spear_adc.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. /*
  2. * ST SPEAr ADC driver
  3. *
  4. * Copyright 2012 Stefan Roese <sr@denx.de>
  5. *
  6. * Licensed under the GPL-2.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/platform_device.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/device.h>
  12. #include <linux/kernel.h>
  13. #include <linux/slab.h>
  14. #include <linux/io.h>
  15. #include <linux/clk.h>
  16. #include <linux/err.h>
  17. #include <linux/completion.h>
  18. #include <linux/of.h>
  19. #include <linux/of_address.h>
  20. #include <linux/iio/iio.h>
  21. #include <linux/iio/sysfs.h>
  22. /* SPEAR registers definitions */
  23. #define SPEAR600_ADC_SCAN_RATE_LO(x) ((x) & 0xFFFF)
  24. #define SPEAR600_ADC_SCAN_RATE_HI(x) (((x) >> 0x10) & 0xFFFF)
  25. #define SPEAR_ADC_CLK_LOW(x) (((x) & 0xf) << 0)
  26. #define SPEAR_ADC_CLK_HIGH(x) (((x) & 0xf) << 4)
  27. /* Bit definitions for SPEAR_ADC_STATUS */
  28. #define SPEAR_ADC_STATUS_START_CONVERSION BIT(0)
  29. #define SPEAR_ADC_STATUS_CHANNEL_NUM(x) ((x) << 1)
  30. #define SPEAR_ADC_STATUS_ADC_ENABLE BIT(4)
  31. #define SPEAR_ADC_STATUS_AVG_SAMPLE(x) ((x) << 5)
  32. #define SPEAR_ADC_STATUS_VREF_INTERNAL BIT(9)
  33. #define SPEAR_ADC_DATA_MASK 0x03ff
  34. #define SPEAR_ADC_DATA_BITS 10
  35. #define SPEAR_ADC_MOD_NAME "spear-adc"
  36. #define SPEAR_ADC_CHANNEL_NUM 8
  37. #define SPEAR_ADC_CLK_MIN 2500000
  38. #define SPEAR_ADC_CLK_MAX 20000000
  39. struct adc_regs_spear3xx {
  40. u32 status;
  41. u32 average;
  42. u32 scan_rate;
  43. u32 clk; /* Not avail for 1340 & 1310 */
  44. u32 ch_ctrl[SPEAR_ADC_CHANNEL_NUM];
  45. u32 ch_data[SPEAR_ADC_CHANNEL_NUM];
  46. };
  47. struct chan_data {
  48. u32 lsb;
  49. u32 msb;
  50. };
  51. struct adc_regs_spear6xx {
  52. u32 status;
  53. u32 pad[2];
  54. u32 clk;
  55. u32 ch_ctrl[SPEAR_ADC_CHANNEL_NUM];
  56. struct chan_data ch_data[SPEAR_ADC_CHANNEL_NUM];
  57. u32 scan_rate_lo;
  58. u32 scan_rate_hi;
  59. struct chan_data average;
  60. };
  61. struct spear_adc_state {
  62. struct device_node *np;
  63. struct adc_regs_spear3xx __iomem *adc_base_spear3xx;
  64. struct adc_regs_spear6xx __iomem *adc_base_spear6xx;
  65. struct clk *clk;
  66. struct completion completion;
  67. u32 current_clk;
  68. u32 sampling_freq;
  69. u32 avg_samples;
  70. u32 vref_external;
  71. u32 value;
  72. };
  73. /*
  74. * Functions to access some SPEAr ADC register. Abstracted into
  75. * static inline functions, because of different register offsets
  76. * on different SoC variants (SPEAr300 vs SPEAr600 etc).
