intel_device_info.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. /*
  2. * Copyright © 2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drm_print.h>
  25. #include "intel_device_info.h"
  26. #include "i915_drv.h"
  27. #define PLATFORM_NAME(x) [INTEL_##x] = #x
  28. static const char * const platform_names[] = {
  29. PLATFORM_NAME(I830),
  30. PLATFORM_NAME(I845G),
  31. PLATFORM_NAME(I85X),
  32. PLATFORM_NAME(I865G),
  33. PLATFORM_NAME(I915G),
  34. PLATFORM_NAME(I915GM),
  35. PLATFORM_NAME(I945G),
  36. PLATFORM_NAME(I945GM),
  37. PLATFORM_NAME(G33),
  38. PLATFORM_NAME(PINEVIEW),
  39. PLATFORM_NAME(I965G),
  40. PLATFORM_NAME(I965GM),
  41. PLATFORM_NAME(G45),
  42. PLATFORM_NAME(GM45),
  43. PLATFORM_NAME(IRONLAKE),
  44. PLATFORM_NAME(SANDYBRIDGE),
  45. PLATFORM_NAME(IVYBRIDGE),
  46. PLATFORM_NAME(VALLEYVIEW),
  47. PLATFORM_NAME(HASWELL),
  48. PLATFORM_NAME(BROADWELL),
  49. PLATFORM_NAME(CHERRYVIEW),
  50. PLATFORM_NAME(SKYLAKE),
  51. PLATFORM_NAME(BROXTON),
  52. PLATFORM_NAME(KABYLAKE),
  53. PLATFORM_NAME(GEMINILAKE),
  54. PLATFORM_NAME(COFFEELAKE),
  55. PLATFORM_NAME(CANNONLAKE),
  56. PLATFORM_NAME(ICELAKE),
  57. };
  58. #undef PLATFORM_NAME
  59. const char *intel_platform_name(enum intel_platform platform)
  60. {
  61. BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
  62. if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
  63. platform_names[platform] == NULL))
  64. return "<unknown>";
  65. return platform_names[platform];
  66. }
  67. void intel_device_info_dump_flags(const struct intel_device_info *info,
  68. struct drm_printer *p)
  69. {
  70. #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
  71. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  72. #undef PRINT_FLAG
  73. }
  74. static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
  75. {
  76. int s;
  77. drm_printf(p, "slice total: %u, mask=%04x\n",
  78. hweight8(sseu->slice_mask), sseu->slice_mask);
  79. drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
  80. for (s = 0; s < sseu->max_slices; s++) {
  81. drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
  82. s, hweight8(sseu->subslice_mask[s]),
  83. sseu->subslice_mask[s]);
  84. }
  85. drm_printf(p, "EU total: %u\n", sseu->eu_total);
  86. drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
  87. drm_printf(p, "has slice power gating: %s\n",
  88. yesno(sseu->has_slice_pg));
  89. drm_printf(p, "has subslice power gating: %s\n",
  90. yesno(sseu->has_subslice_pg));
  91. drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
  92. }
  93. void intel_device_info_dump_runtime(const struct intel_device_info *info,
  94. struct drm_printer *p)
  95. {
  96. sseu_dump(&info->sseu, p);
  97. drm_printf(p, "CS timestamp frequency: %u kHz\n",
  98. info->cs_timestamp_frequency_khz);
  99. }
  100. void intel_device_info_dump(const struct intel_device_info *info,
  101. struct drm_printer *p)
  102. {
  103. struct drm_i915_private *dev_priv =
  104. container_of(info, struct drm_i915_private, info);
  105. drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
  106. INTEL_DEVID(dev_priv),
  107. INTEL_REVID(dev_priv),
  108. intel_platform_name(info->platform),
  109. info->gen);
  110. intel_device_info_dump_flags(info, p);
  111. }
  112. void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
  113. struct drm_printer *p)
  114. {
  115. int s, ss;
  116. if (sseu->max_slices == 0) {
  117. drm_printf(p, "Unavailable\n");
  118. return;
  119. }
  120. for (s = 0; s < sseu->max_slices; s++) {
  121. drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
  122. s, hweight8(sseu->subslice_mask[s]),
  123. sseu->subslice_mask[s]);
  124. for (ss = 0; ss < sseu->max_subslices; ss++) {
  125. u16 enabled_eus = sseu_get_eus(sseu, s, ss);
  126. drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
  127. ss, hweight16(enabled_eus), enabled_eus);
