kv_dpm.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <drm/drmP.h>
  24. #include "amdgpu.h"
  25. #include "amdgpu_pm.h"
  26. #include "cikd.h"
  27. #include "atom.h"
  28. #include "amdgpu_atombios.h"
  29. #include "amdgpu_dpm.h"
  30. #include "kv_dpm.h"
  31. #include "gfx_v7_0.h"
  32. #include <linux/seq_file.h>
  33. #include "smu/smu_7_0_0_d.h"
  34. #include "smu/smu_7_0_0_sh_mask.h"
  35. #include "gca/gfx_7_2_d.h"
  36. #include "gca/gfx_7_2_sh_mask.h"
  37. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  38. #define KV_MINIMUM_ENGINE_CLOCK 800
  39. #define SMC_RAM_END 0x40000
  40. static const struct amd_pm_funcs kv_dpm_funcs;
  41. static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev);
  42. static int kv_enable_nb_dpm(struct amdgpu_device *adev,
  43. bool enable);
  44. static void kv_init_graphics_levels(struct amdgpu_device *adev);
  45. static int kv_calculate_ds_divider(struct amdgpu_device *adev);
  46. static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev);
  47. static int kv_calculate_dpm_settings(struct amdgpu_device *adev);
  48. static void kv_enable_new_levels(struct amdgpu_device *adev);
  49. static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
  50. struct amdgpu_ps *new_rps);
  51. static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level);
  52. static int kv_set_enabled_levels(struct amdgpu_device *adev);
  53. static int kv_force_dpm_highest(struct amdgpu_device *adev);
  54. static int kv_force_dpm_lowest(struct amdgpu_device *adev);
  55. static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
  56. struct amdgpu_ps *new_rps,
  57. struct amdgpu_ps *old_rps);
  58. static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
  59. int min_temp, int max_temp);
  60. static int kv_init_fps_limits(struct amdgpu_device *adev);
  61. static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate);
  62. static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate);
  63. static u32 kv_convert_vid2_to_vid7(struct amdgpu_device *adev,
  64. struct sumo_vid_mapping_table *vid_mapping_table,
  65. u32 vid_2bit)
  66. {
  67. struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
  68. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  69. u32 i;
  70. if (vddc_sclk_table && vddc_sclk_table->count) {
  71. if (vid_2bit < vddc_sclk_table->count)
  72. return vddc_sclk_table->entries[vid_2bit].v;
  73. else
  74. return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
  75. } else {
  76. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  77. if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
  78. return vid_mapping_table->entries[i].vid_7bit;
  79. }
  80. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
  81. }
  82. }
  83. static u32 kv_convert_vid7_to_vid2(struct amdgpu_device *adev,
  84. struct sumo_vid_mapping_table *vid_mapping_table,
  85. u32 vid_7bit)
  86. {
  87. struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table =
  88. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  89. u32 i;
  90. if (vddc_sclk_table && vddc_sclk_table->count) {
  91. for (i = 0; i < vddc_sclk_table->count; i++) {
  92. if (vddc_sclk_table->entries[i].v == vid_7bit)
  93. return i;
  94. }
  95. return vddc_sclk_table->count - 1;
  96. } else {
  97. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  98. if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
  99. return vid_mapping_table->entries[i].vid_2bit;
  100. }
  101. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
  102. }
  103. }
  104. static void sumo_take_smu_control(struct amdgpu_device *adev, bool enable)
  105. {
  106. /* This bit selects who handles display phy powergating.
  107. * Clear the bit to let atom handle it.
  108. * Set it to let the driver handle it.
  109. * For now we just let atom handle it.