  77. */
  78. static void spear_adc_set_status(struct spear_adc_state *st, u32 val)
  79. {
  80. __raw_writel(val, &st->adc_base_spear6xx->status);
  81. }
  82. static void spear_adc_set_clk(struct spear_adc_state *st, u32 val)
  83. {
  84. u32 clk_high, clk_low, count;
  85. u32 apb_clk = clk_get_rate(st->clk);
  86. count = DIV_ROUND_UP(apb_clk, val);
  87. clk_low = count / 2;
  88. clk_high = count - clk_low;
  89. st->current_clk = apb_clk / count;
  90. __raw_writel(SPEAR_ADC_CLK_LOW(clk_low) | SPEAR_ADC_CLK_HIGH(clk_high),
  91. &st->adc_base_spear6xx->clk);
  92. }
  93. static void spear_adc_set_ctrl(struct spear_adc_state *st, int n,
  94. u32 val)
  95. {
  96. __raw_writel(val, &st->adc_base_spear6xx->ch_ctrl[n]);
  97. }
  98. static u32 spear_adc_get_average(struct spear_adc_state *st)
  99. {
  100. if (of_device_is_compatible(st->np, "st,spear600-adc")) {
  101. return __raw_readl(&st->adc_base_spear6xx->average.msb) &
  102. SPEAR_ADC_DATA_MASK;
  103. } else {
  104. return __raw_readl(&st->adc_base_spear3xx->average) &
  105. SPEAR_ADC_DATA_MASK;
  106. }
  107. }
  108. static void spear_adc_set_scanrate(struct spear_adc_state *st, u32 rate)
  109. {
  110. if (of_device_is_compatible(st->np, "st,spear600-adc")) {
  111. __raw_writel(SPEAR600_ADC_SCAN_RATE_LO(rate),
  112. &st->adc_base_spear6xx->scan_rate_lo);
  113. __raw_writel(SPEAR600_ADC_SCAN_RATE_HI(rate),
  114. &st->adc_base_spear6xx->scan_rate_hi);
  115. } else {
  116. __raw_writel(rate, &st->adc_base_spear3xx->scan_rate);
  117. }
  118. }
  119. static int spear_adc_read_raw(struct iio_dev *indio_dev,
  120. struct iio_chan_spec const *chan,
  121. int *val,
  122. int *val2,
  123. long mask)
  124. {
  125. struct spear_adc_state *st = iio_priv(indio_dev);
  126. u32 status;
  127. switch (mask) {
  128. case IIO_CHAN_INFO_RAW:
  129. mutex_lock(&indio_dev->mlock);
  130. status = SPEAR_ADC_STATUS_CHANNEL_NUM(chan->channel) |
  131. SPEAR_ADC_STATUS_AVG_SAMPLE(st->avg_samples) |
  132. SPEAR_ADC_STATUS_START_CONVERSION |
  133. SPEAR_ADC_STATUS_ADC_ENABLE;
  134. if (st->vref_external == 0)
  135. status |= SPEAR_ADC_STATUS_VREF_INTERNAL;
  136. spear_adc_set_status(st, status);
  137. wait_for_completion(&st->completion); /* set by ISR */
  138. *val = st->value;
  139. mutex_unlock(&indio_dev->mlock);
  140. return IIO_VAL_INT;
  141. case IIO_CHAN_INFO_SCALE:
  142. *val = st->vref_external;
  143. *val2 = SPEAR_ADC_DATA_BITS;
  144. return IIO_VAL_FRACTIONAL_LOG2;
  145. case IIO_CHAN_INFO_SAMP_FREQ:
  146. *val = st->current_clk;
  147. return IIO_VAL_INT;
  148. }
  149. return -EINVAL;
  150. }
  151. static int spear_adc_write_raw(struct iio_dev *indio_dev,
  152. struct iio_chan_spec const *chan,
  153. int val,
  154. int val2,
  155. long mask)
  156. {
  157. struct spear_adc_state *st = iio_priv(indio_dev);
  158. int ret = 0;
  159. if (mask != IIO_CHAN_INFO_SAMP_FREQ)
  160. return -EINVAL;
  161. mutex_lock(&indio_dev->mlock);
  162. if ((val < SPEAR_ADC_CLK_MIN) ||
  163. (val > SPEAR_ADC_CLK_MAX) ||
  164. (val2 != 0)) {
  165. ret = -EINVAL;
  166. goto out;
  167. }
  168. spear_adc_set_clk(st, val);
  169. out:
  170. mutex_unlock(&indio_dev->mlock);
  171. return ret;
  172. }
  173. #define SPEAR_ADC_CHAN(idx) { \
  174. .type = IIO_VOLTAGE, \
  175. .indexed = 1, \
  176. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  177. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
  178. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
  179. .channel = idx, \
  180. }
  181. static const struct iio_chan_spec spear_adc_iio_channels[] = {
  182. SPEAR_ADC_CHAN(0),
  183. SPEAR_ADC_CHAN(1),
  184. SPEAR_ADC_CHAN(2),
  185. SPEAR_ADC_CHAN(3),
  186. SPEAR_ADC_CHAN(4),
  187. SPEAR_ADC_CHAN(5),
  188. SPEAR_ADC_CHAN(6),
  189. SPEAR_ADC_CHAN(7),
  190. };
  191. static irqreturn_t spear_adc_isr(int irq, void *dev_id)
  192. {
  193. struct spear_adc_state *st = dev_id;
  194. /* Read value to clear IRQ */
  195. st->value = spear_adc_get_average(st);
  196. complete(&st->completion);
  197. return IRQ_HANDLED;
  198. }
  199. static int spear_adc_configure(struct spear_adc_state *st)
  200. {
  201. int i;
  202. /* Reset ADC core */
  203. spear_adc_set_status(st, 0);
  204. __raw_writel(0, &st->adc_base_spear6xx->clk);
  205. for (i = 0; i < 8; i++)
  206. spear_adc_set_ctrl(st, i, 0);
  207. spear_adc_set_scanrate(st, 0);
  208. spear_adc_set_clk(st, st->sampling_freq);
  209. return 0;
  210. }
  211. static const struct iio_info spear_adc_info = {
  212. .read_raw = &spear_adc_read_raw,
  213. .write_raw = &spear_adc_write_raw,
  214. };
  215. static int spear_adc_probe(struct platform_device *pdev)
  216. {
  217. struct device_node *np = pdev->dev.of_node;
  218. struct device *dev = &pdev->dev;
  219. struct spear_adc_state *st;
  220. struct resource *res;
  221. struct iio_dev *indio_dev = NULL;
  222. int ret = -ENODEV;
  223. int irq;
  224. indio_dev = devm_iio_device_alloc(dev, sizeof(struct spear_adc_state));
  225. if (!indio_dev) {
  226. dev_err(dev, "failed allocating iio device\n");
  227. return -ENOMEM;
  228. }
  229. st = iio_priv(indio_dev);
  230. st->np = np;
  231. /*
  232. * SPEAr600 has a different register layout than other SPEAr SoC's
  233. * (e.g. SPEAr3xx). Let's provide two register base addresses
  234. * to support multi-arch kernels.
