. bcs->channel = bc;
  199. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  200. bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
  201. write_ctrl(bcs, 5);
  202. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
  203. write_ctrl(bcs, 1);
  204. bcs->hw.hdlc.ctrl.sr.cmd = 0;
  205. schedule_event(bcs, B_XMTBUFREADY);
  206. break;
  207. }
  208. }
  209. static inline void
  210. hdlc_empty_fifo(struct BCState *bcs, int count)
  211. {
  212. register u_int *ptr;
  213. u_char *p;
  214. u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
  215. int cnt = 0;
  216. struct IsdnCardState *cs = bcs->cs;
  217. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  218. debugl1(cs, "hdlc_empty_fifo %d", count);
  219. if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
  220. if (cs->debug & L1_DEB_WARN)
  221. debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
  222. return;
  223. }
  224. p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
  225. ptr = (u_int *)p;
  226. bcs->hw.hdlc.rcvidx += count;
  227. if (cs->subtyp == AVM_FRITZ_PCI) {
  228. outl(idx, cs->hw.avm.cfg_reg + 4);
  229. while (cnt < count) {
  230. #ifdef __powerpc__
  231. *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac + _IO_BASE));
  232. #else
  233. *ptr++ = inl(cs->hw.avm.isac);
  234. #endif /* __powerpc__ */
  235. cnt += 4;
  236. }
  237. } else {
  238. outb(idx, cs->hw.avm.cfg_reg + 4);
  239. while (cnt < count) {
  240. *p++ = inb(cs->hw.avm.isac);
  241. cnt++;
  242. }
  243. }
  244. if (cs->debug & L1_DEB_HSCX_FIFO) {
  245. char *t = bcs->blog;
  246. if (cs->subtyp == AVM_FRITZ_PNP)
  247. p = (u_char *) ptr;
  248. t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
  249. bcs->channel ? 'B' : 'A', count);
  250. QuickHex(t, p, count);
  251. debugl1(cs, "%s", bcs->blog);
  252. }
  253. }
  254. static inline void
  255. hdlc_fill_fifo(struct BCState *bcs)
  256. {
  257. struct IsdnCardState *cs = bcs->cs;
  258. int count, cnt = 0;
  259. int fifo_size = 32;
  260. u_char *p;
  261. u_int *ptr;
  262. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  263. debugl1(cs, "hdlc_fill_fifo");
  264. if (!bcs->tx_skb)
  265. return;
  266. if (bcs->tx_skb->len <= 0)
  267. return;
  268. bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
  269. if (bcs->tx_skb->len > fifo_size) {
  270. count = fifo_size;
  271. } else {
  272. count = bcs->tx_skb->len;
  273. if (bcs->mode != L1_MODE_TRANS)
  274. bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
  275. }
  276. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  277. debugl1(cs, "hdlc_fill_fifo %d/%u", count, bcs->tx_skb->len);
  278. p = bcs->tx_skb->data;
  279. ptr = (u_int *)p;
  280. skb_pull(bcs->tx_skb, count);
  281. bcs->tx_cnt -= count;
  282. bcs->hw.hdlc.count += count;
  283. bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
  284. write_ctrl(bcs, 3); /* sets the correct index too */
  285. if (cs->subtyp == AVM_FRITZ_PCI) {
  286. while (cnt < count) {
  287. #ifdef __powerpc__
  288. out_be32((unsigned *)(cs->hw.avm.isac + _IO_BASE), *ptr++);
  289. #else
  290. outl(*ptr++, cs->hw.avm.isac);
  291. #endif /* __powerpc__ */
  292. cnt += 4;
  293. }
  294. } else {
  295. while (cnt < count) {
  296. outb(*p++, cs->hw.avm.isac);
  297. cnt++;
  298. }
  299. }
  300. if (cs->debug & L1_DEB_HSCX_FIFO) {
  301. char *t = bcs->blog;
  302. if (cs->subtyp == AVM_FRITZ_PNP)