  110. */
  111. #if 0
  112. u32 v = RREG32(mmDOUT_SCRATCH3);
  113. if (enable)
  114. v |= 0x4;
  115. else
  116. v &= 0xFFFFFFFB;
  117. WREG32(mmDOUT_SCRATCH3, v);
  118. #endif
  119. }
  120. static void sumo_construct_sclk_voltage_mapping_table(struct amdgpu_device *adev,
  121. struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table,
  122. ATOM_AVAILABLE_SCLK_LIST *table)
  123. {
  124. u32 i;
  125. u32 n = 0;
  126. u32 prev_sclk = 0;
  127. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
  128. if (table[i].ulSupportedSCLK > prev_sclk) {
  129. sclk_voltage_mapping_table->entries[n].sclk_frequency =
  130. table[i].ulSupportedSCLK;
  131. sclk_voltage_mapping_table->entries[n].vid_2bit =
  132. table[i].usVoltageIndex;
  133. prev_sclk = table[i].ulSupportedSCLK;
  134. n++;
  135. }
  136. }
  137. sclk_voltage_mapping_table->num_max_dpm_entries = n;
  138. }
  139. static void sumo_construct_vid_mapping_table(struct amdgpu_device *adev,
  140. struct sumo_vid_mapping_table *vid_mapping_table,
  141. ATOM_AVAILABLE_SCLK_LIST *table)
  142. {
  143. u32 i, j;
  144. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
  145. if (table[i].ulSupportedSCLK != 0) {
  146. vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit =
  147. table[i].usVoltageID;
  148. vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit =
  149. table[i].usVoltageIndex;
  150. }
  151. }
  152. for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
  153. if (vid_mapping_table->entries[i].vid_7bit == 0) {
  154. for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) {
  155. if (vid_mapping_table->entries[j].vid_7bit != 0) {
  156. vid_mapping_table->entries[i] =
  157. vid_mapping_table->entries[j];
  158. vid_mapping_table->entries[j].vid_7bit = 0;
  159. break;
  160. }
  161. }
  162. if (j == SUMO_MAX_NUMBER_VOLTAGES)
  163. break;
  164. }
  165. }
  166. vid_mapping_table->num_entries = i;
  167. }
  168. #if 0
  169. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  170. {
  171. { 0, 4, 1 },
  172. { 1, 4, 1 },
  173. { 2, 5, 1 },
  174. { 3, 4, 2 },
  175. { 4, 1, 1 },
  176. { 5, 5, 2 },
  177. { 6, 6, 1 },
  178. { 7, 9, 2 },
  179. { 0xffffffff }
  180. };
  181. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  182. {
  183. { 0, 4, 1 },
  184. { 0xffffffff }
  185. };
  186. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  187. {
  188. { 0, 4, 1 },
  189. { 0xffffffff }
  190. };
  191. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  192. {
  193. { 0, 4, 1 },
  194. { 0xffffffff }
  195. };
  196. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  197. {
  198. { 0, 4, 1 },
  199. { 0xffffffff }
  200. };
  201. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  202. {
  203. { 0, 4, 1 },
  204. { 1, 4, 1 },
  205. { 2, 5, 1 },
  206. { 3, 4, 1 },
  207. { 4, 1, 1 },
  208. { 5, 5, 1 },
  209. { 6, 6, 1 },
  210. { 7, 9, 1 },
  211. { 8, 4, 1 },
  212. { 9, 2, 1 },
  213. { 10, 3, 1 },
  214. { 11, 6, 1 },
  215. { 12, 8, 2 },
  216. { 13, 1, 1 },
  217. { 14, 2, 1 },
  218. { 15, 3, 1 },
  219. { 16, 1, 1 },
  220. { 17, 4, 1 },
  221. { 18, 3, 1 },
  222. { 19, 1, 1 },
  223. { 20, 8, 1 },
  224. { 21, 5, 1 },
  225. { 22, 1, 1 },
  226. { 23, 1, 1 },
  227. { 24, 4, 1 },
  228. { 27, 6, 1 },
  229. { 28, 1, 1 },
  230. { 0xffffffff }
  231. };
  232. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  233. {
  234. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  235. };
  236. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  237. {
  238. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  239. };
  240. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  241. {
  242. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  243. };
  244. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  245. {
  246. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  247. };
  248. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  249. {
  250. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  251. };
  252. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  253. {
  254. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  255. };
  256. #endif
  257. static const struct kv_pt_config_reg didt_config_kv[] =
  258. {