  235. */
  236. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  237. st->adc_base_spear6xx = devm_ioremap_resource(&pdev->dev, res);
  238. if (IS_ERR(st->adc_base_spear6xx))
  239. return PTR_ERR(st->adc_base_spear6xx);
  240. st->adc_base_spear3xx =
  241. (struct adc_regs_spear3xx __iomem *)st->adc_base_spear6xx;
  242. st->clk = devm_clk_get(dev, NULL);
  243. if (IS_ERR(st->clk)) {
  244. dev_err(dev, "failed getting clock\n");
  245. return PTR_ERR(st->clk);
  246. }
  247. ret = clk_prepare_enable(st->clk);
  248. if (ret) {
  249. dev_err(dev, "failed enabling clock\n");
  250. return ret;
  251. }
  252. irq = platform_get_irq(pdev, 0);
  253. if (irq <= 0) {
  254. dev_err(dev, "failed getting interrupt resource\n");
  255. ret = -EINVAL;
  256. goto errout2;
  257. }
  258. ret = devm_request_irq(dev, irq, spear_adc_isr, 0, SPEAR_ADC_MOD_NAME,
  259. st);
  260. if (ret < 0) {
  261. dev_err(dev, "failed requesting interrupt\n");
  262. goto errout2;
  263. }
  264. if (of_property_read_u32(np, "sampling-frequency",
  265. &st->sampling_freq)) {
  266. dev_err(dev, "sampling-frequency missing in DT\n");
  267. ret = -EINVAL;
  268. goto errout2;
  269. }
  270. /*
  271. * Optional avg_samples defaults to 0, resulting in single data
  272. * conversion
  273. */
  274. of_property_read_u32(np, "average-samples", &st->avg_samples);
  275. /*
  276. * Optional vref_external defaults to 0, resulting in internal vref
  277. * selection
  278. */
  279. of_property_read_u32(np, "vref-external", &st->vref_external);
  280. spear_adc_configure(st);
  281. platform_set_drvdata(pdev, indio_dev);
  282. init_completion(&st->completion);
  283. indio_dev->name = SPEAR_ADC_MOD_NAME;
  284. indio_dev->dev.parent = dev;
  285. indio_dev->info = &spear_adc_info;
  286. indio_dev->modes = INDIO_DIRECT_MODE;
  287. indio_dev->channels = spear_adc_iio_channels;
  288. indio_dev->num_channels = ARRAY_SIZE(spear_adc_iio_channels);
  289. ret = iio_device_register(indio_dev);
  290. if (ret)
  291. goto errout2;
  292. dev_info(dev, "SPEAR ADC driver loaded, IRQ %d\n", irq);
  293. return 0;
  294. errout2:
  295. clk_disable_unprepare(st->clk);
  296. return ret;
  297. }
  298. static int spear_adc_remove(struct platform_device *pdev)
  299. {
  300. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  301. struct spear_adc_state *st = iio_priv(indio_dev);
  302. iio_device_unregister(indio_dev);
  303. clk_disable_unprepare(st->clk);
  304. return 0;
  305. }
  306. #ifdef CONFIG_OF
  307. static const struct of_device_id spear_adc_dt_ids[] = {
  308. { .compatible = "st,spear600-adc", },
  309. { /* sentinel */ }
  310. };
  311. MODULE_DEVICE_TABLE(of, spear_adc_dt_ids);
  312. #endif
  313. static struct platform_driver spear_adc_driver = {
  314. .probe = spear_adc_probe,
  315. .remove = spear_adc_remove,
  316. .driver = {
  317. .name = SPEAR_ADC_MOD_NAME,
  318. .of_match_table = of_match_ptr(spear_adc_dt_ids),
  319. },
  320. };
  321. module_platform_driver(spear_adc_driver);
  322. MODULE_AUTHOR("Stefan Roese <sr@denx.de>");
  323. MODULE_DESCRIPTION("SPEAr ADC driver");
  324. MODULE_LICENSE("GPL");