  303. p = (u_char *) ptr;
  304. t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
  305. bcs->channel ? 'B' : 'A', count);
  306. QuickHex(t, p, count);
  307. debugl1(cs, "%s", bcs->blog);
  308. }
  309. }
  310. static void
  311. HDLC_irq(struct BCState *bcs, u_int stat) {
  312. int len;
  313. struct sk_buff *skb;
  314. if (bcs->cs->debug & L1_DEB_HSCX)
  315. debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
  316. if (stat & HDLC_INT_RPR) {
  317. if (stat & HDLC_STAT_RDO) {
  318. if (bcs->cs->debug & L1_DEB_HSCX)
  319. debugl1(bcs->cs, "RDO");
  320. else
  321. debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
  322. bcs->hw.hdlc.ctrl.sr.xml = 0;
  323. bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
  324. write_ctrl(bcs, 1);
  325. bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
  326. write_ctrl(bcs, 1);
  327. bcs->hw.hdlc.rcvidx = 0;
  328. } else {
  329. if (!(len = (stat & HDLC_STAT_RML_MASK) >> 8))
  330. len = 32;
  331. hdlc_empty_fifo(bcs, len);
  332. if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
  333. if (((stat & HDLC_STAT_CRCVFRRAB) == HDLC_STAT_CRCVFR) ||
  334. (bcs->mode == L1_MODE_TRANS)) {
  335. if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
  336. printk(KERN_WARNING "HDLC: receive out of memory\n");
  337. else {
  338. skb_put_data(skb,
  339. bcs->hw.hdlc.rcvbuf,
  340. bcs->hw.hdlc.rcvidx);
  341. skb_queue_tail(&bcs->rqueue, skb);
  342. }
  343. bcs->hw.hdlc.rcvidx = 0;
  344. schedule_event(bcs, B_RCVBUFREADY);
  345. } else {
  346. if (bcs->cs->debug & L1_DEB_HSCX)
  347. debugl1(bcs->cs, "invalid frame");
  348. else
  349. debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
  350. bcs->hw.hdlc.rcvidx = 0;
  351. }
  352. }
  353. }
  354. }
  355. if (stat & HDLC_INT_XDU) {
  356. /* Here we lost an TX interrupt, so
  357. * restart transmitting the whole frame.
  358. */
  359. if (bcs->tx_skb) {
  360. skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
  361. bcs->tx_cnt += bcs->hw.hdlc.count;
  362. bcs->hw.hdlc.count = 0;
  363. if (bcs->cs->debug & L1_DEB_WARN)
  364. debugl1(bcs->cs, "ch%d XDU", bcs->channel);
  365. } else if (bcs->cs->debug & L1_DEB_WARN)
  366. debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
  367. bcs->hw.hdlc.ctrl.sr.xml = 0;
  368. bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
  369. write_ctrl(bcs, 1);
  370. bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
  371. write_ctrl(bcs, 1);
  372. hdlc_fill_fifo(bcs);
  373. } else if (stat & HDLC_INT_XPR) {
  374. if (bcs->tx_skb) {
  375. if (bcs->tx_skb->len) {
  376. hdlc_fill_fifo(bcs);
  377. return;
  378. } else {
  379. if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
  380. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  381. u_long flags;
  382. spin_lock_irqsave(&bcs->aclock, flags);
  383. bcs->ackcnt += bcs->hw.hdlc.count;
  384. spin_unlock_irqrestore(&bcs->aclock, flags);
  385. schedule_event(bcs, B_ACKPENDING);
  386. }
  387. dev_kfree_skb_irq(bcs->tx_skb);
  388. bcs->hw.hdlc.count = 0;
  389. bcs->tx_skb = NULL;
  390. }
  391. }
  392. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  393. bcs->hw.hdlc.count = 0;
  394. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  395. hdlc_fill_fifo(bcs);
  396. } else {
  397. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  398. schedule_event(bcs, B_XMTBUFREADY);
  399. }
  400. }
  401. }
  402. static inline void