  259. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  260. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  261. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  262. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  263. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  264. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  265. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  266. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  267. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  268. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  269. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  270. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  271. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  272. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  273. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  274. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  275. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  276. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  277. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  278. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  279. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  280. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  281. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  282. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  283. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  284. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  285. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  286. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  287. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  288. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  289. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  290. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  291. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  292. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  293. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  294. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  295. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  296. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  297. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  298. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  299. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  300. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  301. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  302. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  303. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  304. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  305. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  306. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  307. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  308. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  309. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  310. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  311. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  312. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  313. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  314. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  315. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  316. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  317. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  318. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  319. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  320. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  321. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  322. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  323. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  324. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  325. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  326. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  327. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  328. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  329. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  330. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  331. { 0xFFFFFFFF }
  332. };
  333. static struct kv_ps *kv_get_ps(struct amdgpu_ps *rps)
  334. {
  335. struct kv_ps *ps = rps->ps_priv;
  336. return ps;
  337. }
  338. static struct kv_power_info *kv_get_pi(struct amdgpu_device *adev)
  339. {
  340. struct kv_power_info *pi = adev->pm.dpm.priv;
  341. return pi;
  342. }
  343. #if 0
  344. static void kv_program_local_cac_table(struct amdgpu_device *adev,
  345. const struct kv_lcac_config_values *local_cac_table,