  128. }
  129. }
  130. }
  131. static u16 compute_eu_total(const struct sseu_dev_info *sseu)
  132. {
  133. u16 i, total = 0;
  134. for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
  135. total += hweight8(sseu->eu_mask[i]);
  136. return total;
  137. }
  138. static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
  139. {
  140. struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
  141. u8 s_en;
  142. u32 ss_en, ss_en_mask;
  143. u8 eu_en;
  144. int s;
  145. sseu->max_slices = 1;
  146. sseu->max_subslices = 8;
  147. sseu->max_eus_per_subslice = 8;
  148. s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
  149. ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
  150. ss_en_mask = BIT(sseu->max_subslices) - 1;
  151. eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
  152. for (s = 0; s < sseu->max_slices; s++) {
  153. if (s_en & BIT(s)) {
  154. int ss_idx = sseu->max_subslices * s;
  155. int ss;
  156. sseu->slice_mask |= BIT(s);
  157. sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
  158. for (ss = 0; ss < sseu->max_subslices; ss++) {
  159. if (sseu->subslice_mask[s] & BIT(ss))
  160. sseu_set_eus(sseu, s, ss, eu_en);
  161. }
  162. }
  163. }
  164. sseu->eu_per_subslice = hweight8(eu_en);
  165. sseu->eu_total = compute_eu_total(sseu);
  166. /* ICL has no power gating restrictions. */
  167. sseu->has_slice_pg = 1;
  168. sseu->has_subslice_pg = 1;
  169. sseu->has_eu_pg = 1;
  170. }
  171. static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
  172. {
  173. struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
  174. const u32 fuse2 = I915_READ(GEN8_FUSE2);
  175. int s, ss;
  176. const int eu_mask = 0xff;
  177. u32 subslice_mask, eu_en;
  178. sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
  179. GEN10_F2_S_ENA_SHIFT;
  180. sseu->max_slices = 6;
  181. sseu->max_subslices = 4;
  182. sseu->max_eus_per_subslice = 8;
  183. subslice_mask = (1 << 4) - 1;
  184. subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
  185. GEN10_F2_SS_DIS_SHIFT);
  186. /*
  187. * Slice0 can have up to 3 subslices, but there are only 2 in
  188. * slice1/2.
  189. */
  190. sseu->subslice_mask[0] = subslice_mask;
  191. for (s = 1; s < sseu->max_slices; s++)
  192. sseu->subslice_mask[s] = subslice_mask & 0x3;
  193. /* Slice0 */
  194. eu_en = ~I915_READ(GEN8_EU_DISABLE0);
  195. for (ss = 0; ss < sseu->max_subslices; ss++)
  196. sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
  197. /* Slice1 */
  198. sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
  199. eu_en = ~I915_READ(GEN8_EU_DISABLE1);
  200. sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
  201. /* Slice2 */
  202. sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
  203. sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
  204. /* Slice3 */
  205. sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
  206. eu_en = ~I915_READ(GEN8_EU_DISABLE2);
  207. sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
  208. /* Slice4 */
  209. sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
  210. sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
  211. /* Slice5 */
  212. sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
  213. eu_en = ~I915_READ(GEN10_EU_DISABLE3);
  214. sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
  215. /* Do a second pass where we mark the subslices disabled if all their
  216. * eus are off.
  217. */
  218. for (s = 0; s < sseu->max_slices; s++) {
  219. for (ss = 0; ss < sseu->max_subslices; ss++) {
  220. if (sseu_get_eus(sseu, s, ss) == 0)
  221. sseu->subslice_mask[s] &= ~BIT(ss);
  222. }
  223. }
  224. sseu->eu_total = compute_eu_total(sseu);
  225. /*
  226. * CNL is expected to always have a uniform distribution
  227. * of EU across subslices with the exception that any one
  228. * EU in any one subslice may be fused off for die
  229. * recovery.
