sdma_v4_0.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "sdma0/sdma0_4_0_offset.h"
  29. #include "sdma0/sdma0_4_0_sh_mask.h"
  30. #include "sdma1/sdma1_4_0_offset.h"
  31. #include "sdma1/sdma1_4_0_sh_mask.h"
  32. #include "hdp/hdp_4_0_offset.h"
  33. #include "sdma0/sdma0_4_1_default.h"
  34. #include "soc15_common.h"
  35. #include "soc15.h"
  36. #include "vega10_sdma_pkt_open.h"
  37. #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  38. #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  42. MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  43. MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  44. MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  45. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  46. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  47. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  48. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  49. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  50. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  51. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  52. static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  53. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  54. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  55. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  56. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  57. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  58. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  59. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  60. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  61. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  62. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  63. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  64. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  65. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
  66. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  67. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  68. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  69. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  70. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  71. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
  72. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  73. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  74. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  75. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  76. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  77. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
  78. };
  79. static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
  80. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  81. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
  82. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  83. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  84. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
  85. };
  86. static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
  87. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
  88. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
  89. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  90. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
  91. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
  92. };
  93. static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
  94. {
  95. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  96. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  97. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
  98. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  99. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
  100. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
  101. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  102. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
  103. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  104. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  105. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
  106. };
  107. static const struct soc15_reg_golden golden_settings_sdma_4_2[] =
  108. {
  109. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  110. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  111. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
  112. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
  113. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  114. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  115. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
  116. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  117. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  118. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  119. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  120. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
  121. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
  122. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  123. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  124. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  125. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  126. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  127. };
  128. static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
  129. {
  130. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
  131. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
  132. };
  133. static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
  134. u32 instance, u32 offset)
  135. {
  136. return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
  137. (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
  138. }
  139. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  140. {
  141. switch (adev->asic_type) {
  142. case CHIP_VEGA10:
  143. soc15_program_register_sequence(adev,
  144. golden_settings_sdma_4,
  145. ARRAY_SIZE(golden_settings_sdma_4));
  146. soc15_program_register_sequence(adev,
  147. golden_settings_sdma_vg10,
  148. ARRAY_SIZE(golden_settings_sdma_vg10));
  149. break;
  150. case CHIP_VEGA12:
  151. soc15_program_register_sequence(adev,
  152. golden_settings_sdma_4,
  153. ARRAY_SIZE(golden_settings_sdma_4));
  154. soc15_program_register_sequence(adev,
  155. golden_settings_sdma_vg12,
  156. ARRAY_SIZE(golden_settings_sdma_vg12));
  157. break;
  158. case CHIP_VEGA20:
  159. soc15_program_register_sequence(adev,
  160. golden_settings_sdma_4_2,
  161. ARRAY_SIZE(golden_settings_sdma_4_2));
  162. break;
  163. case CHIP_RAVEN:
  164. soc15_program_register_sequence(adev,
  165. golden_settings_sdma_4_1,
  166. ARRAY_SIZE(golden_settings_sdma_4_1));
  167. soc15_program_register_sequence(adev,
  168. golden_settings_sdma_rv1,
  169. ARRAY_SIZE(golden_settings_sdma_rv1));
  170. break;
  171. default:
  172. break;
  173. }
  174. }
  175. /**
  176. * sdma_v4_0_init_microcode - load ucode images from disk
  177. *
  178. * @adev: amdgpu_device pointer
  179. *
  180. * Use the firmware interface to load the ucode images into
  181. * the driver (not loaded into hw).
  182. * Returns 0 on success, error on failure.
  183. */
  184. // emulation only, won't work on real chip
  185. // vega10 real chip need to use PSP to load firmware
  186. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  187. {
  188. const char *chip_name;
  189. char fw_name[30];
  190. int err = 0, i;
  191. struct amdgpu_firmware_info *info = NULL;
  192. const struct common_firmware_header *header = NULL;
  193. const struct sdma_firmware_header_v1_0 *hdr;
  194. DRM_DEBUG("\n");
  195. switch (adev->asic_type) {
  196. case CHIP_VEGA10:
  197. chip_name = "vega10";
  198. break;
  199. case CHIP_VEGA12:
  200. chip_name = "vega12";
  201. break;
  202. case CHIP_VEGA20:
  203. chip_name = "vega20";
  204. break;
  205. case CHIP_RAVEN:
  206. chip_name = "raven";
  207. break;
  208. default:
  209. BUG();
  210. }
  211. for (i = 0; i < adev->sdma.num_instances; i++) {
  212. if (i == 0)
  213. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  214. else
  215. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  216. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  217. if (err)
  218. goto out;
  219. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  220. if (err)
  221. goto out;
  222. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  223. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  224. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  225. if (adev->sdma.instance[i].feature_version >= 20)
  226. adev->sdma.instance[i].burst_nop = true;
  227. DRM_DEBUG("psp_load == '%s'\n",
  228. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  229. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  230. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  231. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  232. info->fw = adev->sdma.instance[i].fw;
  233. header = (const struct common_firmware_header *)info->fw->data;
  234. adev->firmware.fw_size +=
  235. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  236. }
  237. }
  238. out:
  239. if (err) {
  240. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  241. for (i = 0; i < adev->sdma.num_instances; i++) {
  242. release_firmware(adev->sdma.instance[i].fw);
  243. adev->sdma.instance[i].fw = NULL;
  244. }
  245. }
  246. return err;
  247. }
  248. /**
  249. * sdma_v4_0_ring_get_rptr - get the current read pointer
  250. *
  251. * @ring: amdgpu ring pointer
  252. *
  253. * Get the current rptr from the hardware (VEGA10+).