  346. const struct kv_lcac_config_reg *local_cac_reg)
  347. {
  348. u32 i, count, data;
  349. const struct kv_lcac_config_values *values = local_cac_table;
  350. while (values->block_id != 0xffffffff) {
  351. count = values->signal_id;
  352. for (i = 0; i < count; i++) {
  353. data = ((values->block_id << local_cac_reg->block_shift) &
  354. local_cac_reg->block_mask);
  355. data |= ((i << local_cac_reg->signal_shift) &
  356. local_cac_reg->signal_mask);
  357. data |= ((values->t << local_cac_reg->t_shift) &
  358. local_cac_reg->t_mask);
  359. data |= ((1 << local_cac_reg->enable_shift) &
  360. local_cac_reg->enable_mask);
  361. WREG32_SMC(local_cac_reg->cntl, data);
  362. }
  363. values++;
  364. }
  365. }
  366. #endif
  367. static int kv_program_pt_config_registers(struct amdgpu_device *adev,
  368. const struct kv_pt_config_reg *cac_config_regs)
  369. {
  370. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  371. u32 data;
  372. u32 cache = 0;
  373. if (config_regs == NULL)
  374. return -EINVAL;
  375. while (config_regs->offset != 0xFFFFFFFF) {
  376. if (config_regs->type == KV_CONFIGREG_CACHE) {
  377. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  378. } else {
  379. switch (config_regs->type) {
  380. case KV_CONFIGREG_SMC_IND:
  381. data = RREG32_SMC(config_regs->offset);
  382. break;
  383. case KV_CONFIGREG_DIDT_IND:
  384. data = RREG32_DIDT(config_regs->offset);
  385. break;
  386. default:
  387. data = RREG32(config_regs->offset);
  388. break;
  389. }
  390. data &= ~config_regs->mask;
  391. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  392. data |= cache;
  393. cache = 0;
  394. switch (config_regs->type) {
  395. case KV_CONFIGREG_SMC_IND:
  396. WREG32_SMC(config_regs->offset, data);
  397. break;
  398. case KV_CONFIGREG_DIDT_IND:
  399. WREG32_DIDT(config_regs->offset, data);
  400. break;
  401. default:
  402. WREG32(config_regs->offset, data);
  403. break;
  404. }
  405. }
  406. config_regs++;
  407. }
  408. return 0;
  409. }
  410. static void kv_do_enable_didt(struct amdgpu_device *adev, bool enable)
  411. {
  412. struct kv_power_info *pi = kv_get_pi(adev);
  413. u32 data;
  414. if (pi->caps_sq_ramping) {
  415. data = RREG32_DIDT(ixDIDT_SQ_CTRL0);
  416. if (enable)
  417. data |= DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
  418. else
  419. data &= ~DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK;
  420. WREG32_DIDT(ixDIDT_SQ_CTRL0, data);
  421. }
  422. if (pi->caps_db_ramping) {
  423. data = RREG32_DIDT(ixDIDT_DB_CTRL0);
  424. if (enable)
  425. data |= DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
  426. else
  427. data &= ~DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK;
  428. WREG32_DIDT(ixDIDT_DB_CTRL0, data);
  429. }
  430. if (pi->caps_td_ramping) {
  431. data = RREG32_DIDT(ixDIDT_TD_CTRL0);
  432. if (enable)
  433. data |= DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
  434. else
  435. data &= ~DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK;
  436. WREG32_DIDT(ixDIDT_TD_CTRL0, data);
  437. }
  438. if (pi->caps_tcp_ramping) {
  439. data = RREG32_DIDT(ixDIDT_TCP_CTRL0);
  440. if (enable)
  441. data |= DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
  442. else
  443. data &= ~DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK;
  444. WREG32_DIDT(ixDIDT_TCP_CTRL0, data);
  445. }
  446. }
  447. static int kv_enable_didt(struct amdgpu_device *adev, bool enable)
  448. {
  449. struct kv_power_info *pi = kv_get_pi(adev);
  450. int ret;
  451. if (pi->caps_sq_ramping ||
  452. pi->caps_db_ramping ||
  453. pi->caps_td_ramping ||
  454. pi->caps_tcp_ramping) {
  455. adev->gfx.rlc.funcs->enter_safe_mode(adev);
  456. if (enable) {
  457. ret = kv_program_pt_config_registers(adev, didt_config_kv);
  458. if (ret) {
  459. adev->gfx.rlc.funcs->exit_safe_mode(adev);
  460. return ret;
  461. }
  462. }
  463. kv_do_enable_didt(adev, enable);
  464. adev->gfx.rlc.funcs->exit_safe_mode(adev);
  465. }
  466. return 0;
  467. }
  468. #if 0
  469. static void kv_initialize_hardware_cac_manager(struct amdgpu_device *adev)
  470. {
  471. struct kv_power_info *pi = kv_get_pi(adev);
  472. if (pi->caps_cac) {
  473. WREG32_SMC(ixLCAC_SX0_OVR_SEL, 0);
  474. WREG32_SMC(ixLCAC_SX0_OVR_VAL, 0);
  475. kv_program_local_cac_table(adev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  476. WREG32_SMC(ixLCAC_MC0_OVR_SEL, 0);