  230. */
  231. sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
  232. DIV_ROUND_UP(sseu->eu_total,
  233. sseu_subslice_total(sseu)) : 0;
  234. /* No restrictions on Power Gating */
  235. sseu->has_slice_pg = 1;
  236. sseu->has_subslice_pg = 1;
  237. sseu->has_eu_pg = 1;
  238. }
  239. static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
  240. {
  241. struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
  242. u32 fuse;
  243. fuse = I915_READ(CHV_FUSE_GT);
  244. sseu->slice_mask = BIT(0);
  245. sseu->max_slices = 1;
  246. sseu->max_subslices = 2;
  247. sseu->max_eus_per_subslice = 8;
  248. if (!(fuse & CHV_FGT_DISABLE_SS0)) {
  249. u8 disabled_mask =
  250. ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
  251. CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
  252. (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
  253. CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
  254. sseu->subslice_mask[0] |= BIT(0);
  255. sseu_set_eus(sseu, 0, 0, ~disabled_mask);
  256. }
  257. if (!(fuse & CHV_FGT_DISABLE_SS1)) {
  258. u8 disabled_mask =
  259. ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
  260. CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
  261. (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
  262. CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
  263. sseu->subslice_mask[0] |= BIT(1);
  264. sseu_set_eus(sseu, 0, 1, ~disabled_mask);
  265. }
  266. sseu->eu_total = compute_eu_total(sseu);
  267. /*
  268. * CHV expected to always have a uniform distribution of EU
  269. * across subslices.
  270. */
  271. sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
  272. sseu->eu_total / sseu_subslice_total(sseu) :
  273. 0;
  274. /*
  275. * CHV supports subslice power gating on devices with more than
  276. * one subslice, and supports EU power gating on devices with
  277. * more than one EU pair per subslice.
  278. */
  279. sseu->has_slice_pg = 0;
  280. sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
  281. sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
  282. }
  283. static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
  284. {
  285. struct intel_device_info *info = mkwrite_device_info(dev_priv);
  286. struct sseu_dev_info *sseu = &info->sseu;
  287. int s, ss;
  288. u32 fuse2, eu_disable, subslice_mask;
  289. const u8 eu_mask = 0xff;
  290. fuse2 = I915_READ(GEN8_FUSE2);
  291. sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
  292. /* BXT has a single slice and at most 3 subslices. */
  293. sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
  294. sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
  295. sseu->max_eus_per_subslice = 8;
  296. /*
  297. * The subslice disable field is global, i.e. it applies
  298. * to each of the enabled slices.
  299. */
  300. subslice_mask = (1 << sseu->max_subslices) - 1;
  301. subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
  302. GEN9_F2_SS_DIS_SHIFT);
  303. /*
  304. * Iterate through enabled slices and subslices to
  305. * count the total enabled EU.
  306. */
  307. for (s = 0; s < sseu->max_slices; s++) {
  308. if (!(sseu->slice_mask & BIT(s)))
  309. /* skip disabled slice */
  310. continue;
  311. sseu->subslice_mask[s] = subslice_mask;
  312. eu_disable = I915_READ(GEN9_EU_DISABLE(s));
  313. for (ss = 0; ss < sseu->max_subslices; ss++) {
  314. int eu_per_ss;
  315. u8 eu_disabled_mask;
  316. if (!(sseu->subslice_mask[s] & BIT(ss)))
  317. /* skip disabled subslice */
  318. continue;
  319. eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
  320. sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
  321. eu_per_ss = sseu->max_eus_per_subslice -
  322. hweight8(eu_disabled_mask);
  323. /*
  324. * Record which subslice(s) has(have) 7 EUs. we
  325. * can tune the hash used to spread work among
  326. * subslices if they are unbalanced.
  327. */
  328. if (eu_per_ss == 7)
  329. sseu->subslice_7eu[s] |= BIT(ss);
  330. }
  331. }
  332. sseu->eu_total = compute_eu_total(sseu);
  333. /*
  334. * SKL is expected to always have a uniform distribution
  335. * of EU across subslices with the exception that any one
  336. * EU in any one subslice may be fused off for die
  337. * recovery. BXT is expected to be perfectly uniform in EU
  338. * distribution.
