hts221_core.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. /*
  2. * STMicroelectronics hts221 sensor driver
  3. *
  4. * Copyright 2016 STMicroelectronics Inc.
  5. *
  6. * Lorenzo Bianconi <lorenzo.bianconi@st.com>
  7. *
  8. * Licensed under the GPL-2.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/device.h>
  13. #include <linux/iio/sysfs.h>
  14. #include <linux/delay.h>
  15. #include <linux/pm.h>
  16. #include <linux/regmap.h>
  17. #include <linux/bitfield.h>
  18. #include "hts221.h"
  19. #define HTS221_REG_WHOAMI_ADDR 0x0f
  20. #define HTS221_REG_WHOAMI_VAL 0xbc
  21. #define HTS221_REG_CNTRL1_ADDR 0x20
  22. #define HTS221_REG_CNTRL2_ADDR 0x21
  23. #define HTS221_REG_AVG_ADDR 0x10
  24. #define HTS221_REG_H_OUT_L 0x28
  25. #define HTS221_REG_T_OUT_L 0x2a
  26. #define HTS221_HUMIDITY_AVG_MASK 0x07
  27. #define HTS221_TEMP_AVG_MASK 0x38
  28. #define HTS221_ODR_MASK 0x03
  29. #define HTS221_BDU_MASK BIT(2)
  30. #define HTS221_ENABLE_MASK BIT(7)
  31. /* calibration registers */
  32. #define HTS221_REG_0RH_CAL_X_H 0x36
  33. #define HTS221_REG_1RH_CAL_X_H 0x3a
  34. #define HTS221_REG_0RH_CAL_Y_H 0x30
  35. #define HTS221_REG_1RH_CAL_Y_H 0x31
  36. #define HTS221_REG_0T_CAL_X_L 0x3c
  37. #define HTS221_REG_1T_CAL_X_L 0x3e
  38. #define HTS221_REG_0T_CAL_Y_H 0x32
  39. #define HTS221_REG_1T_CAL_Y_H 0x33
  40. #define HTS221_REG_T1_T0_CAL_Y_H 0x35
  41. struct hts221_odr {
  42. u8 hz;
  43. u8 val;
  44. };
  45. #define HTS221_AVG_DEPTH 8
  46. struct hts221_avg {
  47. u8 addr;
  48. u8 mask;
  49. u16 avg_avl[HTS221_AVG_DEPTH];
  50. };
  51. static const struct hts221_odr hts221_odr_table[] = {
  52. { 1, 0x01 }, /* 1Hz */
  53. { 7, 0x02 }, /* 7Hz */
  54. { 13, 0x03 }, /* 12.5Hz */
  55. };
  56. static const struct hts221_avg hts221_avg_list[] = {
  57. {
  58. .addr = HTS221_REG_AVG_ADDR,
  59. .mask = HTS221_HUMIDITY_AVG_MASK,
  60. .avg_avl = {
  61. 4, /* 0.4 %RH */
  62. 8, /* 0.3 %RH */
  63. 16, /* 0.2 %RH */
  64. 32, /* 0.15 %RH */
  65. 64, /* 0.1 %RH */
  66. 128, /* 0.07 %RH */
  67. 256, /* 0.05 %RH */
  68. 512, /* 0.03 %RH */
  69. },
  70. },
  71. {
  72. .addr = HTS221_REG_AVG_ADDR,
  73. .mask = HTS221_TEMP_AVG_MASK,
  74. .avg_avl = {
  75. 2, /* 0.08 degC */
  76. 4, /* 0.05 degC */
  77. 8, /* 0.04 degC */
  78. 16, /* 0.03 degC */
  79. 32, /* 0.02 degC */
  80. 64, /* 0.015 degC */
  81. 128, /* 0.01 degC */
  82. 256, /* 0.007 degC */
  83. },
  84. },
  85. };
  86. static const struct iio_chan_spec hts221_channels[] = {
  87. {
  88. .type = IIO_HUMIDITYRELATIVE,
  89. .address = HTS221_REG_H_OUT_L,
  90. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  91. BIT(IIO_CHAN_INFO_OFFSET) |
  92. BIT(IIO_CHAN_INFO_SCALE) |
  93. BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
  94. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  95. .scan_index = 0,
  96. .scan_type = {
  97. .sign = 's',
  98. .realbits = 16,
  99. .storagebits = 16,
  100. .endianness = IIO_LE,
  101. },