  254. */
  255. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  256. {
  257. u64 *rptr;
  258. /* XXX check if swapping is necessary on BE */
  259. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  260. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  261. return ((*rptr) >> 2);
  262. }
  263. /**
  264. * sdma_v4_0_ring_get_wptr - get the current write pointer
  265. *
  266. * @ring: amdgpu ring pointer
  267. *
  268. * Get the current wptr from the hardware (VEGA10+).
  269. */
  270. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  271. {
  272. struct amdgpu_device *adev = ring->adev;
  273. u64 wptr;
  274. if (ring->use_doorbell) {
  275. /* XXX check if swapping is necessary on BE */
  276. wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
  277. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
  278. } else {
  279. u32 lowbit, highbit;
  280. lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  281. highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  282. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  283. ring->me, highbit, lowbit);
  284. wptr = highbit;
  285. wptr = wptr << 32;
  286. wptr |= lowbit;
  287. }
  288. return wptr >> 2;
  289. }
  290. /**
  291. * sdma_v4_0_ring_set_wptr - commit the write pointer
  292. *
  293. * @ring: amdgpu ring pointer
  294. *
  295. * Write the wptr back to the hardware (VEGA10+).
  296. */
  297. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  298. {
  299. struct amdgpu_device *adev = ring->adev;
  300. DRM_DEBUG("Setting write pointer\n");
  301. if (ring->use_doorbell) {
  302. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  303. DRM_DEBUG("Using doorbell -- "
  304. "wptr_offs == 0x%08x "
  305. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  306. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  307. ring->wptr_offs,
  308. lower_32_bits(ring->wptr << 2),
  309. upper_32_bits(ring->wptr << 2));
  310. /* XXX check if swapping is necessary on BE */
  311. WRITE_ONCE(*wb, (ring->wptr << 2));
  312. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  313. ring->doorbell_index, ring->wptr << 2);
  314. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  315. } else {
  316. DRM_DEBUG("Not using doorbell -- "
  317. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  318. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  319. ring->me,
  320. lower_32_bits(ring->wptr << 2),
  321. ring->me,
  322. upper_32_bits(ring->wptr << 2));
  323. WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  324. WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  325. }
  326. }
  327. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  328. {
  329. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  330. int i;
  331. for (i = 0; i < count; i++)
  332. if (sdma && sdma->burst_nop && (i == 0))
  333. amdgpu_ring_write(ring, ring->funcs->nop |
  334. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  335. else
  336. amdgpu_ring_write(ring, ring->funcs->nop);
  337. }
  338. /**
  339. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  340. *
  341. * @ring: amdgpu ring pointer
  342. * @ib: IB object to schedule
  343. *
  344. * Schedule an IB in the DMA ring (VEGA10).
  345. */
  346. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  347. struct amdgpu_ib *ib,
  348. unsigned vmid, bool ctx_switch)
  349. {
  350. /* IB packet must end on a 8 DW boundary */
  351. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  352. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  353. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  354. /* base must be 32 byte aligned */
  355. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  356. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  357. amdgpu_ring_write(ring, ib->length_dw);
  358. amdgpu_ring_write(ring, 0);
  359. amdgpu_ring_write(ring, 0);
  360. }
  361. static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
  362. int mem_space, int hdp,
  363. uint32_t addr0, uint32_t addr1,
  364. uint32_t ref, uint32_t mask,
  365. uint32_t inv)
  366. {
  367. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  368. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
  369. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
  370. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  371. if (mem_space) {
  372. /* memory */
  373. amdgpu_ring_write(ring, addr0);
  374. amdgpu_ring_write(ring, addr1);
  375. } else {
  376. /* registers */
  377. amdgpu_ring_write(ring, addr0 << 2);
  378. amdgpu_ring_write(ring, addr1 << 2);
  379. }
  380. amdgpu_ring_write(ring, ref); /* reference */
  381. amdgpu_ring_write(ring, mask); /* mask */
  382. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  383. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
  384. }
  385. /**
  386. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  387. *
  388. * @ring: amdgpu ring pointer
  389. *
  390. * Emit an hdp flush packet on the requested DMA ring.
  391. */
  392. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  393. {
  394. struct amdgpu_device *adev = ring->adev;
  395. u32 ref_and_mask = 0;
  396. const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
  397. if (ring->me == 0)
  398. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  399. else
  400. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  401. sdma_v4_0_wait_reg_mem(ring, 0, 1,
  402. adev->nbio_funcs->get_hdp_flush_done_offset(adev),
  403. adev->nbio_funcs->get_hdp_flush_req_offset(adev),
  404. ref_and_mask, ref_and_mask, 10);
  405. }
  406. /**
  407. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  408. *
  409. * @ring: amdgpu ring pointer
  410. * @fence: amdgpu fence object
  411. *
  412. * Add a DMA fence packet to the ring to write
  413. * the fence seq number and DMA trap packet to generate
  414. * an interrupt if needed (VEGA10).