  403. HDLC_irq_main(struct IsdnCardState *cs)
  404. {
  405. u_int stat;
  406. struct BCState *bcs;
  407. if (cs->subtyp == AVM_FRITZ_PCI) {
  408. stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
  409. } else {
  410. stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
  411. if (stat & HDLC_INT_RPR)
  412. stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS + 1)) << 8;
  413. }
  414. if (stat & HDLC_INT_MASK) {
  415. if (!(bcs = Sel_BCS(cs, 0))) {
  416. if (cs->debug)
  417. debugl1(cs, "hdlc spurious channel 0 IRQ");
  418. } else
  419. HDLC_irq(bcs, stat);
  420. }
  421. if (cs->subtyp == AVM_FRITZ_PCI) {
  422. stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
  423. } else {
  424. stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
  425. if (stat & HDLC_INT_RPR)
  426. stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS + 1)) << 8;
  427. }
  428. if (stat & HDLC_INT_MASK) {
  429. if (!(bcs = Sel_BCS(cs, 1))) {
  430. if (cs->debug)
  431. debugl1(cs, "hdlc spurious channel 1 IRQ");
  432. } else
  433. HDLC_irq(bcs, stat);
  434. }
  435. }
  436. static void
  437. hdlc_l2l1(struct PStack *st, int pr, void *arg)
  438. {
  439. struct BCState *bcs = st->l1.bcs;
  440. struct sk_buff *skb = arg;
  441. u_long flags;
  442. switch (pr) {
  443. case (PH_DATA | REQUEST):
  444. spin_lock_irqsave(&bcs->cs->lock, flags);
  445. if (bcs->tx_skb) {
  446. skb_queue_tail(&bcs->squeue, skb);
  447. } else {
  448. bcs->tx_skb = skb;
  449. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  450. bcs->hw.hdlc.count = 0;
  451. bcs->cs->BC_Send_Data(bcs);
  452. }
  453. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  454. break;
  455. case (PH_PULL | INDICATION):
  456. spin_lock_irqsave(&bcs->cs->lock, flags);
  457. if (bcs->tx_skb) {
  458. printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
  459. } else {
  460. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  461. bcs->tx_skb = skb;
  462. bcs->hw.hdlc.count = 0;
  463. bcs->cs->BC_Send_Data(bcs);
  464. }
  465. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  466. break;
  467. case (PH_PULL | REQUEST):
  468. if (!bcs->tx_skb) {
  469. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  470. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  471. } else
  472. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  473. break;
  474. case (PH_ACTIVATE | REQUEST):
  475. spin_lock_irqsave(&bcs->cs->lock, flags);
  476. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  477. modehdlc(bcs, st->l1.mode, st->l1.bc);
  478. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  479. l1_msg_b(st, pr, arg);
  480. break;
  481. case (PH_DEACTIVATE | REQUEST):
  482. l1_msg_b(st, pr, arg);
  483. break;
  484. case (PH_DEACTIVATE | CONFIRM):
  485. spin_lock_irqsave(&bcs->cs->lock, flags);
  486. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  487. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  488. modehdlc(bcs, 0, st->l1.bc);
  489. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  490. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  491. break;
  492. }
  493. }
  494. static void
  495. close_hdlcstate(struct BCState *bcs)
  496. {
  497. modehdlc(bcs, 0, 0);
  498. if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
  499. kfree(bcs->hw.hdlc.rcvbuf);
  500. bcs->hw.hdlc.rcvbuf = NULL;
  501. kfree(bcs->blog);
  502. bcs->blog = NULL;