  102. },
  103. {
  104. .type = IIO_TEMP,
  105. .address = HTS221_REG_T_OUT_L,
  106. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  107. BIT(IIO_CHAN_INFO_OFFSET) |
  108. BIT(IIO_CHAN_INFO_SCALE) |
  109. BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
  110. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  111. .scan_index = 1,
  112. .scan_type = {
  113. .sign = 's',
  114. .realbits = 16,
  115. .storagebits = 16,
  116. .endianness = IIO_LE,
  117. },
  118. },
  119. IIO_CHAN_SOFT_TIMESTAMP(2),
  120. };
  121. static int hts221_check_whoami(struct hts221_hw *hw)
  122. {
  123. int err, data;
  124. err = regmap_read(hw->regmap, HTS221_REG_WHOAMI_ADDR, &data);
  125. if (err < 0) {
  126. dev_err(hw->dev, "failed to read whoami register\n");
  127. return err;
  128. }
  129. if (data != HTS221_REG_WHOAMI_VAL) {
  130. dev_err(hw->dev, "wrong whoami {%02x vs %02x}\n",
  131. data, HTS221_REG_WHOAMI_VAL);
  132. return -ENODEV;
  133. }
  134. return 0;
  135. }
  136. static int hts221_update_odr(struct hts221_hw *hw, u8 odr)
  137. {
  138. int i, err;
  139. for (i = 0; i < ARRAY_SIZE(hts221_odr_table); i++)
  140. if (hts221_odr_table[i].hz == odr)
  141. break;
  142. if (i == ARRAY_SIZE(hts221_odr_table))
  143. return -EINVAL;
  144. err = regmap_update_bits(hw->regmap, HTS221_REG_CNTRL1_ADDR,
  145. HTS221_ODR_MASK,
  146. FIELD_PREP(HTS221_ODR_MASK,
  147. hts221_odr_table[i].val));
  148. if (err < 0)
  149. return err;
  150. hw->odr = odr;
  151. return 0;
  152. }
  153. static int hts221_update_avg(struct hts221_hw *hw,
  154. enum hts221_sensor_type type,
  155. u16 val)
  156. {
  157. const struct hts221_avg *avg = &hts221_avg_list[type];
  158. int i, err, data;
  159. for (i = 0; i < HTS221_AVG_DEPTH; i++)
  160. if (avg->avg_avl[i] == val)
  161. break;
  162. if (i == HTS221_AVG_DEPTH)
  163. return -EINVAL;
  164. data = ((i << __ffs(avg->mask)) & avg->mask);
  165. err = regmap_update_bits(hw->regmap, avg->addr,
  166. avg->mask, data);
  167. if (err < 0)
  168. return err;
  169. hw->sensors[type].cur_avg_idx = i;
  170. return 0;
  171. }
  172. static ssize_t hts221_sysfs_sampling_freq(struct device *dev,
  173. struct device_attribute *attr,
  174. char *buf)
  175. {
  176. int i;
  177. ssize_t len = 0;
  178. for (i = 0; i < ARRAY_SIZE(hts221_odr_table); i++)
  179. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  180. hts221_odr_table[i].hz);
  181. buf[len - 1] = '\n';
  182. return len;
  183. }
  184. static ssize_t
  185. hts221_sysfs_rh_oversampling_avail(struct device *dev,
  186. struct device_attribute *attr,
  187. char *buf)
  188. {
  189. const struct hts221_avg *avg = &hts221_avg_list[HTS221_SENSOR_H];
  190. ssize_t len = 0;
  191. int i;
  192. for (i = 0; i < ARRAY_SIZE(avg->avg_avl); i++)
  193. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  194. avg->avg_avl[i]);
  195. buf[len - 1] = '\n';
  196. return len;
  197. }
  198. static ssize_t