  415. */
  416. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  417. unsigned flags)
  418. {
  419. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  420. /* write the fence */
  421. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  422. /* zero in first two bits */
  423. BUG_ON(addr & 0x3);
  424. amdgpu_ring_write(ring, lower_32_bits(addr));
  425. amdgpu_ring_write(ring, upper_32_bits(addr));
  426. amdgpu_ring_write(ring, lower_32_bits(seq));
  427. /* optionally write high bits as well */
  428. if (write64bit) {
  429. addr += 4;
  430. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  431. /* zero in first two bits */
  432. BUG_ON(addr & 0x3);
  433. amdgpu_ring_write(ring, lower_32_bits(addr));
  434. amdgpu_ring_write(ring, upper_32_bits(addr));
  435. amdgpu_ring_write(ring, upper_32_bits(seq));
  436. }
  437. /* generate an interrupt */
  438. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  439. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  440. }
  441. /**
  442. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  443. *
  444. * @adev: amdgpu_device pointer
  445. *
  446. * Stop the gfx async dma ring buffers (VEGA10).
  447. */
  448. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  449. {
  450. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  451. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  452. u32 rb_cntl, ib_cntl;
  453. int i;
  454. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  455. (adev->mman.buffer_funcs_ring == sdma1))
  456. amdgpu_ttm_set_buffer_funcs_status(adev, false);
  457. for (i = 0; i < adev->sdma.num_instances; i++) {
  458. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  459. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  460. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  461. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  462. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  463. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  464. }
  465. sdma0->ready = false;
  466. sdma1->ready = false;
  467. }
  468. /**
  469. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  470. *
  471. * @adev: amdgpu_device pointer
  472. *
  473. * Stop the compute async dma queues (VEGA10).
  474. */
  475. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  476. {
  477. /* XXX todo */
  478. }
  479. /**
  480. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  481. *
  482. * @adev: amdgpu_device pointer
  483. * @enable: enable/disable the DMA MEs context switch.
  484. *
  485. * Halt or unhalt the async dma engines context switch (VEGA10).
  486. */
  487. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  488. {
  489. u32 f32_cntl, phase_quantum = 0;
  490. int i;
  491. if (amdgpu_sdma_phase_quantum) {
  492. unsigned value = amdgpu_sdma_phase_quantum;
  493. unsigned unit = 0;
  494. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  495. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  496. value = (value + 1) >> 1;
  497. unit++;
  498. }
  499. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  500. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  501. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  502. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  503. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  504. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  505. WARN_ONCE(1,
  506. "clamping sdma_phase_quantum to %uK clock cycles\n",
  507. value << unit);
  508. }
  509. phase_quantum =
  510. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  511. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  512. }
  513. for (i = 0; i < adev->sdma.num_instances; i++) {
  514. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  515. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  516. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  517. if (enable && amdgpu_sdma_phase_quantum) {
  518. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
  519. phase_quantum);
  520. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
  521. phase_quantum);
  522. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
  523. phase_quantum);
  524. }
  525. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
  526. }
  527. }
  528. /**
  529. * sdma_v4_0_enable - stop the async dma engines
  530. *
  531. * @adev: amdgpu_device pointer
  532. * @enable: enable/disable the DMA MEs.
  533. *
  534. * Halt or unhalt the async dma engines (VEGA10).
  535. */
  536. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  537. {
  538. u32 f32_cntl;
  539. int i;
  540. if (enable == false) {
  541. sdma_v4_0_gfx_stop(adev);
  542. sdma_v4_0_rlc_stop(adev);
  543. }
  544. for (i = 0; i < adev->sdma.num_instances; i++) {
  545. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  546. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  547. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
  548. }
  549. }
  550. /**
  551. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  552. *
  553. * @adev: amdgpu_device pointer
  554. *
  555. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  556. * Returns 0 for success, error for failure.
  557. */
  558. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  559. {
  560. struct amdgpu_ring *ring;
  561. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  562. u32 rb_bufsz;
  563. u32 wb_offset;
  564. u32 doorbell;
  565. u32 doorbell_offset;
  566. u32 temp;
  567. u64 wptr_gpu_addr;
  568. int i, r;
  569. for (i = 0; i < adev->sdma.num_instances; i++) {
  570. ring = &adev->sdma.instance[i].ring;
  571. wb_offset = (ring->rptr_offs * 4);
  572. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  573. /* Set ring buffer size in dwords */
  574. rb_bufsz = order_base_2(ring->ring_size / 4);
  575. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  576. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  577. #ifdef __BIG_ENDIAN
  578. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  579. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  580. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  581. #endif
  582. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  583. /* Initialize the ring buffer's read and write pointers */
  584. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
  585. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  586. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
  587. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  588. /* set the wb address whether it's enabled or not */
  589. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  590. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  591. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  592. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  593. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  594. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  595. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  596. ring->wptr = 0;
  597. /* before programing wptr to a less value, need set minor_ptr_update first */
  598. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  599. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  600. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  601. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  602. }
  603. doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
  604. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
  605. if (ring->use_doorbell) {
