stm32-dac.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file is part of STM32 DAC driver
  4. *
  5. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  6. * Authors: Amelie Delaunay <amelie.delaunay@st.com>
  7. * Fabrice Gasnier <fabrice.gasnier@st.com>
  8. */
  9. #include <linux/bitfield.h>
  10. #include <linux/delay.h>
  11. #include <linux/iio/iio.h>
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include "stm32-dac-core.h"
  16. #define STM32_DAC_CHANNEL_1 1
  17. #define STM32_DAC_CHANNEL_2 2
  18. #define STM32_DAC_IS_CHAN_1(ch) ((ch) & STM32_DAC_CHANNEL_1)
  19. /**
  20. * struct stm32_dac - private data of DAC driver
  21. * @common: reference to DAC common data
  22. */
  23. struct stm32_dac {
  24. struct stm32_dac_common *common;
  25. };
  26. static int stm32_dac_is_enabled(struct iio_dev *indio_dev, int channel)
  27. {
  28. struct stm32_dac *dac = iio_priv(indio_dev);
  29. u32 en, val;
  30. int ret;
  31. ret = regmap_read(dac->common->regmap, STM32_DAC_CR, &val);
  32. if (ret < 0)
  33. return ret;
  34. if (STM32_DAC_IS_CHAN_1(channel))
  35. en = FIELD_GET(STM32_DAC_CR_EN1, val);
  36. else
  37. en = FIELD_GET(STM32_DAC_CR_EN2, val);
  38. return !!en;
  39. }
  40. static int stm32_dac_set_enable_state(struct iio_dev *indio_dev, int ch,
  41. bool enable)
  42. {
  43. struct stm32_dac *dac = iio_priv(indio_dev);
  44. u32 msk = STM32_DAC_IS_CHAN_1(ch) ? STM32_DAC_CR_EN1 : STM32_DAC_CR_EN2;
  45. u32 en = enable ? msk : 0;
  46. int ret;
  47. ret = regmap_update_bits(dac->common->regmap, STM32_DAC_CR, msk, en);
  48. if (ret < 0) {
  49. dev_err(&indio_dev->dev, "%s failed\n", en ?
  50. "Enable" : "Disable");
  51. return ret;
  52. }
  53. /*
  54. * When HFSEL is set, it is not allowed to write the DHRx register
  55. * during 8 clock cycles after the ENx bit is set. It is not allowed
  56. * to make software/hardware trigger during this period either.
  57. */
  58. if (en && dac->common->hfsel)
  59. udelay(1);
  60. return 0;
  61. }
  62. static int stm32_dac_get_value(struct stm32_dac *dac, int channel, int *val)
  63. {
  64. int ret;
  65. if (STM32_DAC_IS_CHAN_1(channel))
  66. ret = regmap_read(dac->common->regmap, STM32_DAC_DOR1, val);
  67. else
  68. ret = regmap_read(dac->common->regmap, STM32_DAC_DOR2, val);
  69. return ret ? ret : IIO_VAL_INT;
  70. }
  71. static int stm32_dac_set_value(struct stm32_dac *dac, int channel, int val)
  72. {
  73. int ret;
  74. if (STM32_DAC_IS_CHAN_1(channel))
  75. ret = regmap_write(dac->common->regmap, STM32_DAC_DHR12R1, val);
  76. else
  77. ret = regmap_write(dac->common->regmap, STM32_DAC_DHR12R2, val);
  78. return ret;
  79. }
  80. static int stm32_dac_read_raw(struct iio_dev *indio_dev,
  81. struct iio_chan_spec const *chan,
  82. int *val, int *val2, long mask)
  83. {
  84. struct stm32_dac *dac = iio_priv(indio_dev);
  85. switch (mask) {
  86. case IIO_CHAN_INFO_RAW:
  87. return stm32_dac_get_value(dac, chan->channel, val);
  88. case IIO_CHAN_INFO_SCALE:
  89. *val = dac->common->vref_mv;