  199. hts221_sysfs_temp_oversampling_avail(struct device *dev,
  200. struct device_attribute *attr,
  201. char *buf)
  202. {
  203. const struct hts221_avg *avg = &hts221_avg_list[HTS221_SENSOR_T];
  204. ssize_t len = 0;
  205. int i;
  206. for (i = 0; i < ARRAY_SIZE(avg->avg_avl); i++)
  207. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  208. avg->avg_avl[i]);
  209. buf[len - 1] = '\n';
  210. return len;
  211. }
  212. int hts221_set_enable(struct hts221_hw *hw, bool enable)
  213. {
  214. int err;
  215. err = regmap_update_bits(hw->regmap, HTS221_REG_CNTRL1_ADDR,
  216. HTS221_ENABLE_MASK,
  217. FIELD_PREP(HTS221_ENABLE_MASK, enable));
  218. if (err < 0)
  219. return err;
  220. hw->enabled = enable;
  221. return 0;
  222. }
  223. static int hts221_parse_temp_caldata(struct hts221_hw *hw)
  224. {
  225. int err, *slope, *b_gen, cal0, cal1;
  226. s16 cal_x0, cal_x1, cal_y0, cal_y1;
  227. __le16 val;
  228. err = regmap_read(hw->regmap, HTS221_REG_0T_CAL_Y_H, &cal0);
  229. if (err < 0)
  230. return err;
  231. err = regmap_read(hw->regmap, HTS221_REG_T1_T0_CAL_Y_H, &cal1);
  232. if (err < 0)
  233. return err;
  234. cal_y0 = ((cal1 & 0x3) << 8) | cal0;
  235. err = regmap_read(hw->regmap, HTS221_REG_1T_CAL_Y_H, &cal0);
  236. if (err < 0)
  237. return err;
  238. cal_y1 = (((cal1 & 0xc) >> 2) << 8) | cal0;
  239. err = regmap_bulk_read(hw->regmap, HTS221_REG_0T_CAL_X_L,
  240. &val, sizeof(val));
  241. if (err < 0)
  242. return err;
  243. cal_x0 = le16_to_cpu(val);
  244. err = regmap_bulk_read(hw->regmap, HTS221_REG_1T_CAL_X_L,
  245. &val, sizeof(val));
  246. if (err < 0)
  247. return err;
  248. cal_x1 = le16_to_cpu(val);
  249. slope = &hw->sensors[HTS221_SENSOR_T].slope;
  250. b_gen = &hw->sensors[HTS221_SENSOR_T].b_gen;
  251. *slope = ((cal_y1 - cal_y0) * 8000) / (cal_x1 - cal_x0);
  252. *b_gen = (((s32)cal_x1 * cal_y0 - (s32)cal_x0 * cal_y1) * 1000) /
  253. (cal_x1 - cal_x0);
  254. *b_gen *= 8;
  255. return 0;
  256. }
  257. static int hts221_parse_rh_caldata(struct hts221_hw *hw)
  258. {
  259. int err, *slope, *b_gen, data;
  260. s16 cal_x0, cal_x1, cal_y0, cal_y1;
  261. __le16 val;
  262. err = regmap_read(hw->regmap, HTS221_REG_0RH_CAL_Y_H, &data);
  263. if (err < 0)
  264. return err;
  265. cal_y0 = data;
  266. err = regmap_read(hw->regmap, HTS221_REG_1RH_CAL_Y_H, &data);
  267. if (err < 0)
  268. return err;
  269. cal_y1 = data;
  270. err = regmap_bulk_read(hw->regmap, HTS221_REG_0RH_CAL_X_H,
  271. &val, sizeof(val));
  272. if (err < 0)
  273. return err;
  274. cal_x0 = le16_to_cpu(val);
  275. err = regmap_bulk_read(hw->regmap, HTS221_REG_1RH_CAL_X_H,
  276. &val, sizeof(val));
  277. if (err < 0)
  278. return err;
  279. cal_x1 = le16_to_cpu(val);
  280. slope = &hw->sensors[HTS221_SENSOR_H].slope;
  281. b_gen = &hw->sensors[HTS221_SENSOR_H].b_gen;
  282. *slope = ((cal_y1 - cal_y0) * 8000) / (cal_x1 - cal_x0);
  283. *b_gen = (((s32)cal_x1 * cal_y0 - (s32)cal_x0 * cal_y1) * 1000) /
  284. (cal_x1 - cal_x0);