  339. */
  340. sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
  341. DIV_ROUND_UP(sseu->eu_total,
  342. sseu_subslice_total(sseu)) : 0;
  343. /*
  344. * SKL+ supports slice power gating on devices with more than
  345. * one slice, and supports EU power gating on devices with
  346. * more than one EU pair per subslice. BXT+ supports subslice
  347. * power gating on devices with more than one subslice, and
  348. * supports EU power gating on devices with more than one EU
  349. * pair per subslice.
  350. */
  351. sseu->has_slice_pg =
  352. !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
  353. sseu->has_subslice_pg =
  354. IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
  355. sseu->has_eu_pg = sseu->eu_per_subslice > 2;
  356. if (IS_GEN9_LP(dev_priv)) {
  357. #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
  358. info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
  359. sseu->min_eu_in_pool = 0;
  360. if (info->has_pooled_eu) {
  361. if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
  362. sseu->min_eu_in_pool = 3;
  363. else if (IS_SS_DISABLED(1))
  364. sseu->min_eu_in_pool = 6;
  365. else
  366. sseu->min_eu_in_pool = 9;
  367. }
  368. #undef IS_SS_DISABLED
  369. }
  370. }
  371. static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
  372. {
  373. struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
  374. int s, ss;
  375. u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
  376. fuse2 = I915_READ(GEN8_FUSE2);
  377. sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
  378. sseu->max_slices = 3;
  379. sseu->max_subslices = 3;
  380. sseu->max_eus_per_subslice = 8;
  381. /*
  382. * The subslice disable field is global, i.e. it applies
  383. * to each of the enabled slices.
  384. */
  385. subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
  386. subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
  387. GEN8_F2_SS_DIS_SHIFT);
  388. eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
  389. eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
  390. ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
  391. (32 - GEN8_EU_DIS0_S1_SHIFT));
  392. eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
  393. ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
  394. (32 - GEN8_EU_DIS1_S2_SHIFT));
  395. /*
  396. * Iterate through enabled slices and subslices to
  397. * count the total enabled EU.
  398. */
  399. for (s = 0; s < sseu->max_slices; s++) {
  400. if (!(sseu->slice_mask & BIT(s)))
  401. /* skip disabled slice */
  402. continue;
  403. sseu->subslice_mask[s] = subslice_mask;
  404. for (ss = 0; ss < sseu->max_subslices; ss++) {
  405. u8 eu_disabled_mask;
  406. u32 n_disabled;
  407. if (!(sseu->subslice_mask[s] & BIT(ss)))
  408. /* skip disabled subslice */
  409. continue;
  410. eu_disabled_mask =
  411. eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
  412. sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
  413. n_disabled = hweight8(eu_disabled_mask);
  414. /*
  415. * Record which subslices have 7 EUs.
  416. */
  417. if (sseu->max_eus_per_subslice - n_disabled == 7)
  418. sseu->subslice_7eu[s] |= 1 << ss;
  419. }
  420. }
  421. sseu->eu_total = compute_eu_total(sseu);
  422. /*
  423. * BDW is expected to always have a uniform distribution of EU across
  424. * subslices with the exception that any one EU in any one subslice may
  425. * be fused off for die recovery.
  426. */
  427. sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
  428. DIV_ROUND_UP(sseu->eu_total,
  429. sseu_subslice_total(sseu)) : 0;
  430. /*
  431. * BDW supports slice power gating on devices with more than
  432. * one slice.
  433. */
  434. sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
  435. sseu->has_subslice_pg = 0;
  436. sseu->has_eu_pg = 0;
  437. }
  438. static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
  439. {
  440. struct intel_device_info *info = mkwrite_device_info(dev_priv);
  441. struct sseu_dev_info *sseu = &info->sseu;
  442. u32 fuse1;
  443. int s, ss;
  444. /*
  445. * There isn't a register to tell us how many slices/subslices. We
  446. * work off the PCI-ids here.