  477. WREG32_SMC(ixLCAC_MC0_OVR_VAL, 0);
  478. kv_program_local_cac_table(adev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  479. WREG32_SMC(ixLCAC_MC1_OVR_SEL, 0);
  480. WREG32_SMC(ixLCAC_MC1_OVR_VAL, 0);
  481. kv_program_local_cac_table(adev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  482. WREG32_SMC(ixLCAC_MC2_OVR_SEL, 0);
  483. WREG32_SMC(ixLCAC_MC2_OVR_VAL, 0);
  484. kv_program_local_cac_table(adev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  485. WREG32_SMC(ixLCAC_MC3_OVR_SEL, 0);
  486. WREG32_SMC(ixLCAC_MC3_OVR_VAL, 0);
  487. kv_program_local_cac_table(adev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  488. WREG32_SMC(ixLCAC_CPL_OVR_SEL, 0);
  489. WREG32_SMC(ixLCAC_CPL_OVR_VAL, 0);
  490. kv_program_local_cac_table(adev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  491. }
  492. }
  493. #endif
  494. static int kv_enable_smc_cac(struct amdgpu_device *adev, bool enable)
  495. {
  496. struct kv_power_info *pi = kv_get_pi(adev);
  497. int ret = 0;
  498. if (pi->caps_cac) {
  499. if (enable) {
  500. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_EnableCac);
  501. if (ret)
  502. pi->cac_enabled = false;
  503. else
  504. pi->cac_enabled = true;
  505. } else if (pi->cac_enabled) {
  506. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DisableCac);
  507. pi->cac_enabled = false;
  508. }
  509. }
  510. return ret;
  511. }
  512. static int kv_process_firmware_header(struct amdgpu_device *adev)
  513. {
  514. struct kv_power_info *pi = kv_get_pi(adev);
  515. u32 tmp;
  516. int ret;
  517. ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
  518. offsetof(SMU7_Firmware_Header, DpmTable),
  519. &tmp, pi->sram_end);
  520. if (ret == 0)
  521. pi->dpm_table_start = tmp;
  522. ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION +
  523. offsetof(SMU7_Firmware_Header, SoftRegisters),
  524. &tmp, pi->sram_end);
  525. if (ret == 0)
  526. pi->soft_regs_start = tmp;
  527. return ret;
  528. }
  529. static int kv_enable_dpm_voltage_scaling(struct amdgpu_device *adev)
  530. {
  531. struct kv_power_info *pi = kv_get_pi(adev);
  532. int ret;
  533. pi->graphics_voltage_change_enable = 1;
  534. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  535. pi->dpm_table_start +
  536. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  537. &pi->graphics_voltage_change_enable,
  538. sizeof(u8), pi->sram_end);
  539. return ret;
  540. }
  541. static int kv_set_dpm_interval(struct amdgpu_device *adev)
  542. {
  543. struct kv_power_info *pi = kv_get_pi(adev);
  544. int ret;
  545. pi->graphics_interval = 1;
  546. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  547. pi->dpm_table_start +
  548. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  549. &pi->graphics_interval,
  550. sizeof(u8), pi->sram_end);
  551. return ret;
  552. }
  553. static int kv_set_dpm_boot_state(struct amdgpu_device *adev)
  554. {
  555. struct kv_power_info *pi = kv_get_pi(adev);
  556. int ret;
  557. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  558. pi->dpm_table_start +
  559. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  560. &pi->graphics_boot_level,
  561. sizeof(u8), pi->sram_end);
  562. return ret;
  563. }
  564. static void kv_program_vc(struct amdgpu_device *adev)
  565. {
  566. WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0x3FFFC100);
  567. }
  568. static void kv_clear_vc(struct amdgpu_device *adev)
  569. {
  570. WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
  571. }
  572. static int kv_set_divider_value(struct amdgpu_device *adev,
  573. u32 index, u32 sclk)
  574. {
  575. struct kv_power_info *pi = kv_get_pi(adev);
  576. struct atom_clock_dividers dividers;
  577. int ret;
  578. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  579. sclk, false, &dividers);
  580. if (ret)
  581. return ret;
  582. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  583. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  584. return 0;
  585. }
  586. static u16 kv_convert_8bit_index_to_voltage(struct amdgpu_device *adev,
  587. u16 voltage)
  588. {
  589. return 6200 - (voltage * 25);
  590. }
  591. static u16 kv_convert_2bit_index_to_voltage(struct amdgpu_device *adev,
  592. u32 vid_2bit)
  593. {
  594. struct kv_power_info *pi = kv_get_pi(adev);
  595. u32 vid_8bit = kv_convert_vid2_to_vid7(adev,
  596. &pi->sys_info.vid_mapping_table,
  597. vid_2bit);
  598. return kv_convert_8bit_index_to_voltage(adev, (u16)vid_8bit);