  606. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  607. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  608. OFFSET, ring->doorbell_index);
  609. } else {
  610. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  611. }
  612. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
  613. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  614. adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
  615. ring->doorbell_index);
  616. if (amdgpu_sriov_vf(adev))
  617. sdma_v4_0_ring_set_wptr(ring);
  618. /* set minor_ptr_update to 0 after wptr programed */
  619. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  620. /* set utc l1 enable flag always to 1 */
  621. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  622. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  623. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
  624. if (!amdgpu_sriov_vf(adev)) {
  625. /* unhalt engine */
  626. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  627. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  628. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
  629. }
  630. /* setup the wptr shadow polling */
  631. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  632. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  633. lower_32_bits(wptr_gpu_addr));
  634. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  635. upper_32_bits(wptr_gpu_addr));
  636. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  637. if (amdgpu_sriov_vf(adev))
  638. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  639. else
  640. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  641. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  642. /* enable DMA RB */
  643. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  644. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  645. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  646. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  647. #ifdef __BIG_ENDIAN
  648. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  649. #endif
  650. /* enable DMA IBs */
  651. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  652. ring->ready = true;
  653. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  654. sdma_v4_0_ctx_switch_enable(adev, true);
  655. sdma_v4_0_enable(adev, true);
  656. }
  657. r = amdgpu_ring_test_ring(ring);
  658. if (r) {
  659. ring->ready = false;
  660. return r;
  661. }
  662. if (adev->mman.buffer_funcs_ring == ring)
  663. amdgpu_ttm_set_buffer_funcs_status(adev, true);
  664. }
  665. return 0;
  666. }
  667. static void
  668. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  669. {
  670. uint32_t def, data;
  671. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  672. /* disable idle interrupt */
  673. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  674. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  675. if (data != def)
  676. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  677. } else {
  678. /* disable idle interrupt */
  679. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  680. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  681. if (data != def)
  682. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  683. }
  684. }
  685. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  686. {
  687. uint32_t def, data;
  688. /* Enable HW based PG. */
  689. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  690. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  691. if (data != def)
  692. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  693. /* enable interrupt */
  694. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  695. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  696. if (data != def)
  697. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  698. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  699. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  700. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  701. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  702. /* Configure switch time for hysteresis purpose. Use default right now */
  703. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  704. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  705. if(data != def)
  706. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  707. }
  708. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  709. {
  710. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  711. return;
  712. switch (adev->asic_type) {
  713. case CHIP_RAVEN:
  714. sdma_v4_1_init_power_gating(adev);
  715. sdma_v4_1_update_power_gating(adev, true);
  716. break;
  717. default:
  718. break;
  719. }
  720. }
  721. /**
  722. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  723. *
  724. * @adev: amdgpu_device pointer
  725. *
  726. * Set up the compute DMA queues and enable them (VEGA10).
  727. * Returns 0 for success, error for failure.
  728. */
  729. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  730. {
  731. sdma_v4_0_init_pg(adev);
  732. return 0;
  733. }
  734. /**
  735. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  736. *
  737. * @adev: amdgpu_device pointer
  738. *
  739. * Loads the sDMA0/1 ucode.
  740. * Returns 0 for success, -EINVAL if the ucode is not available.
  741. */
  742. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  743. {
  744. const struct sdma_firmware_header_v1_0 *hdr;
  745. const __le32 *fw_data;
  746. u32 fw_size;
  747. int i, j;
  748. /* halt the MEs */
  749. sdma_v4_0_enable(adev, false);
  750. for (i = 0; i < adev->sdma.num_instances; i++) {
  751. if (!adev->sdma.instance[i].fw)
  752. return -EINVAL;
  753. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  754. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  755. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  756. fw_data = (const __le32 *)
  757. (adev->sdma.instance[i].fw->data +
  758. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  759. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
  760. for (j = 0; j < fw_size; j++)
  761. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  762. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  763. }
  764. return 0;
  765. }
  766. /**
  767. * sdma_v4_0_start - setup and start the async dma engines
  768. *
  769. * @adev: amdgpu_device pointer
  770. *
  771. * Set up the DMA engines and enable them (VEGA10).
  772. * Returns 0 for success, error for failure.
  773. */
  774. static int sdma_v4_0_start(struct amdgpu_device *adev)
  775. {
  776. int r = 0;
  777. if (amdgpu_sriov_vf(adev)) {
  778. sdma_v4_0_ctx_switch_enable(adev, false);
  779. sdma_v4_0_enable(adev, false);
  780. /* set RB registers */
  781. r = sdma_v4_0_gfx_resume(adev);
  782. return r;
  783. }
  784. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  785. r = sdma_v4_0_load_microcode(adev);
  786. if (r)
  787. return r;
  788. }
  789. /* unhalt the MEs */
  790. sdma_v4_0_enable(adev, true);
  791. /* enable sdma ring preemption */
  792. sdma_v4_0_ctx_switch_enable(adev, true);
  793. /* start the gfx rings and rlc compute queues */
  794. r = sdma_v4_0_gfx_resume(adev);
  795. if (r)
  796. return r;
  797. r = sdma_v4_0_rlc_resume(adev);
  798. return r;
  799. }
  800. /**
  801. * sdma_v4_0_ring_test_ring - simple async dma engine test
  802. *
  803. * @ring: amdgpu_ring structure holding ring information
  804. *
  805. * Test the DMA engine by writing using it to write an
  806. * value to memory. (VEGA10).
  807. * Returns 0 for success, error for failure.