  447. */
  448. switch (info->gt) {
  449. default:
  450. MISSING_CASE(info->gt);
  451. /* fall through */
  452. case 1:
  453. sseu->slice_mask = BIT(0);
  454. sseu->subslice_mask[0] = BIT(0);
  455. break;
  456. case 2:
  457. sseu->slice_mask = BIT(0);
  458. sseu->subslice_mask[0] = BIT(0) | BIT(1);
  459. break;
  460. case 3:
  461. sseu->slice_mask = BIT(0) | BIT(1);
  462. sseu->subslice_mask[0] = BIT(0) | BIT(1);
  463. sseu->subslice_mask[1] = BIT(0) | BIT(1);
  464. break;
  465. }
  466. sseu->max_slices = hweight8(sseu->slice_mask);
  467. sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
  468. fuse1 = I915_READ(HSW_PAVP_FUSE1);
  469. switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
  470. default:
  471. MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
  472. HSW_F1_EU_DIS_SHIFT);
  473. /* fall through */
  474. case HSW_F1_EU_DIS_10EUS:
  475. sseu->eu_per_subslice = 10;
  476. break;
  477. case HSW_F1_EU_DIS_8EUS:
  478. sseu->eu_per_subslice = 8;
  479. break;
  480. case HSW_F1_EU_DIS_6EUS:
  481. sseu->eu_per_subslice = 6;
  482. break;
  483. }
  484. sseu->max_eus_per_subslice = sseu->eu_per_subslice;
  485. for (s = 0; s < sseu->max_slices; s++) {
  486. for (ss = 0; ss < sseu->max_subslices; ss++) {
  487. sseu_set_eus(sseu, s, ss,
  488. (1UL << sseu->eu_per_subslice) - 1);
  489. }
  490. }
  491. sseu->eu_total = compute_eu_total(sseu);
  492. /* No powergating for you. */
  493. sseu->has_slice_pg = 0;
  494. sseu->has_subslice_pg = 0;
  495. sseu->has_eu_pg = 0;
  496. }
  497. static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
  498. {
  499. u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
  500. u32 base_freq, frac_freq;
  501. base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
  502. GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
  503. base_freq *= 1000;
  504. frac_freq = ((ts_override &
  505. GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
  506. GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
  507. frac_freq = 1000 / (frac_freq + 1);
  508. return base_freq + frac_freq;
  509. }
  510. static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
  511. u32 rpm_config_reg)
  512. {
  513. u32 f19_2_mhz = 19200;
  514. u32 f24_mhz = 24000;
  515. u32 crystal_clock = (rpm_config_reg &
  516. GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
  517. GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
  518. switch (crystal_clock) {
  519. case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
  520. return f19_2_mhz;
  521. case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
  522. return f24_mhz;
  523. default:
  524. MISSING_CASE(crystal_clock);
  525. return 0;
  526. }
  527. }
  528. static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
  529. u32 rpm_config_reg)
  530. {
  531. u32 f19_2_mhz = 19200;
  532. u32 f24_mhz = 24000;
  533. u32 f25_mhz = 25000;
  534. u32 f38_4_mhz = 38400;
  535. u32 crystal_clock = (rpm_config_reg &
  536. GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
  537. GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
  538. switch (crystal_clock) {
  539. case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
  540. return f24_mhz;
  541. case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
  542. return f19_2_mhz;
  543. case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
  544. return f38_4_mhz;
  545. case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
  546. return f25_mhz;
  547. default:
  548. MISSING_CASE(crystal_clock);
  549. return 0;
  550. }
  551. }
  552. static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
  553. {
  554. u32 f12_5_mhz = 12500;
  555. u32 f19_2_mhz = 19200;
  556. u32 f24_mhz = 24000;
  557. if (INTEL_GEN(dev_priv) <= 4) {
  558. /* PRMs say:
  559. *
  560. * "The value in this register increments once every 16
  561. * hclks." (through the “Clocking Configuration”
  562. * (“CLKCFG”) MCHBAR register)
  563. */
  564. return dev_priv->rawclk_freq / 16;
  565. } else if (INTEL_GEN(dev_priv) <= 8) {
  566. /* PRMs say:
  567. *
  568. * "The PCU TSC counts 10ns increments; this timestamp
  569. * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
  570. * rolling over every 1.5 hours).
  571. */
  572. return f12_5_mhz;
  573. } else if (INTEL_GEN(dev_priv) <= 9) {
  574. u32 ctc_reg = I915_READ(CTC_MODE);
  575. u32 freq = 0;
  576. if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
  577. freq = read_reference_ts_freq(dev_priv);
  578. } else {
  579. freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
  580. /* Now figure out how the command stream's timestamp
  581. * register increments from this frequency (it might
  582. * increment only every few clock cycle).