  285. *b_gen *= 8;
  286. return 0;
  287. }
  288. static int hts221_get_sensor_scale(struct hts221_hw *hw,
  289. enum iio_chan_type ch_type,
  290. int *val, int *val2)
  291. {
  292. s64 tmp;
  293. s32 rem, div, data;
  294. switch (ch_type) {
  295. case IIO_HUMIDITYRELATIVE:
  296. data = hw->sensors[HTS221_SENSOR_H].slope;
  297. div = (1 << 4) * 1000;
  298. break;
  299. case IIO_TEMP:
  300. data = hw->sensors[HTS221_SENSOR_T].slope;
  301. div = (1 << 6) * 1000;
  302. break;
  303. default:
  304. return -EINVAL;
  305. }
  306. tmp = div_s64(data * 1000000000LL, div);
  307. tmp = div_s64_rem(tmp, 1000000000LL, &rem);
  308. *val = tmp;
  309. *val2 = rem;
  310. return IIO_VAL_INT_PLUS_NANO;
  311. }
  312. static int hts221_get_sensor_offset(struct hts221_hw *hw,
  313. enum iio_chan_type ch_type,
  314. int *val, int *val2)
  315. {
  316. s64 tmp;
  317. s32 rem, div, data;
  318. switch (ch_type) {
  319. case IIO_HUMIDITYRELATIVE:
  320. data = hw->sensors[HTS221_SENSOR_H].b_gen;
  321. div = hw->sensors[HTS221_SENSOR_H].slope;
  322. break;
  323. case IIO_TEMP:
  324. data = hw->sensors[HTS221_SENSOR_T].b_gen;
  325. div = hw->sensors[HTS221_SENSOR_T].slope;
  326. break;
  327. default:
  328. return -EINVAL;
  329. }
  330. tmp = div_s64(data * 1000000000LL, div);
  331. tmp = div_s64_rem(tmp, 1000000000LL, &rem);
  332. *val = tmp;
  333. *val2 = rem;
  334. return IIO_VAL_INT_PLUS_NANO;
  335. }
  336. static int hts221_read_oneshot(struct hts221_hw *hw, u8 addr, int *val)
  337. {
  338. __le16 data;
  339. int err;
  340. err = hts221_set_enable(hw, true);
  341. if (err < 0)
  342. return err;
  343. msleep(50);
  344. err = regmap_bulk_read(hw->regmap, addr, &data, sizeof(data));
  345. if (err < 0)
  346. return err;
  347. hts221_set_enable(hw, false);
  348. *val = (s16)le16_to_cpu(data);
  349. return IIO_VAL_INT;
  350. }
  351. static int hts221_read_raw(struct iio_dev *iio_dev,
  352. struct iio_chan_spec const *ch,
  353. int *val, int *val2, long mask)
  354. {
  355. struct hts221_hw *hw = iio_priv(iio_dev);
  356. int ret;
  357. ret = iio_device_claim_direct_mode(iio_dev);
  358. if (ret)
  359. return ret;
  360. switch (mask) {
  361. case IIO_CHAN_INFO_RAW:
  362. ret = hts221_read_oneshot(hw, ch->address, val);
  363. break;
  364. case IIO_CHAN_INFO_SCALE:
  365. ret = hts221_get_sensor_scale(hw, ch->type, val, val2);
  366. break;
  367. case IIO_CHAN_INFO_OFFSET:
  368. ret = hts221_get_sensor_offset(hw, ch->type, val, val2);
  369. break;
  370. case IIO_CHAN_INFO_SAMP_FREQ:
  371. *val = hw->odr;
  372. ret = IIO_VAL_INT;
  373. break;
  374. case IIO_CHAN_INFO_OVERSAMPLING_RATIO: {
  375. u8 idx;
  376. const struct hts221_avg *avg;
  377. switch (ch->type) {
  378. case IIO_HUMIDITYRELATIVE:
  379. avg = &hts221_avg_list[HTS221_SENSOR_H];
  380. idx = hw->sensors[HTS221_SENSOR_H].cur_avg_idx;
  381. *val = avg->avg_avl[idx];
  382. ret = IIO_VAL_INT;
  383. break;
  384. case IIO_TEMP:
  385. avg = &hts221_avg_list[HTS221_SENSOR_T];
  386. idx = hw->sensors[HTS221_SENSOR_T].cur_avg_idx;
  387. *val = avg->avg_avl[idx];
  388. ret = IIO_VAL_INT;
  389. break;
  390. default:
  391. ret = -EINVAL;
  392. break;
  393. }
  394. break;
  395. }
  396. default:
  397. ret = -EINVAL;
  398. break;
  399. }
  400. iio_device_release_direct_mode(iio_dev);
  401. return ret;
  402. }
  403. static int hts221_write_raw(struct iio_dev *iio_dev,
  404. struct iio_chan_spec const *chan,
  405. int val, int val2, long mask)
  406. {
  407. struct hts221_hw *hw = iio_priv(iio_dev);
  408. int ret;
  409. ret = iio_device_claim_direct_mode(iio_dev);
  410. if (ret)
  411. return ret;
  412. switch (mask) {
  413. case IIO_CHAN_INFO_SAMP_FREQ:
  414. ret = hts221_update_odr(hw, val);
  415. break;
  416. case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
  417. switch (chan->type) {
  418. case IIO_HUMIDITYRELATIVE:
  419. ret = hts221_update_avg(hw, HTS221_SENSOR_H, val);
  420. break;
  421. case IIO_TEMP:
  422. ret = hts221_update_avg(hw, HTS221_SENSOR_T, val);
  423. break;
  424. default:
  425. ret = -EINVAL;
  426. break;
  427. }
  428. break;
  429. default:
  430. ret = -EINVAL;
  431. break;
  432. }
  433. iio_device_release_direct_mode(iio_dev);
  434. return ret;
  435. }
  436. static int hts221_validate_trigger(struct iio_dev *iio_dev,
  437. struct iio_trigger *trig)
  438. {
  439. struct hts221_hw *hw = iio_priv(iio_dev);
  440. return hw->trig == trig ? 0 : -EINVAL;
  441. }
  442. static IIO_DEVICE_ATTR(in_humidity_oversampling_ratio_available, S_IRUGO,
  443. hts221_sysfs_rh_oversampling_avail, NULL, 0);
  444. static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available, S_IRUGO,
  445. hts221_sysfs_temp_oversampling_avail, NULL, 0);
  446. static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(hts221_sysfs_sampling_freq);
  447. static struct attribute *hts221_attributes[] = {
  448. &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
  449. &iio_dev_attr_in_humidity_oversampling_ratio_available.dev_attr.attr,
  450. &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
  451. NULL,
  452. };
  453. static const struct attribute_group hts221_attribute_group = {
  454. .attrs = hts221_attributes,
  455. };
  456. static const struct iio_info hts221_info = {
  457. .attrs = &hts221_attribute_group,
  458. .read_raw = hts221_read_raw,
  459. .write_raw = hts221_write_raw,
  460. .validate_trigger = hts221_validate_trigger,
  461. };
  462. static const unsigned long hts221_scan_masks[] = {0x3, 0x0};
  463. int hts221_probe(struct device *dev, int irq, const char *name,
  464. struct regmap *regmap)
  465. {
  466. struct iio_dev *iio_dev;
  467. struct hts221_hw *hw;
  468. int err;
  469. u8 data;
  470. iio_dev = devm_iio_device_alloc(dev, sizeof(*hw));
  471. if (!iio_dev)
  472. return -ENOMEM;
  473. dev_set_drvdata(dev, (void *)iio_dev);
  474. hw = iio_priv(iio_dev);
  475. hw->name = name;
  476. hw->dev = dev;