  808. */
  809. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  810. {
  811. struct amdgpu_device *adev = ring->adev;
  812. unsigned i;
  813. unsigned index;
  814. int r;
  815. u32 tmp;
  816. u64 gpu_addr;
  817. r = amdgpu_device_wb_get(adev, &index);
  818. if (r) {
  819. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  820. return r;
  821. }
  822. gpu_addr = adev->wb.gpu_addr + (index * 4);
  823. tmp = 0xCAFEDEAD;
  824. adev->wb.wb[index] = cpu_to_le32(tmp);
  825. r = amdgpu_ring_alloc(ring, 5);
  826. if (r) {
  827. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  828. amdgpu_device_wb_free(adev, index);
  829. return r;
  830. }
  831. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  832. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  833. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  834. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  835. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  836. amdgpu_ring_write(ring, 0xDEADBEEF);
  837. amdgpu_ring_commit(ring);
  838. for (i = 0; i < adev->usec_timeout; i++) {
  839. tmp = le32_to_cpu(adev->wb.wb[index]);
  840. if (tmp == 0xDEADBEEF)
  841. break;
  842. DRM_UDELAY(1);
  843. }
  844. if (i < adev->usec_timeout) {
  845. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  846. } else {
  847. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  848. ring->idx, tmp);
  849. r = -EINVAL;
  850. }
  851. amdgpu_device_wb_free(adev, index);
  852. return r;
  853. }
  854. /**
  855. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  856. *
  857. * @ring: amdgpu_ring structure holding ring information
  858. *
  859. * Test a simple IB in the DMA ring (VEGA10).
  860. * Returns 0 on success, error on failure.
  861. */
  862. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  863. {
  864. struct amdgpu_device *adev = ring->adev;
  865. struct amdgpu_ib ib;
  866. struct dma_fence *f = NULL;
  867. unsigned index;
  868. long r;
  869. u32 tmp = 0;
  870. u64 gpu_addr;
  871. r = amdgpu_device_wb_get(adev, &index);
  872. if (r) {
  873. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  874. return r;
  875. }
  876. gpu_addr = adev->wb.gpu_addr + (index * 4);
  877. tmp = 0xCAFEDEAD;
  878. adev->wb.wb[index] = cpu_to_le32(tmp);
  879. memset(&ib, 0, sizeof(ib));
  880. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  881. if (r) {
  882. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  883. goto err0;
  884. }
  885. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  886. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  887. ib.ptr[1] = lower_32_bits(gpu_addr);
  888. ib.ptr[2] = upper_32_bits(gpu_addr);
  889. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  890. ib.ptr[4] = 0xDEADBEEF;
  891. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  892. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  893. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  894. ib.length_dw = 8;
  895. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  896. if (r)
  897. goto err1;
  898. r = dma_fence_wait_timeout(f, false, timeout);
  899. if (r == 0) {
  900. DRM_ERROR("amdgpu: IB test timed out\n");
  901. r = -ETIMEDOUT;
  902. goto err1;
  903. } else if (r < 0) {
  904. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  905. goto err1;
  906. }
  907. tmp = le32_to_cpu(adev->wb.wb[index]);
  908. if (tmp == 0xDEADBEEF) {
  909. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  910. r = 0;
  911. } else {
  912. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  913. r = -EINVAL;
  914. }
  915. err1:
  916. amdgpu_ib_free(adev, &ib, NULL);
  917. dma_fence_put(f);
  918. err0:
  919. amdgpu_device_wb_free(adev, index);
  920. return r;
  921. }
  922. /**
  923. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  924. *
  925. * @ib: indirect buffer to fill with commands
  926. * @pe: addr of the page entry
  927. * @src: src addr to copy from
  928. * @count: number of page entries to update
  929. *
  930. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  931. */
  932. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  933. uint64_t pe, uint64_t src,
  934. unsigned count)
  935. {
  936. unsigned bytes = count * 8;
  937. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  938. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  939. ib->ptr[ib->length_dw++] = bytes - 1;
  940. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  941. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  942. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  943. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  944. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  945. }
  946. /**
  947. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  948. *
  949. * @ib: indirect buffer to fill with commands
  950. * @pe: addr of the page entry
  951. * @addr: dst addr to write into pe
  952. * @count: number of page entries to update
  953. * @incr: increase next addr by incr bytes
  954. * @flags: access flags
  955. *
  956. * Update PTEs by writing them manually using sDMA (VEGA10).
  957. */
  958. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  959. uint64_t value, unsigned count,
  960. uint32_t incr)
  961. {
  962. unsigned ndw = count * 2;
  963. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  964. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  965. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  966. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  967. ib->ptr[ib->length_dw++] = ndw - 1;
  968. for (; ndw > 0; ndw -= 2) {
  969. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  970. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  971. value += incr;
  972. }
  973. }
  974. /**
  975. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  976. *
  977. * @ib: indirect buffer to fill with commands
  978. * @pe: addr of the page entry
  979. * @addr: dst addr to write into pe
  980. * @count: number of page entries to update
  981. * @incr: increase next addr by incr bytes
  982. * @flags: access flags
  983. *
  984. * Update the page tables using sDMA (VEGA10).
  985. */
  986. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  987. uint64_t pe,
  988. uint64_t addr, unsigned count,
  989. uint32_t incr, uint64_t flags)
  990. {
  991. /* for physically contiguous pages (vram) */
  992. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  993. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  994. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  995. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  996. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  997. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  998. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  999. ib->ptr[ib->length_dw++] = incr; /* increment size */
  1000. ib->ptr[ib->length_dw++] = 0;
  1001. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  1002. }
  1003. /**
  1004. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  1005. *
  1006. * @ib: indirect buffer to fill with padding
  1007. *
  1008. */
  1009. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  1010. {
  1011. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  1012. u32 pad_count;
  1013. int i;
  1014. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  1015. for (i = 0; i < pad_count; i++)
  1016. if (sdma && sdma->burst_nop && (i == 0))
  1017. ib->ptr[ib->length_dw++] =
  1018. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  1019. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  1020. else
  1021. ib->ptr[ib->length_dw++] =
  1022. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  1023. }
  1024. /**
  1025. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  1026. *
  1027. * @ring: amdgpu_ring pointer
  1028. *
  1029. * Make sure all previous operations are completed (CIK).