  503. skb_queue_purge(&bcs->rqueue);
  504. skb_queue_purge(&bcs->squeue);
  505. if (bcs->tx_skb) {
  506. dev_kfree_skb_any(bcs->tx_skb);
  507. bcs->tx_skb = NULL;
  508. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  509. }
  510. }
  511. }
  512. static int
  513. open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
  514. {
  515. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  516. if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
  517. printk(KERN_WARNING
  518. "HiSax: No memory for hdlc.rcvbuf\n");
  519. return (1);
  520. }
  521. if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
  522. printk(KERN_WARNING
  523. "HiSax: No memory for bcs->blog\n");
  524. test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
  525. kfree(bcs->hw.hdlc.rcvbuf);
  526. bcs->hw.hdlc.rcvbuf = NULL;
  527. return (2);
  528. }
  529. skb_queue_head_init(&bcs->rqueue);
  530. skb_queue_head_init(&bcs->squeue);
  531. }
  532. bcs->tx_skb = NULL;
  533. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  534. bcs->event = 0;
  535. bcs->hw.hdlc.rcvidx = 0;
  536. bcs->tx_cnt = 0;
  537. return (0);
  538. }
  539. static int
  540. setstack_hdlc(struct PStack *st, struct BCState *bcs)
  541. {
  542. bcs->channel = st->l1.bc;
  543. if (open_hdlcstate(st->l1.hardware, bcs))
  544. return (-1);
  545. st->l1.bcs = bcs;
  546. st->l2.l2l1 = hdlc_l2l1;
  547. setstack_manager(st);
  548. bcs->st = st;
  549. setstack_l1_B(st);
  550. return (0);
  551. }
  552. #if 0
  553. void __init
  554. clear_pending_hdlc_ints(struct IsdnCardState *cs)
  555. {
  556. u_int val;
  557. if (cs->subtyp == AVM_FRITZ_PCI) {
  558. val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
  559. debugl1(cs, "HDLC 1 STA %x", val);
  560. val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
  561. debugl1(cs, "HDLC 2 STA %x", val);
  562. } else {
  563. val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
  564. debugl1(cs, "HDLC 1 STA %x", val);
  565. val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
  566. debugl1(cs, "HDLC 1 RML %x", val);
  567. val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
  568. debugl1(cs, "HDLC 1 MODE %x", val);
  569. val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
  570. debugl1(cs, "HDLC 1 VIN %x", val);
  571. val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
  572. debugl1(cs, "HDLC 2 STA %x", val);
  573. val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
  574. debugl1(cs, "HDLC 2 RML %x", val);
  575. val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
  576. debugl1(cs, "HDLC 2 MODE %x", val);
  577. val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
  578. debugl1(cs, "HDLC 2 VIN %x", val);
  579. }
  580. }
  581. #endif /* 0 */
  582. static void
  583. inithdlc(struct IsdnCardState *cs)
  584. {
  585. cs->bcs[0].BC_SetStack = setstack_hdlc;
  586. cs->bcs[1].BC_SetStack = setstack_hdlc;
  587. cs->bcs[0].BC_Close = close_hdlcstate;
  588. cs->bcs[1].BC_Close = close_hdlcstate;
  589. modehdlc(cs->bcs, -1, 0);
  590. modehdlc(cs->bcs + 1, -1, 1);
  591. }
  592. static irqreturn_t
  593. avm_pcipnp_interrupt(int intno, void *dev_id)
  594. {
  595. struct IsdnCardState *cs = dev_id;
  596. u_long flags;
  597. u_char val;
  598. u_char sval;
  599. spin_lock_irqsave(&cs->lock, flags);
  600. sval = inb(cs->hw.avm.cfg_reg + 2);
  601. if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