  583. */
  584. freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
  585. CTC_SHIFT_PARAMETER_SHIFT);
  586. }
  587. return freq;
  588. } else if (INTEL_GEN(dev_priv) <= 11) {
  589. u32 ctc_reg = I915_READ(CTC_MODE);
  590. u32 freq = 0;
  591. /* First figure out the reference frequency. There are 2 ways
  592. * we can compute the frequency, either through the
  593. * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
  594. * tells us which one we should use.
  595. */
  596. if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
  597. freq = read_reference_ts_freq(dev_priv);
  598. } else {
  599. u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
  600. if (INTEL_GEN(dev_priv) <= 10)
  601. freq = gen10_get_crystal_clock_freq(dev_priv,
  602. rpm_config_reg);
  603. else
  604. freq = gen11_get_crystal_clock_freq(dev_priv,
  605. rpm_config_reg);
  606. /* Now figure out how the command stream's timestamp
  607. * register increments from this frequency (it might
  608. * increment only every few clock cycle).
  609. */
  610. freq >>= 3 - ((rpm_config_reg &
  611. GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
  612. GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
  613. }
  614. return freq;
  615. }
  616. MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
  617. return 0;
  618. }
  619. /**
  620. * intel_device_info_runtime_init - initialize runtime info
  621. * @info: intel device info struct
  622. *
  623. * Determine various intel_device_info fields at runtime.
  624. *
  625. * Use it when either:
  626. * - it's judged too laborious to fill n static structures with the limit
  627. * when a simple if statement does the job,
  628. * - run-time checks (eg read fuse/strap registers) are needed.
  629. *
  630. * This function needs to be called:
  631. * - after the MMIO has been setup as we are reading registers,
  632. * - after the PCH has been detected,
  633. * - before the first usage of the fields it can tweak.
  634. */
  635. void intel_device_info_runtime_init(struct intel_device_info *info)
  636. {
  637. struct drm_i915_private *dev_priv =
  638. container_of(info, struct drm_i915_private, info);
  639. enum pipe pipe;
  640. if (INTEL_GEN(dev_priv) >= 10) {
  641. for_each_pipe(dev_priv, pipe)
  642. info->num_scalers[pipe] = 2;
  643. } else if (INTEL_GEN(dev_priv) == 9) {
  644. info->num_scalers[PIPE_A] = 2;
  645. info->num_scalers[PIPE_B] = 2;
  646. info->num_scalers[PIPE_C] = 1;
  647. }
  648. BUILD_BUG_ON(I915_NUM_ENGINES >
  649. sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
  650. /*
  651. * Skylake and Broxton currently don't expose the topmost plane as its
  652. * use is exclusive with the legacy cursor and we only want to expose
  653. * one of those, not both. Until we can safely expose the topmost plane
  654. * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
  655. * we don't expose the topmost plane at all to prevent ABI breakage
  656. * down the line.
  657. */
  658. if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
  659. for_each_pipe(dev_priv, pipe)
  660. info->num_sprites[pipe] = 3;
  661. else if (IS_BROXTON(dev_priv)) {
  662. info->num_sprites[PIPE_A] = 2;
  663. info->num_sprites[PIPE_B] = 2;
  664. info->num_sprites[PIPE_C] = 1;
  665. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  666. for_each_pipe(dev_priv, pipe)
  667. info->num_sprites[pipe] = 2;
  668. } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
  669. for_each_pipe(dev_priv, pipe)
  670. info->num_sprites[pipe] = 1;
  671. }
  672. if (i915_modparams.disable_display) {
  673. DRM_INFO("Display disabled (module parameter)\n");
  674. info->num_pipes = 0;
  675. } else if (info->num_pipes > 0 &&
  676. (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
  677. HAS_PCH_SPLIT(dev_priv)) {
  678. u32 fuse_strap = I915_READ(FUSE_STRAP);
  679. u32 sfuse_strap = I915_READ(SFUSE_STRAP);
  680. /*
  681. * SFUSE_STRAP is supposed to have a bit signalling the display
  682. * is fused off. Unfortunately it seems that, at least in
  683. * certain cases, fused off display means that PCH display
  684. * reads don't land anywhere. In that case, we read 0s.