  90. *val2 = chan->scan_type.realbits;
  91. return IIO_VAL_FRACTIONAL_LOG2;
  92. default:
  93. return -EINVAL;
  94. }
  95. }
  96. static int stm32_dac_write_raw(struct iio_dev *indio_dev,
  97. struct iio_chan_spec const *chan,
  98. int val, int val2, long mask)
  99. {
  100. struct stm32_dac *dac = iio_priv(indio_dev);
  101. switch (mask) {
  102. case IIO_CHAN_INFO_RAW:
  103. return stm32_dac_set_value(dac, chan->channel, val);
  104. default:
  105. return -EINVAL;
  106. }
  107. }
  108. static int stm32_dac_debugfs_reg_access(struct iio_dev *indio_dev,
  109. unsigned reg, unsigned writeval,
  110. unsigned *readval)
  111. {
  112. struct stm32_dac *dac = iio_priv(indio_dev);
  113. if (!readval)
  114. return regmap_write(dac->common->regmap, reg, writeval);
  115. else
  116. return regmap_read(dac->common->regmap, reg, readval);
  117. }
  118. static const struct iio_info stm32_dac_iio_info = {
  119. .read_raw = stm32_dac_read_raw,
  120. .write_raw = stm32_dac_write_raw,
  121. .debugfs_reg_access = stm32_dac_debugfs_reg_access,
  122. };
  123. static const char * const stm32_dac_powerdown_modes[] = {
  124. "three_state",
  125. };
  126. static int stm32_dac_get_powerdown_mode(struct iio_dev *indio_dev,
  127. const struct iio_chan_spec *chan)
  128. {
  129. return 0;
  130. }
  131. static int stm32_dac_set_powerdown_mode(struct iio_dev *indio_dev,
  132. const struct iio_chan_spec *chan,
  133. unsigned int type)
  134. {
  135. return 0;
  136. }
  137. static ssize_t stm32_dac_read_powerdown(struct iio_dev *indio_dev,
  138. uintptr_t private,
  139. const struct iio_chan_spec *chan,
  140. char *buf)
  141. {
  142. int ret = stm32_dac_is_enabled(indio_dev, chan->channel);
  143. if (ret < 0)
  144. return ret;
  145. return sprintf(buf, "%d\n", ret ? 0 : 1);
  146. }
  147. static ssize_t stm32_dac_write_powerdown(struct iio_dev *indio_dev,
  148. uintptr_t private,
  149. const struct iio_chan_spec *chan,
  150. const char *buf, size_t len)
  151. {
  152. bool powerdown;
  153. int ret;
  154. ret = strtobool(buf, &powerdown);
  155. if (ret)
  156. return ret;
  157. ret = stm32_dac_set_enable_state(indio_dev, chan->channel, !powerdown);
  158. if (ret)
  159. return ret;
  160. return len;
  161. }
  162. static const struct iio_enum stm32_dac_powerdown_mode_en = {
  163. .items = stm32_dac_powerdown_modes,
  164. .num_items = ARRAY_SIZE(stm32_dac_powerdown_modes),
  165. .get = stm32_dac_get_powerdown_mode,
  166. .set = stm32_dac_set_powerdown_mode,
  167. };
  168. static const struct iio_chan_spec_ext_info stm32_dac_ext_info[] = {
  169. {
  170. .name = "powerdown",
  171. .read = stm32_dac_read_powerdown,
  172. .write = stm32_dac_write_powerdown,
  173. .shared = IIO_SEPARATE,
  174. },
  175. IIO_ENUM("powerdown_mode", IIO_SEPARATE, &stm32_dac_powerdown_mode_en),
  176. IIO_ENUM_AVAILABLE("powerdown_mode", &stm32_dac_powerdown_mode_en),
  177. {},
  178. };
  179. #define STM32_DAC_CHANNEL(chan, name) { \
  180. .type = IIO_VOLTAGE, \
  181. .indexed = 1, \