  602. /* possible a shared IRQ reqest */
  603. spin_unlock_irqrestore(&cs->lock, flags);
  604. return IRQ_NONE;
  605. }
  606. if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
  607. val = ReadISAC(cs, ISAC_ISTA);
  608. isac_interrupt(cs, val);
  609. }
  610. if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
  611. HDLC_irq_main(cs);
  612. }
  613. WriteISAC(cs, ISAC_MASK, 0xFF);
  614. WriteISAC(cs, ISAC_MASK, 0x0);
  615. spin_unlock_irqrestore(&cs->lock, flags);
  616. return IRQ_HANDLED;
  617. }
  618. static void
  619. reset_avmpcipnp(struct IsdnCardState *cs)
  620. {
  621. printk(KERN_INFO "AVM PCI/PnP: reset\n");
  622. outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
  623. mdelay(10);
  624. outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
  625. outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
  626. mdelay(10);
  627. printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
  628. }
  629. static int
  630. AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
  631. {
  632. u_long flags;
  633. switch (mt) {
  634. case CARD_RESET:
  635. spin_lock_irqsave(&cs->lock, flags);
  636. reset_avmpcipnp(cs);
  637. spin_unlock_irqrestore(&cs->lock, flags);
  638. return (0);
  639. case CARD_RELEASE:
  640. outb(0, cs->hw.avm.cfg_reg + 2);
  641. release_region(cs->hw.avm.cfg_reg, 32);
  642. return (0);
  643. case CARD_INIT:
  644. spin_lock_irqsave(&cs->lock, flags);
  645. reset_avmpcipnp(cs);
  646. clear_pending_isac_ints(cs);
  647. initisac(cs);
  648. inithdlc(cs);
  649. outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
  650. cs->hw.avm.cfg_reg + 2);
  651. WriteISAC(cs, ISAC_MASK, 0);
  652. outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
  653. AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
  654. /* RESET Receiver and Transmitter */
  655. WriteISAC(cs, ISAC_CMDR, 0x41);
  656. spin_unlock_irqrestore(&cs->lock, flags);
  657. return (0);
  658. case CARD_TEST:
  659. return (0);
  660. }
  661. return (0);
  662. }
  663. static int avm_setup_rest(struct IsdnCardState *cs)
  664. {
  665. u_int val, ver;
  666. cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
  667. if (!request_region(cs->hw.avm.cfg_reg, 32,
  668. (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
  669. printk(KERN_WARNING
  670. "HiSax: Fritz!PCI/PNP config port %x-%x already in use\n",
  671. cs->hw.avm.cfg_reg,
  672. cs->hw.avm.cfg_reg + 31);
  673. return (0);
  674. }
  675. switch (cs->subtyp) {
  676. case AVM_FRITZ_PCI:
  677. val = inl(cs->hw.avm.cfg_reg);
  678. printk(KERN_INFO "AVM PCI: stat %#x\n", val);
  679. printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
  680. val & 0xff, (val >> 8) & 0xff);
  681. cs->BC_Read_Reg = &ReadHDLC_s;
  682. cs->BC_Write_Reg = &WriteHDLC_s;
  683. break;
  684. case AVM_FRITZ_PNP:
  685. val = inb(cs->hw.avm.cfg_reg);
  686. ver = inb(cs->hw.avm.cfg_reg + 1);
  687. printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
  688. cs->BC_Read_Reg = &ReadHDLCPnP;
  689. cs->BC_Write_Reg = &WriteHDLCPnP;
  690. break;
  691. default:
  692. printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
  693. return (0);
  694. }
  695. printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
  696. (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
  697. cs->irq, cs->hw.avm.cfg_reg);
  698. setup_isac(cs);
  699. cs->readisac = &ReadISAC;
  700. cs->writeisac = &WriteISAC;
