gk104.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. /*
  2. * Copyright 2013 Red Hat Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Ben Skeggs
  23. */
  24. #define gk104_clk(p) container_of((p), struct gk104_clk, base)
  25. #include "priv.h"
  26. #include "pll.h"
  27. #include <subdev/timer.h>
  28. #include <subdev/bios.h>
  29. #include <subdev/bios/pll.h>
  30. struct gk104_clk_info {
  31. u32 freq;
  32. u32 ssel;
  33. u32 mdiv;
  34. u32 dsrc;
  35. u32 ddiv;
  36. u32 coef;
  37. };
  38. struct gk104_clk {
  39. struct nvkm_clk base;
  40. struct gk104_clk_info eng[16];
  41. };
  42. static u32 read_div(struct gk104_clk *, int, u32, u32);
  43. static u32 read_pll(struct gk104_clk *, u32);
  44. static u32
  45. read_vco(struct gk104_clk *clk, u32 dsrc)
  46. {
  47. struct nvkm_device *device = clk->base.subdev.device;
  48. u32 ssrc = nvkm_rd32(device, dsrc);
  49. if (!(ssrc & 0x00000100))
  50. return read_pll(clk, 0x00e800);
  51. return read_pll(clk, 0x00e820);
  52. }
  53. static u32
  54. read_pll(struct gk104_clk *clk, u32 pll)
  55. {
  56. struct nvkm_device *device = clk->base.subdev.device;
  57. u32 ctrl = nvkm_rd32(device, pll + 0x00);
  58. u32 coef = nvkm_rd32(device, pll + 0x04);
  59. u32 P = (coef & 0x003f0000) >> 16;
  60. u32 N = (coef & 0x0000ff00) >> 8;
  61. u32 M = (coef & 0x000000ff) >> 0;
  62. u32 sclk;
  63. u16 fN = 0xf000;
  64. if (!(ctrl & 0x00000001))
  65. return 0;
  66. switch (pll) {
  67. case 0x00e800:
  68. case 0x00e820:
  69. sclk = device->crystal;
  70. P = 1;
  71. break;
  72. case 0x132000:
  73. sclk = read_pll(clk, 0x132020);
  74. P = (coef & 0x10000000) ? 2 : 1;
  75. break;
  76. case 0x132020:
  77. sclk = read_div(clk, 0, 0x137320, 0x137330);
  78. fN = nvkm_rd32(device, pll + 0x10) >> 16;
  79. break;
  80. case 0x137000:
  81. case 0x137020:
  82. case 0x137040:
  83. case 0x1370e0:
  84. sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
  85. break;
  86. default:
  87. return 0;
  88. }
  89. if (P == 0)
  90. P = 1;
  91. sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
  92. return sclk / (M * P);
  93. }
  94. static u32
  95. read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl)
  96. {
  97. struct nvkm_device *device = clk->base.subdev.device;
  98. u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
  99. u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
  100. switch (ssrc & 0x00000003) {
  101. case 0:
  102. if ((ssrc & 0x00030000) != 0x00030000)
  103. return device->crystal;
  104. return 108000;
  105. case 2:
  106. return 100000;
  107. case 3:
  108. if (sctl & 0x80000000) {
  109. u32 sclk = read_vco(clk, dsrc + (doff * 4));
  110. u32 sdiv = (sctl & 0x0000003f) + 2;
  111. return (sclk * 2) / sdiv;
  112. }
  113. return read_vco(clk, dsrc + (doff * 4));
  114. default:
  115. return 0;
  116. }
  117. }
  118. static u32
  119. read_mem(struct gk104_clk *clk)
  120. {
  121. struct nvkm_device *device = clk->base.subdev.device;
  122. switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) {
  123. case 1: return read_pll(clk, 0x132020);
  124. case 2: return read_pll(clk, 0x132000);
  125. default:
  126. return 0;
  127. }
  128. }
  129. static u32
  130. read_clk(struct gk104_clk *clk, int idx)
  131. {
  132. struct nvkm_device *device = clk->base.subdev.device;
  133. u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
  134. u32 sclk, sdiv;
  135. if (idx < 7) {
  136. u32 ssel = nvkm_rd32(device, 0x137100);
  137. if (ssel & (1 << idx)) {
  138. sclk = read_pll(clk, 0x137000 + (idx * 0x20));
  139. sdiv = 1;
  140. } else {
  141. sclk = read_div(clk, idx, 0x137160, 0x1371d0);
  142. sdiv = 0;
  143. }
  144. } else {
  145. u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04));
  146. if ((ssrc & 0x00000003) == 0x00000003) {
  147. sclk = read_div(clk, idx, 0x137160, 0x1371d0);
  148. if (ssrc & 0x00000100) {
  149. if (ssrc & 0x40000000)
  150. sclk = read_pll(clk, 0x1370e0);
  151. sdiv = 1;
  152. } else {
  153. sdiv = 0;
  154. }
  155. } else {
  156. sclk = read_div(clk, idx, 0x137160, 0x1371d0);
  157. sdiv = 0;
  158. }
  159. }
  160. if (sctl & 0x80000000) {
  161. if (sdiv)
  162. sdiv = ((sctl & 0x00003f00) >> 8) + 2;
  163. else
  164. sdiv = ((sctl & 0x0000003f) >> 0) + 2;
  165. return (sclk * 2) / sdiv;
  166. }
  167. return sclk;
  168. }
  169. static int
  170. gk104_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
  171. {
  172. struct gk104_clk *clk = gk104_clk(base);
  173. struct nvkm_subdev *subdev = &clk->base.subdev;
  174. struct nvkm_device *device = subdev->device;
  175. switch (src) {
  176. case nv_clk_src_crystal:
  177. return device->crystal;
  178. case nv_clk_src_href:
  179. return 100000;
  180. case nv_clk_src_mem:
  181. return read_mem(clk);
  182. case nv_clk_src_gpc:
  183. return read_clk(clk, 0x00);
  184. case nv_clk_src_rop:
  185. return read_clk(clk, 0x01);
  186. case nv_clk_src_hubk07:
  187. return read_clk(clk, 0x02);
  188. case nv_clk_src_hubk06:
  189. return read_clk(clk, 0x07);
  190. case nv_clk_src_hubk01:
  191. return read_clk(clk, 0x08);
  192. case nv_clk_src_pmu:
  193. return read_clk(clk, 0x0c);
  194. case nv_clk_src_vdec:
  195. return read_clk(clk, 0x0e);
  196. default:
  197. nvkm_error(subdev, "invalid clock source %d\n", src);
  198. return -EINVAL;
  199. }
  200. }
  201. static u32
  202. calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
  203. {
  204. u32 div = min((ref * 2) / freq, (u32)65);
  205. if (div < 2)
  206. div = 2;
  207. *ddiv = div - 2;
  208. return (ref * 2) / div;
  209. }
  210. static u32
  211. calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
  212. {
  213. u32 sclk;
  214. /* use one of the fixed frequencies if possible */
  215. *ddiv = 0x00000000;
  216. switch (freq) {
  217. case 27000:
  218. case 108000:
  219. *dsrc = 0x00000000;
  220. if (freq == 108000)
  221. *dsrc |= 0x00030000;
  222. return freq;
  223. case 100000:
  224. *dsrc = 0x00000002;
  225. return freq;
  226. default:
  227. *dsrc = 0x00000003;
  228. break;
  229. }
  230. /* otherwise, calculate the closest divider */
  231. sclk = read_vco(clk, 0x137160 + (idx * 4));
  232. if (idx < 7)
  233. sclk = calc_div(clk, idx, sclk, freq, ddiv);
  234. return sclk;
  235. }
  236. static u32
  237. calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef)
  238. {
  239. struct nvkm_subdev *subdev = &clk->base.subdev;
  240. struct nvkm_bios *bios = subdev->device->bios;
  241. struct nvbios_pll limits;
  242. int N, M, P, ret;
  243. ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
  244. if (ret)
  245. return 0;
  246. limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
  247. if (!limits.refclk)
  248. return 0;
  249. ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
  250. if (ret <= 0)
  251. return 0;
  252. *coef = (P << 16) | (N << 8) | M;
  253. return ret;
  254. }
  255. static int
  256. calc_clk(struct gk104_clk *clk,
  257. struct nvkm_cstate *cstate, int idx, int dom)
  258. {
  259. struct gk104_clk_info *info = &clk->eng[idx];
  260. u32 freq = cstate->domain[dom];
  261. u32 src0, div0, div1D, div1P = 0;
  262. u32 clk0, clk1 = 0;
  263. /* invalid clock domain */
  264. if (!freq)
  265. return 0;
  266. /* first possible path, using only dividers */
  267. clk0 = calc_src(clk, idx, freq, &src0, &div0);
  268. clk0 = calc_div(clk, idx, clk0, freq, &div1D);
  269. /* see if we can get any closer using PLLs */
  270. if (clk0 != freq && (0x0000ff87 & (1 << idx))) {
  271. if (idx <= 7)
  272. clk1 = calc_pll(clk, idx, freq, &info->coef);
  273. else
  274. clk1 = cstate->domain[nv_clk_src_hubk06];
  275. clk1 = calc_div(clk, idx, clk1, freq, &div1P);
  276. }
  277. /* select the method which gets closest to target freq */
  278. if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
  279. info->dsrc = src0;
  280. if (div0) {
  281. info->ddiv |= 0x80000000;
  282. info->ddiv |= div0;
  283. }
  284. if (div1D) {
  285. info->mdiv |= 0x80000000;
  286. info->mdiv |= div1D;
  287. }
  288. info->ssel = 0;
  289. info->freq = clk0;
  290. } else {
  291. if (div1P) {
  292. info->mdiv |= 0x80000000;
  293. info->mdiv |= div1P << 8;
  294. }
  295. info->ssel = (1 << idx);
  296. info->dsrc = 0x40000100;
  297. info->freq = clk1;
  298. }
  299. return 0;
  300. }
  301. static int
  302. gk104_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
  303. {
  304. struct gk104_clk *clk = gk104_clk(base);
  305. int ret;
  306. if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
  307. (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
  308. (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
  309. (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
  310. (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
  311. (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
  312. (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
  313. return ret;
  314. return 0;
  315. }
  316. static void
  317. gk104_clk_prog_0(struct gk104_clk *clk, int idx)
  318. {
  319. struct gk104_clk_info *info = &clk->eng[idx];
  320. struct nvkm_device *device = clk->base.subdev.device;
  321. if (!info->ssel) {
  322. nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv);
  323. nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
  324. }
  325. }
  326. static void
  327. gk104_clk_prog_1_0(struct gk104_clk *clk, int idx)
  328. {