  599. }
  600. static int kv_set_vid(struct amdgpu_device *adev, u32 index, u32 vid)
  601. {
  602. struct kv_power_info *pi = kv_get_pi(adev);
  603. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  604. pi->graphics_level[index].MinVddNb =
  605. cpu_to_be32(kv_convert_2bit_index_to_voltage(adev, vid));
  606. return 0;
  607. }
  608. static int kv_set_at(struct amdgpu_device *adev, u32 index, u32 at)
  609. {
  610. struct kv_power_info *pi = kv_get_pi(adev);
  611. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  612. return 0;
  613. }
  614. static void kv_dpm_power_level_enable(struct amdgpu_device *adev,
  615. u32 index, bool enable)
  616. {
  617. struct kv_power_info *pi = kv_get_pi(adev);
  618. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  619. }
  620. static void kv_start_dpm(struct amdgpu_device *adev)
  621. {
  622. u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT);
  623. tmp |= GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK;
  624. WREG32_SMC(ixGENERAL_PWRMGT, tmp);
  625. amdgpu_kv_smc_dpm_enable(adev, true);
  626. }
  627. static void kv_stop_dpm(struct amdgpu_device *adev)
  628. {
  629. amdgpu_kv_smc_dpm_enable(adev, false);
  630. }
  631. static void kv_start_am(struct amdgpu_device *adev)
  632. {
  633. u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
  634. sclk_pwrmgt_cntl &= ~(SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
  635. SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
  636. sclk_pwrmgt_cntl |= SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK;
  637. WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  638. }
  639. static void kv_reset_am(struct amdgpu_device *adev)
  640. {
  641. u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL);
  642. sclk_pwrmgt_cntl |= (SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK |
  643. SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK);
  644. WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  645. }
  646. static int kv_freeze_sclk_dpm(struct amdgpu_device *adev, bool freeze)
  647. {
  648. return amdgpu_kv_notify_message_to_smu(adev, freeze ?
  649. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  650. }
  651. static int kv_force_lowest_valid(struct amdgpu_device *adev)
  652. {
  653. return kv_force_dpm_lowest(adev);
  654. }
  655. static int kv_unforce_levels(struct amdgpu_device *adev)
  656. {
  657. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  658. return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NoForcedLevel);
  659. else
  660. return kv_set_enabled_levels(adev);
  661. }
  662. static int kv_update_sclk_t(struct amdgpu_device *adev)
  663. {
  664. struct kv_power_info *pi = kv_get_pi(adev);
  665. u32 low_sclk_interrupt_t = 0;
  666. int ret = 0;
  667. if (pi->caps_sclk_throttle_low_notification) {
  668. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  669. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  670. pi->dpm_table_start +
  671. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  672. (u8 *)&low_sclk_interrupt_t,
  673. sizeof(u32), pi->sram_end);
  674. }
  675. return ret;
  676. }
  677. static int kv_program_bootup_state(struct amdgpu_device *adev)
  678. {
  679. struct kv_power_info *pi = kv_get_pi(adev);
  680. u32 i;
  681. struct amdgpu_clock_voltage_dependency_table *table =
  682. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  683. if (table && table->count) {
  684. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  685. if (table->entries[i].clk == pi->boot_pl.sclk)
  686. break;
  687. }
  688. pi->graphics_boot_level = (u8)i;
  689. kv_dpm_power_level_enable(adev, i, true);
  690. } else {
  691. struct sumo_sclk_voltage_mapping_table *table =
  692. &pi->sys_info.sclk_voltage_mapping_table;
  693. if (table->num_max_dpm_entries == 0)
  694. return -EINVAL;
  695. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  696. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  697. break;
  698. }
  699. pi->graphics_boot_level = (u8)i;
  700. kv_dpm_power_level_enable(adev, i, true);
  701. }
  702. return 0;
  703. }
  704. static int kv_enable_auto_thermal_throttling(struct amdgpu_device *adev)
  705. {
  706. struct kv_power_info *pi = kv_get_pi(adev);
  707. int ret;
  708. pi->graphics_therm_throttle_enable = 1;
  709. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  710. pi->dpm_table_start +