  701. cs->readisacfifo = &ReadISACfifo;
  702. cs->writeisacfifo = &WriteISACfifo;
  703. cs->BC_Send_Data = &hdlc_fill_fifo;
  704. cs->cardmsg = &AVM_card_msg;
  705. cs->irq_func = &avm_pcipnp_interrupt;
  706. cs->writeisac(cs, ISAC_MASK, 0xFF);
  707. ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
  708. return (1);
  709. }
  710. #ifndef __ISAPNP__
  711. static int avm_pnp_setup(struct IsdnCardState *cs)
  712. {
  713. return (1); /* no-op: success */
  714. }
  715. #else
  716. static struct pnp_card *pnp_avm_c = NULL;
  717. static int avm_pnp_setup(struct IsdnCardState *cs)
  718. {
  719. struct pnp_dev *pnp_avm_d = NULL;
  720. if (!isapnp_present())
  721. return (1); /* no-op: success */
  722. if ((pnp_avm_c = pnp_find_card(
  723. ISAPNP_VENDOR('A', 'V', 'M'),
  724. ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
  725. if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
  726. ISAPNP_VENDOR('A', 'V', 'M'),
  727. ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
  728. int err;
  729. pnp_disable_dev(pnp_avm_d);
  730. err = pnp_activate_dev(pnp_avm_d);
  731. if (err < 0) {
  732. printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
  733. __func__, err);
  734. return (0);
  735. }
  736. cs->hw.avm.cfg_reg =
  737. pnp_port_start(pnp_avm_d, 0);
  738. cs->irq = pnp_irq(pnp_avm_d, 0);
  739. if (cs->irq == -1) {
  740. printk(KERN_ERR "FritzPnP:No IRQ\n");
  741. return (0);
  742. }
  743. if (!cs->hw.avm.cfg_reg) {
  744. printk(KERN_ERR "FritzPnP:No IO address\n");
  745. return (0);
  746. }
  747. cs->subtyp = AVM_FRITZ_PNP;
  748. return (2); /* goto 'ready' label */
  749. }
  750. }
  751. return (1);
  752. }
  753. #endif /* __ISAPNP__ */
  754. #ifndef CONFIG_PCI
  755. static int avm_pci_setup(struct IsdnCardState *cs)
  756. {
  757. return (1); /* no-op: success */
  758. }
  759. #else
  760. static struct pci_dev *dev_avm = NULL;
  761. static int avm_pci_setup(struct IsdnCardState *cs)
  762. {
  763. if ((dev_avm = hisax_find_pci_device(PCI_VENDOR_ID_AVM,
  764. PCI_DEVICE_ID_AVM_A1, dev_avm))) {
  765. if (pci_enable_device(dev_avm))
  766. return (0);
  767. cs->irq = dev_avm->irq;
  768. if (!cs->irq) {
  769. printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
  770. return (0);
  771. }
  772. cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
  773. if (!cs->hw.avm.cfg_reg) {
  774. printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
  775. return (0);
  776. }
  777. cs->subtyp = AVM_FRITZ_PCI;
  778. } else {
  779. printk(KERN_WARNING "FritzPCI: No PCI card found\n");
  780. return (0);
  781. }
  782. cs->irq_flags |= IRQF_SHARED;
  783. return (1);
  784. }
  785. #endif /* CONFIG_PCI */
  786. int setup_avm_pcipnp(struct IsdnCard *card)
  787. {
  788. struct IsdnCardState *cs = card->cs;
  789. char tmp[64];
  790. int rc;
  791. strcpy(tmp, avm_pci_rev);
  792. printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
  793. if (cs->typ != ISDN_CTYPE_FRITZPCI)
  794. return (0);
  795. if (card->para[1]) {
  796. /* old manual method */
  797. cs->hw.avm.cfg_reg = card->para[1];
  798. cs->irq = card->para[0];
  799. cs->subtyp = AVM_FRITZ_PNP;
  800. goto ready;
  801. }
  802. rc = avm_pnp_setup(cs);
  803. if (rc < 1)
  804. return (0);
  805. if (rc == 2)
  806. goto ready;
  807. rc = avm_pci_setup(cs);
  808. if (rc < 1)
  809. return (0);
  810. ready:
  811. return avm_setup_rest(cs);
  812. }