  1030. */
  1031. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  1032. {
  1033. uint32_t seq = ring->fence_drv.sync_seq;
  1034. uint64_t addr = ring->fence_drv.gpu_addr;
  1035. /* wait for idle */
  1036. sdma_v4_0_wait_reg_mem(ring, 1, 0,
  1037. addr & 0xfffffffc,
  1038. upper_32_bits(addr) & 0xffffffff,
  1039. seq, 0xffffffff, 4);
  1040. }
  1041. /**
  1042. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  1043. *
  1044. * @ring: amdgpu_ring pointer
  1045. * @vm: amdgpu_vm pointer
  1046. *
  1047. * Update the page table base and flush the VM TLB
  1048. * using sDMA (VEGA10).
  1049. */
  1050. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1051. unsigned vmid, uint64_t pd_addr)
  1052. {
  1053. amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
  1054. }
  1055. static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
  1056. uint32_t reg, uint32_t val)
  1057. {
  1058. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1059. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1060. amdgpu_ring_write(ring, reg);
  1061. amdgpu_ring_write(ring, val);
  1062. }
  1063. static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
  1064. uint32_t val, uint32_t mask)
  1065. {
  1066. sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
  1067. }
  1068. static int sdma_v4_0_early_init(void *handle)
  1069. {
  1070. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1071. if (adev->asic_type == CHIP_RAVEN)
  1072. adev->sdma.num_instances = 1;
  1073. else
  1074. adev->sdma.num_instances = 2;
  1075. sdma_v4_0_set_ring_funcs(adev);
  1076. sdma_v4_0_set_buffer_funcs(adev);
  1077. sdma_v4_0_set_vm_pte_funcs(adev);
  1078. sdma_v4_0_set_irq_funcs(adev);
  1079. return 0;
  1080. }
  1081. static int sdma_v4_0_sw_init(void *handle)
  1082. {
  1083. struct amdgpu_ring *ring;
  1084. int r, i;
  1085. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1086. /* SDMA trap event */
  1087. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
  1088. &adev->sdma.trap_irq);
  1089. if (r)
  1090. return r;
  1091. /* SDMA trap event */
  1092. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
  1093. &adev->sdma.trap_irq);
  1094. if (r)
  1095. return r;
  1096. r = sdma_v4_0_init_microcode(adev);
  1097. if (r) {
  1098. DRM_ERROR("Failed to load sdma firmware!\n");
  1099. return r;
  1100. }
  1101. for (i = 0; i < adev->sdma.num_instances; i++) {
  1102. ring = &adev->sdma.instance[i].ring;
  1103. ring->ring_obj = NULL;
  1104. ring->use_doorbell = true;
  1105. DRM_INFO("use_doorbell being set to: [%s]\n",
  1106. ring->use_doorbell?"true":"false");
  1107. ring->doorbell_index = (i == 0) ?
  1108. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1109. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1110. sprintf(ring->name, "sdma%d", i);
  1111. r = amdgpu_ring_init(adev, ring, 1024,
  1112. &adev->sdma.trap_irq,
  1113. (i == 0) ?
  1114. AMDGPU_SDMA_IRQ_TRAP0 :
  1115. AMDGPU_SDMA_IRQ_TRAP1);
  1116. if (r)
  1117. return r;
  1118. }
  1119. return r;
  1120. }
  1121. static int sdma_v4_0_sw_fini(void *handle)
  1122. {
  1123. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1124. int i;
  1125. for (i = 0; i < adev->sdma.num_instances; i++)
  1126. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1127. for (i = 0; i < adev->sdma.num_instances; i++) {
  1128. release_firmware(adev->sdma.instance[i].fw);
  1129. adev->sdma.instance[i].fw = NULL;
  1130. }
  1131. return 0;
  1132. }
  1133. static int sdma_v4_0_hw_init(void *handle)
  1134. {
  1135. int r;
  1136. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1137. sdma_v4_0_init_golden_registers(adev);
  1138. r = sdma_v4_0_start(adev);
  1139. return r;
  1140. }
  1141. static int sdma_v4_0_hw_fini(void *handle)
  1142. {
  1143. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1144. if (amdgpu_sriov_vf(adev))
  1145. return 0;
  1146. sdma_v4_0_ctx_switch_enable(adev, false);
  1147. sdma_v4_0_enable(adev, false);
  1148. return 0;
  1149. }
  1150. static int sdma_v4_0_suspend(void *handle)
  1151. {
  1152. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1153. return sdma_v4_0_hw_fini(adev);
  1154. }
  1155. static int sdma_v4_0_resume(void *handle)
  1156. {
  1157. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1158. return sdma_v4_0_hw_init(adev);
  1159. }
  1160. static bool sdma_v4_0_is_idle(void *handle)
  1161. {
  1162. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1163. u32 i;
  1164. for (i = 0; i < adev->sdma.num_instances; i++) {
  1165. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
  1166. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1167. return false;
  1168. }
  1169. return true;
  1170. }
  1171. static int sdma_v4_0_wait_for_idle(void *handle)
  1172. {
  1173. unsigned i;
  1174. u32 sdma0, sdma1;
  1175. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1176. for (i = 0; i < adev->usec_timeout; i++) {
  1177. sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
  1178. sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
  1179. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1180. return 0;
  1181. udelay(1);
  1182. }
  1183. return -ETIMEDOUT;
  1184. }
  1185. static int sdma_v4_0_soft_reset(void *handle)
  1186. {
  1187. /* todo */
  1188. return 0;
  1189. }
  1190. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1191. struct amdgpu_irq_src *source,
  1192. unsigned type,
  1193. enum amdgpu_interrupt_state state)
  1194. {
  1195. u32 sdma_cntl;
  1196. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1197. sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
  1198. sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
  1199. sdma_cntl = RREG32(reg_offset);
  1200. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1201. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1202. WREG32(reg_offset, sdma_cntl);
  1203. return 0;
  1204. }
  1205. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1206. struct amdgpu_irq_src *source,
  1207. struct amdgpu_iv_entry *entry)
  1208. {
  1209. DRM_DEBUG("IH: SDMA trap\n");
  1210. switch (entry->client_id) {
  1211. case SOC15_IH_CLIENTID_SDMA0:
  1212. switch (entry->ring_id) {
  1213. case 0:
  1214. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1215. break;
  1216. case 1:
  1217. /* XXX compute */
  1218. break;
  1219. case 2:
  1220. /* XXX compute */
  1221. break;
  1222. case 3:
  1223. /* XXX page queue*/
  1224. break;
  1225. }
  1226. break;
  1227. case SOC15_IH_CLIENTID_SDMA1:
  1228. switch (entry->ring_id) {
  1229. case 0:
  1230. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1231. break;
  1232. case 1:
  1233. /* XXX compute */
  1234. break;
  1235. case 2:
  1236. /* XXX compute */
  1237. break;
  1238. case 3:
  1239. /* XXX page queue*/
  1240. break;
  1241. }
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1247. struct amdgpu_irq_src *source,
  1248. struct amdgpu_iv_entry *entry)
  1249. {
  1250. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1251. schedule_work(&adev->reset_work);
  1252. return 0;
  1253. }
  1254. static void sdma_v4_0_update_medium_grain_clock_gating(
  1255. struct amdgpu_device *adev,
  1256. bool enable)
  1257. {
  1258. uint32_t data, def;
  1259. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1260. /* enable sdma0 clock gating */
  1261. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1262. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1263. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1264. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1265. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1266. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1267. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1268. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1269. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1270. if (def != data)
  1271. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1272. if (adev->sdma.num_instances > 1) {
  1273. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1274. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1275. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1276. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1277. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1278. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1279. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1280. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1281. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1282. if (def != data)
  1283. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1284. }
  1285. } else {
  1286. /* disable sdma0 clock gating */
  1287. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1288. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1289. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1290. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1291. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1292. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1293. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1294. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1295. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1296. if (def != data)
  1297. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1298. if (adev->sdma.num_instances > 1) {
  1299. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1300. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1301. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1302. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1303. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1304. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1305. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1306. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1307. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1308. if (def != data)
  1309. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1310. }
  1311. }
  1312. }
  1313. static void sdma_v4_0_update_medium_grain_light_sleep(
  1314. struct amdgpu_device *adev,
  1315. bool enable)
  1316. {
  1317. uint32_t data, def;
  1318. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1319. /* 1-not override: enable sdma0 mem light sleep */
  1320. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1321. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1322. if (def != data)
  1323. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1324. /* 1-not override: enable sdma1 mem light sleep */
  1325. if (adev->sdma.num_instances > 1) {
  1326. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1327. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1328. if (def != data)
  1329. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1330. }
  1331. } else {
  1332. /* 0-override:disable sdma0 mem light sleep */
  1333. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1334. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1335. if (def != data)
  1336. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1337. /* 0-override:disable sdma1 mem light sleep */
  1338. if (adev->sdma.num_instances > 1) {
  1339. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1340. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1341. if (def != data)
  1342. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1343. }
  1344. }
  1345. }
  1346. static int sdma_v4_0_set_clockgating_state(void *handle,
  1347. enum amd_clockgating_state state)
  1348. {
  1349. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1350. if (amdgpu_sriov_vf(adev))
  1351. return 0;
  1352. switch (adev->asic_type) {
  1353. case CHIP_VEGA10:
  1354. case CHIP_VEGA12:
  1355. case CHIP_VEGA20:
  1356. case CHIP_RAVEN:
  1357. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1358. state == AMD_CG_STATE_GATE ? true : false);
  1359. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1360. state == AMD_CG_STATE_GATE ? true : false);
  1361. break;
  1362. default:
  1363. break;
  1364. }
  1365. return 0;
  1366. }
  1367. static int sdma_v4_0_set_powergating_state(void *handle,
  1368. enum amd_powergating_state state)
  1369. {
  1370. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1371. switch (adev->asic_type) {
  1372. case CHIP_RAVEN:
  1373. sdma_v4_1_update_power_gating(adev,
  1374. state == AMD_PG_STATE_GATE ? true : false);
  1375. break;
  1376. default:
  1377. break;
  1378. }
  1379. return 0;
  1380. }
  1381. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1382. {
  1383. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1384. int data;
  1385. if (amdgpu_sriov_vf(adev))
  1386. *flags = 0;
  1387. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1388. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1389. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1390. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1391. /* AMD_CG_SUPPORT_SDMA_LS */