  329. struct nvkm_device *device = clk->base.subdev.device;
  330. nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
  331. nvkm_msec(device, 2000,
  332. if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
  333. break;
  334. );
  335. }
  336. static void
  337. gk104_clk_prog_1_1(struct gk104_clk *clk, int idx)
  338. {
  339. struct nvkm_device *device = clk->base.subdev.device;
  340. nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000);
  341. }
  342. static void
  343. gk104_clk_prog_2(struct gk104_clk *clk, int idx)
  344. {
  345. struct gk104_clk_info *info = &clk->eng[idx];
  346. struct nvkm_device *device = clk->base.subdev.device;
  347. const u32 addr = 0x137000 + (idx * 0x20);
  348. nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
  349. nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
  350. if (info->coef) {
  351. nvkm_wr32(device, addr + 0x04, info->coef);
  352. nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
  353. /* Test PLL lock */
  354. nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
  355. nvkm_msec(device, 2000,
  356. if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
  357. break;
  358. );
  359. nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
  360. /* Enable sync mode */
  361. nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
  362. }
  363. }
  364. static void
  365. gk104_clk_prog_3(struct gk104_clk *clk, int idx)
  366. {
  367. struct gk104_clk_info *info = &clk->eng[idx];
  368. struct nvkm_device *device = clk->base.subdev.device;
  369. if (info->ssel)
  370. nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv);
  371. else
  372. nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv);
  373. }
  374. static void
  375. gk104_clk_prog_4_0(struct gk104_clk *clk, int idx)
  376. {
  377. struct gk104_clk_info *info = &clk->eng[idx];
  378. struct nvkm_device *device = clk->base.subdev.device;
  379. if (info->ssel) {
  380. nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
  381. nvkm_msec(device, 2000,
  382. u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
  383. if (tmp == info->ssel)
  384. break;
  385. );
  386. }
  387. }
  388. static void
  389. gk104_clk_prog_4_1(struct gk104_clk *clk, int idx)
  390. {
  391. struct gk104_clk_info *info = &clk->eng[idx];
  392. struct nvkm_device *device = clk->base.subdev.device;
  393. if (info->ssel) {
  394. nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000);
  395. nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100);
  396. }
  397. }
  398. static int
  399. gk104_clk_prog(struct nvkm_clk *base)
  400. {
  401. struct gk104_clk *clk = gk104_clk(base);
  402. struct {
  403. u32 mask;
  404. void (*exec)(struct gk104_clk *, int);
  405. } stage[] = {
  406. { 0x007f, gk104_clk_prog_0 }, /* div programming */
  407. { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
  408. { 0xff80, gk104_clk_prog_1_1 },
  409. { 0x00ff, gk104_clk_prog_2 }, /* (maybe) program pll */
  410. { 0xff80, gk104_clk_prog_3 }, /* final divider */
  411. { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */
  412. { 0xff80, gk104_clk_prog_4_1 },
  413. };
  414. int i, j;
  415. for (i = 0; i < ARRAY_SIZE(stage); i++) {
  416. for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
  417. if (!(stage[i].mask & (1 << j)))
  418. continue;
  419. if (!clk->eng[j].freq)
  420. continue;
  421. stage[i].exec(clk, j);
  422. }
  423. }
  424. return 0;
  425. }
  426. static void
  427. gk104_clk_tidy(struct nvkm_clk *base)
  428. {
  429. struct gk104_clk *clk = gk104_clk(base);
  430. memset(clk->eng, 0x00, sizeof(clk->eng));
  431. }
  432. static const struct nvkm_clk_func
  433. gk104_clk = {
  434. .read = gk104_clk_read,
  435. .calc = gk104_clk_calc,
  436. .prog = gk104_clk_prog,
  437. .tidy = gk104_clk_tidy,
  438. .domains = {
  439. { nv_clk_src_crystal, 0xff },
  440. { nv_clk_src_href , 0xff },
  441. { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE | NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
  442. { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
  443. { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE },
  444. { nv_clk_src_mem , 0x03, 0, "memory", 500 },
  445. { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
  446. { nv_clk_src_hubk01 , 0x05 },
  447. { nv_clk_src_vdec , 0x06 },
  448. { nv_clk_src_pmu , 0x07 },
  449. { nv_clk_src_max }
  450. }
  451. };
  452. int
  453. gk104_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
  454. {
  455. struct gk104_clk *clk;
  456. if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
  457. return -ENOMEM;
  458. *pclk = &clk->base;
  459. return nvkm_clk_ctor(&gk104_clk, device, index, true, &clk->base);
  460. }