  711. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  712. &pi->graphics_therm_throttle_enable,
  713. sizeof(u8), pi->sram_end);
  714. return ret;
  715. }
  716. static int kv_upload_dpm_settings(struct amdgpu_device *adev)
  717. {
  718. struct kv_power_info *pi = kv_get_pi(adev);
  719. int ret;
  720. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  721. pi->dpm_table_start +
  722. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  723. (u8 *)&pi->graphics_level,
  724. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  725. pi->sram_end);
  726. if (ret)
  727. return ret;
  728. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  729. pi->dpm_table_start +
  730. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  731. &pi->graphics_dpm_level_count,
  732. sizeof(u8), pi->sram_end);
  733. return ret;
  734. }
  735. static u32 kv_get_clock_difference(u32 a, u32 b)
  736. {
  737. return (a >= b) ? a - b : b - a;
  738. }
  739. static u32 kv_get_clk_bypass(struct amdgpu_device *adev, u32 clk)
  740. {
  741. struct kv_power_info *pi = kv_get_pi(adev);
  742. u32 value;
  743. if (pi->caps_enable_dfs_bypass) {
  744. if (kv_get_clock_difference(clk, 40000) < 200)
  745. value = 3;
  746. else if (kv_get_clock_difference(clk, 30000) < 200)
  747. value = 2;
  748. else if (kv_get_clock_difference(clk, 20000) < 200)
  749. value = 7;
  750. else if (kv_get_clock_difference(clk, 15000) < 200)
  751. value = 6;
  752. else if (kv_get_clock_difference(clk, 10000) < 200)
  753. value = 8;
  754. else
  755. value = 0;
  756. } else {
  757. value = 0;
  758. }
  759. return value;
  760. }
  761. static int kv_populate_uvd_table(struct amdgpu_device *adev)
  762. {
  763. struct kv_power_info *pi = kv_get_pi(adev);
  764. struct amdgpu_uvd_clock_voltage_dependency_table *table =
  765. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  766. struct atom_clock_dividers dividers;
  767. int ret;
  768. u32 i;
  769. if (table == NULL || table->count == 0)
  770. return 0;
  771. pi->uvd_level_count = 0;
  772. for (i = 0; i < table->count; i++) {
  773. if (pi->high_voltage_t &&
  774. (pi->high_voltage_t < table->entries[i].v))
  775. break;
  776. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  777. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  778. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  779. pi->uvd_level[i].VClkBypassCntl =
  780. (u8)kv_get_clk_bypass(adev, table->entries[i].vclk);
  781. pi->uvd_level[i].DClkBypassCntl =
  782. (u8)kv_get_clk_bypass(adev, table->entries[i].dclk);
  783. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  784. table->entries[i].vclk, false, &dividers);
  785. if (ret)
  786. return ret;
  787. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  788. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  789. table->entries[i].dclk, false, &dividers);
  790. if (ret)
  791. return ret;
  792. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  793. pi->uvd_level_count++;
  794. }
  795. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  796. pi->dpm_table_start +
  797. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  798. (u8 *)&pi->uvd_level_count,
  799. sizeof(u8), pi->sram_end);
  800. if (ret)
  801. return ret;
  802. pi->uvd_interval = 1;
  803. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  804. pi->dpm_table_start +
  805. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  806. &pi->uvd_interval,
  807. sizeof(u8), pi->sram_end);
  808. if (ret)
  809. return ret;
  810. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  811. pi->dpm_table_start +
  812. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  813. (u8 *)&pi->uvd_level,
  814. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  815. pi->sram_end);
  816. return ret;
  817. }
  818. static int kv_populate_vce_table(struct amdgpu_device *adev)
  819. {
  820. struct kv_power_info *pi = kv_get_pi(adev);
  821. int ret;
  822. u32 i;
  823. struct amdgpu_vce_clock_voltage_dependency_table *table =
  824. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  825. struct atom_clock_dividers dividers;
  826. if (table == NULL || table->count == 0)
  827. return 0;
  828. pi->vce_level_count = 0;
  829. for (i = 0; i < table->count; i++) {
  830. if (pi->high_voltage_t &&
  831. pi->high_voltage_t < table->entries[i].v)
  832. break;
  833. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  834. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  835. pi->vce_level[i].ClkBypassCntl =