  1392. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1393. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1394. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1395. }
  1396. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1397. .name = "sdma_v4_0",
  1398. .early_init = sdma_v4_0_early_init,
  1399. .late_init = NULL,
  1400. .sw_init = sdma_v4_0_sw_init,
  1401. .sw_fini = sdma_v4_0_sw_fini,
  1402. .hw_init = sdma_v4_0_hw_init,
  1403. .hw_fini = sdma_v4_0_hw_fini,
  1404. .suspend = sdma_v4_0_suspend,
  1405. .resume = sdma_v4_0_resume,
  1406. .is_idle = sdma_v4_0_is_idle,
  1407. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1408. .soft_reset = sdma_v4_0_soft_reset,
  1409. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1410. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1411. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1412. };
  1413. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1414. .type = AMDGPU_RING_TYPE_SDMA,
  1415. .align_mask = 0xf,
  1416. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1417. .support_64bit_ptrs = true,
  1418. .vmhub = AMDGPU_MMHUB,
  1419. .get_rptr = sdma_v4_0_ring_get_rptr,
  1420. .get_wptr = sdma_v4_0_ring_get_wptr,
  1421. .set_wptr = sdma_v4_0_ring_set_wptr,
  1422. .emit_frame_size =
  1423. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1424. 3 + /* hdp invalidate */
  1425. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1426. /* sdma_v4_0_ring_emit_vm_flush */
  1427. SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
  1428. SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
  1429. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1430. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1431. .emit_ib = sdma_v4_0_ring_emit_ib,
  1432. .emit_fence = sdma_v4_0_ring_emit_fence,
  1433. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1434. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1435. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1436. .test_ring = sdma_v4_0_ring_test_ring,
  1437. .test_ib = sdma_v4_0_ring_test_ib,
  1438. .insert_nop = sdma_v4_0_ring_insert_nop,
  1439. .pad_ib = sdma_v4_0_ring_pad_ib,
  1440. .emit_wreg = sdma_v4_0_ring_emit_wreg,
  1441. .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
  1442. .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
  1443. };
  1444. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1445. {
  1446. int i;
  1447. for (i = 0; i < adev->sdma.num_instances; i++) {
  1448. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1449. adev->sdma.instance[i].ring.me = i;
  1450. }
  1451. }
  1452. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1453. .set = sdma_v4_0_set_trap_irq_state,
  1454. .process = sdma_v4_0_process_trap_irq,
  1455. };
  1456. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1457. .process = sdma_v4_0_process_illegal_inst_irq,
  1458. };
  1459. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1460. {
  1461. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1462. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1463. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1464. }
  1465. /**
  1466. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1467. *
  1468. * @ring: amdgpu_ring structure holding ring information
  1469. * @src_offset: src GPU address
  1470. * @dst_offset: dst GPU address
  1471. * @byte_count: number of bytes to xfer
  1472. *
  1473. * Copy GPU buffers using the DMA engine (VEGA10/12).
  1474. * Used by the amdgpu ttm implementation to move pages if
  1475. * registered as the asic copy callback.
  1476. */
  1477. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1478. uint64_t src_offset,
  1479. uint64_t dst_offset,
  1480. uint32_t byte_count)
  1481. {
  1482. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1483. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1484. ib->ptr[ib->length_dw++] = byte_count - 1;
  1485. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1486. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1487. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1488. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1489. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1490. }
  1491. /**
  1492. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1493. *
  1494. * @ring: amdgpu_ring structure holding ring information
  1495. * @src_data: value to write to buffer
  1496. * @dst_offset: dst GPU address
  1497. * @byte_count: number of bytes to xfer
  1498. *
  1499. * Fill GPU buffers using the DMA engine (VEGA10/12).
  1500. */
  1501. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1502. uint32_t src_data,
  1503. uint64_t dst_offset,
  1504. uint32_t byte_count)
  1505. {
  1506. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1507. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1508. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1509. ib->ptr[ib->length_dw++] = src_data;
  1510. ib->ptr[ib->length_dw++] = byte_count - 1;
  1511. }
  1512. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1513. .copy_max_bytes = 0x400000,
  1514. .copy_num_dw = 7,
  1515. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1516. .fill_max_bytes = 0x400000,
  1517. .fill_num_dw = 5,
  1518. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1519. };
  1520. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1521. {
  1522. if (adev->mman.buffer_funcs == NULL) {
  1523. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1524. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1525. }
  1526. }
  1527. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1528. .copy_pte_num_dw = 7,
  1529. .copy_pte = sdma_v4_0_vm_copy_pte,
  1530. .write_pte = sdma_v4_0_vm_write_pte,
  1531. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1532. };
  1533. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1534. {
  1535. unsigned i;
  1536. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1537. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1538. for (i = 0; i < adev->sdma.num_instances; i++)
  1539. adev->vm_manager.vm_pte_rings[i] =
  1540. &adev->sdma.instance[i].ring;
  1541. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1542. }
  1543. }
  1544. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1545. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1546. .major = 4,
  1547. .minor = 0,
  1548. .rev = 0,
  1549. .funcs = &sdma_v4_0_ip_funcs,
  1550. };