  685. *
  686. * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
  687. * should be set when taking over after the firmware.
  688. */
  689. if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
  690. sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
  691. (HAS_PCH_CPT(dev_priv) &&
  692. !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
  693. DRM_INFO("Display fused off, disabling\n");
  694. info->num_pipes = 0;
  695. } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
  696. DRM_INFO("PipeC fused off\n");
  697. info->num_pipes -= 1;
  698. }
  699. } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
  700. u32 dfsm = I915_READ(SKL_DFSM);
  701. u8 disabled_mask = 0;
  702. bool invalid;
  703. int num_bits;
  704. if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
  705. disabled_mask |= BIT(PIPE_A);
  706. if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
  707. disabled_mask |= BIT(PIPE_B);
  708. if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
  709. disabled_mask |= BIT(PIPE_C);
  710. num_bits = hweight8(disabled_mask);
  711. switch (disabled_mask) {
  712. case BIT(PIPE_A):
  713. case BIT(PIPE_B):
  714. case BIT(PIPE_A) | BIT(PIPE_B):
  715. case BIT(PIPE_A) | BIT(PIPE_C):
  716. invalid = true;
  717. break;
  718. default:
  719. invalid = false;
  720. }
  721. if (num_bits > info->num_pipes || invalid)
  722. DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
  723. disabled_mask);
  724. else
  725. info->num_pipes -= num_bits;
  726. }
  727. /* Initialize slice/subslice/EU info */
  728. if (IS_HASWELL(dev_priv))
  729. haswell_sseu_info_init(dev_priv);
  730. else if (IS_CHERRYVIEW(dev_priv))
  731. cherryview_sseu_info_init(dev_priv);
  732. else if (IS_BROADWELL(dev_priv))
  733. broadwell_sseu_info_init(dev_priv);
  734. else if (INTEL_GEN(dev_priv) == 9)
  735. gen9_sseu_info_init(dev_priv);
  736. else if (INTEL_GEN(dev_priv) == 10)
  737. gen10_sseu_info_init(dev_priv);
  738. else if (INTEL_GEN(dev_priv) >= 11)
  739. gen11_sseu_info_init(dev_priv);
  740. /* Initialize command stream timestamp frequency */
  741. info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
  742. }
  743. void intel_driver_caps_print(const struct intel_driver_caps *caps,
  744. struct drm_printer *p)
  745. {
  746. drm_printf(p, "Has logical contexts? %s\n",
  747. yesno(caps->has_logical_contexts));
  748. drm_printf(p, "scheduler: %x\n", caps->scheduler);
  749. }
  750. /*
  751. * Determine which engines are fused off in our particular hardware. Since the
  752. * fuse register is in the blitter powerwell, we need forcewake to be ready at
  753. * this point (but later we need to prune the forcewake domains for engines that
  754. * are indeed fused off).
  755. */
  756. void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
  757. {
  758. struct intel_device_info *info = mkwrite_device_info(dev_priv);
  759. u8 vdbox_disable, vebox_disable;
  760. u32 media_fuse;
  761. int i;
  762. if (INTEL_GEN(dev_priv) < 11)
  763. return;
  764. media_fuse = I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
  765. vdbox_disable = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
  766. vebox_disable = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
  767. GEN11_GT_VEBOX_DISABLE_SHIFT;
  768. DRM_DEBUG_DRIVER("vdbox disable: %04x\n", vdbox_disable);
  769. for (i = 0; i < I915_MAX_VCS; i++) {
  770. if (!HAS_ENGINE(dev_priv, _VCS(i)))
  771. continue;
  772. if (!(BIT(i) & vdbox_disable))
  773. continue;
  774. info->ring_mask &= ~ENGINE_MASK(_VCS(i));
  775. DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
  776. }
  777. DRM_DEBUG_DRIVER("vebox disable: %04x\n", vebox_disable);
  778. for (i = 0; i < I915_MAX_VECS; i++) {
  779. if (!HAS_ENGINE(dev_priv, _VECS(i)))
  780. continue;
  781. if (!(BIT(i) & vebox_disable))
  782. continue;
  783. info->ring_mask &= ~ENGINE_MASK(_VECS(i));
  784. DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
  785. }
  786. }