  182. .output = 1, \
  183. .channel = chan, \
  184. .info_mask_separate = \
  185. BIT(IIO_CHAN_INFO_RAW) | \
  186. BIT(IIO_CHAN_INFO_SCALE), \
  187. /* scan_index is always 0 as num_channels is 1 */ \
  188. .scan_type = { \
  189. .sign = 'u', \
  190. .realbits = 12, \
  191. .storagebits = 16, \
  192. }, \
  193. .datasheet_name = name, \
  194. .ext_info = stm32_dac_ext_info \
  195. }
  196. static const struct iio_chan_spec stm32_dac_channels[] = {
  197. STM32_DAC_CHANNEL(STM32_DAC_CHANNEL_1, "out1"),
  198. STM32_DAC_CHANNEL(STM32_DAC_CHANNEL_2, "out2"),
  199. };
  200. static int stm32_dac_chan_of_init(struct iio_dev *indio_dev)
  201. {
  202. struct device_node *np = indio_dev->dev.of_node;
  203. unsigned int i;
  204. u32 channel;
  205. int ret;
  206. ret = of_property_read_u32(np, "reg", &channel);
  207. if (ret) {
  208. dev_err(&indio_dev->dev, "Failed to read reg property\n");
  209. return ret;
  210. }
  211. for (i = 0; i < ARRAY_SIZE(stm32_dac_channels); i++) {
  212. if (stm32_dac_channels[i].channel == channel)
  213. break;
  214. }
  215. if (i >= ARRAY_SIZE(stm32_dac_channels)) {
  216. dev_err(&indio_dev->dev, "Invalid reg property\n");
  217. return -EINVAL;
  218. }
  219. indio_dev->channels = &stm32_dac_channels[i];
  220. /*
  221. * Expose only one channel here, as they can be used independently,
  222. * with separate trigger. Then separate IIO devices are instantiated
  223. * to manage this.
  224. */
  225. indio_dev->num_channels = 1;
  226. return 0;
  227. };
  228. static int stm32_dac_probe(struct platform_device *pdev)
  229. {
  230. struct device_node *np = pdev->dev.of_node;
  231. struct iio_dev *indio_dev;
  232. struct stm32_dac *dac;
  233. int ret;
  234. if (!np)
  235. return -ENODEV;
  236. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*dac));
  237. if (!indio_dev)
  238. return -ENOMEM;
  239. platform_set_drvdata(pdev, indio_dev);
  240. dac = iio_priv(indio_dev);
  241. dac->common = dev_get_drvdata(pdev->dev.parent);
  242. indio_dev->name = dev_name(&pdev->dev);
  243. indio_dev->dev.parent = &pdev->dev;
  244. indio_dev->dev.of_node = pdev->dev.of_node;
  245. indio_dev->info = &stm32_dac_iio_info;
  246. indio_dev->modes = INDIO_DIRECT_MODE;
  247. ret = stm32_dac_chan_of_init(indio_dev);
  248. if (ret < 0)
  249. return ret;
  250. return devm_iio_device_register(&pdev->dev, indio_dev);
  251. }
  252. static const struct of_device_id stm32_dac_of_match[] = {
  253. { .compatible = "st,stm32-dac", },
  254. {},
  255. };
  256. MODULE_DEVICE_TABLE(of, stm32_dac_of_match);
  257. static struct platform_driver stm32_dac_driver = {
  258. .probe = stm32_dac_probe,
  259. .driver = {
  260. .name = "stm32-dac",
  261. .of_match_table = stm32_dac_of_match,
  262. },
  263. };
  264. module_platform_driver(stm32_dac_driver);
  265. MODULE_ALIAS("platform:stm32-dac");
  266. MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
  267. MODULE_DESCRIPTION("STMicroelectronics STM32 DAC driver");
  268. MODULE_LICENSE("GPL v2");