  477. hw->irq = irq;
  478. hw->regmap = regmap;
  479. err = hts221_check_whoami(hw);
  480. if (err < 0)
  481. return err;
  482. iio_dev->modes = INDIO_DIRECT_MODE;
  483. iio_dev->dev.parent = hw->dev;
  484. iio_dev->available_scan_masks = hts221_scan_masks;
  485. iio_dev->channels = hts221_channels;
  486. iio_dev->num_channels = ARRAY_SIZE(hts221_channels);
  487. iio_dev->name = HTS221_DEV_NAME;
  488. iio_dev->info = &hts221_info;
  489. /* enable Block Data Update */
  490. err = regmap_update_bits(hw->regmap, HTS221_REG_CNTRL1_ADDR,
  491. HTS221_BDU_MASK,
  492. FIELD_PREP(HTS221_BDU_MASK, 1));
  493. if (err < 0)
  494. return err;
  495. err = hts221_update_odr(hw, hts221_odr_table[0].hz);
  496. if (err < 0)
  497. return err;
  498. /* configure humidity sensor */
  499. err = hts221_parse_rh_caldata(hw);
  500. if (err < 0) {
  501. dev_err(hw->dev, "failed to get rh calibration data\n");
  502. return err;
  503. }
  504. data = hts221_avg_list[HTS221_SENSOR_H].avg_avl[3];
  505. err = hts221_update_avg(hw, HTS221_SENSOR_H, data);
  506. if (err < 0) {
  507. dev_err(hw->dev, "failed to set rh oversampling ratio\n");
  508. return err;
  509. }
  510. /* configure temperature sensor */
  511. err = hts221_parse_temp_caldata(hw);
  512. if (err < 0) {
  513. dev_err(hw->dev,
  514. "failed to get temperature calibration data\n");
  515. return err;
  516. }
  517. data = hts221_avg_list[HTS221_SENSOR_T].avg_avl[3];
  518. err = hts221_update_avg(hw, HTS221_SENSOR_T, data);
  519. if (err < 0) {
  520. dev_err(hw->dev,
  521. "failed to set temperature oversampling ratio\n");
  522. return err;
  523. }
  524. if (hw->irq > 0) {
  525. err = hts221_allocate_buffers(hw);
  526. if (err < 0)
  527. return err;
  528. err = hts221_allocate_trigger(hw);
  529. if (err)
  530. return err;
  531. }
  532. return devm_iio_device_register(hw->dev, iio_dev);
  533. }
  534. EXPORT_SYMBOL(hts221_probe);
  535. static int __maybe_unused hts221_suspend(struct device *dev)
  536. {
  537. struct iio_dev *iio_dev = dev_get_drvdata(dev);
  538. struct hts221_hw *hw = iio_priv(iio_dev);
  539. return regmap_update_bits(hw->regmap, HTS221_REG_CNTRL1_ADDR,
  540. HTS221_ENABLE_MASK,
  541. FIELD_PREP(HTS221_ENABLE_MASK, false));
  542. }
  543. static int __maybe_unused hts221_resume(struct device *dev)
  544. {
  545. struct iio_dev *iio_dev = dev_get_drvdata(dev);
  546. struct hts221_hw *hw = iio_priv(iio_dev);
  547. int err = 0;
  548. if (hw->enabled)
  549. err = regmap_update_bits(hw->regmap, HTS221_REG_CNTRL1_ADDR,
  550. HTS221_ENABLE_MASK,
  551. FIELD_PREP(HTS221_ENABLE_MASK,
  552. true));
  553. return err;
  554. }
  555. const struct dev_pm_ops hts221_pm_ops = {
  556. SET_SYSTEM_SLEEP_PM_OPS(hts221_suspend, hts221_resume)
  557. };
  558. EXPORT_SYMBOL(hts221_pm_ops);
  559. MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi@st.com>");
  560. MODULE_DESCRIPTION("STMicroelectronics hts221 sensor driver");
  561. MODULE_LICENSE("GPL v2");