  836. (u8)kv_get_clk_bypass(adev, table->entries[i].evclk);
  837. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  838. table->entries[i].evclk, false, &dividers);
  839. if (ret)
  840. return ret;
  841. pi->vce_level[i].Divider = (u8)dividers.post_div;
  842. pi->vce_level_count++;
  843. }
  844. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  845. pi->dpm_table_start +
  846. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  847. (u8 *)&pi->vce_level_count,
  848. sizeof(u8),
  849. pi->sram_end);
  850. if (ret)
  851. return ret;
  852. pi->vce_interval = 1;
  853. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  854. pi->dpm_table_start +
  855. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  856. (u8 *)&pi->vce_interval,
  857. sizeof(u8),
  858. pi->sram_end);
  859. if (ret)
  860. return ret;
  861. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  862. pi->dpm_table_start +
  863. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  864. (u8 *)&pi->vce_level,
  865. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  866. pi->sram_end);
  867. return ret;
  868. }
  869. static int kv_populate_samu_table(struct amdgpu_device *adev)
  870. {
  871. struct kv_power_info *pi = kv_get_pi(adev);
  872. struct amdgpu_clock_voltage_dependency_table *table =
  873. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  874. struct atom_clock_dividers dividers;
  875. int ret;
  876. u32 i;
  877. if (table == NULL || table->count == 0)
  878. return 0;
  879. pi->samu_level_count = 0;
  880. for (i = 0; i < table->count; i++) {
  881. if (pi->high_voltage_t &&
  882. pi->high_voltage_t < table->entries[i].v)
  883. break;
  884. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  885. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  886. pi->samu_level[i].ClkBypassCntl =
  887. (u8)kv_get_clk_bypass(adev, table->entries[i].clk);
  888. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  889. table->entries[i].clk, false, &dividers);
  890. if (ret)
  891. return ret;
  892. pi->samu_level[i].Divider = (u8)dividers.post_div;
  893. pi->samu_level_count++;
  894. }
  895. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  896. pi->dpm_table_start +
  897. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  898. (u8 *)&pi->samu_level_count,
  899. sizeof(u8),
  900. pi->sram_end);
  901. if (ret)
  902. return ret;
  903. pi->samu_interval = 1;
  904. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  905. pi->dpm_table_start +
  906. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  907. (u8 *)&pi->samu_interval,
  908. sizeof(u8),
  909. pi->sram_end);
  910. if (ret)
  911. return ret;
  912. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  913. pi->dpm_table_start +
  914. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  915. (u8 *)&pi->samu_level,
  916. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  917. pi->sram_end);
  918. if (ret)
  919. return ret;
  920. return ret;
  921. }
  922. static int kv_populate_acp_table(struct amdgpu_device *adev)
  923. {
  924. struct kv_power_info *pi = kv_get_pi(adev);
  925. struct amdgpu_clock_voltage_dependency_table *table =
  926. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  927. struct atom_clock_dividers dividers;
  928. int ret;
  929. u32 i;
  930. if (table == NULL || table->count == 0)
  931. return 0;
  932. pi->acp_level_count = 0;
  933. for (i = 0; i < table->count; i++) {
  934. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  935. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  936. ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM,
  937. table->entries[i].clk, false, &dividers);
  938. if (ret)
  939. return ret;
  940. pi->acp_level[i].Divider = (u8)dividers.post_div;
  941. pi->acp_level_count++;
  942. }
  943. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  944. pi->dpm_table_start +
  945. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  946. (u8 *)&pi->acp_level_count,
  947. sizeof(u8),
  948. pi->sram_end);
  949. if (ret)
  950. return ret;
  951. pi->acp_interval = 1;
  952. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  953. pi->dpm_table_start +
  954. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  955. (u8 *)&pi->acp_interval,
  956. sizeof(u8),
  957. pi->sram_end);
  958. if (ret)
  959. return ret;
  960. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  961. pi->dpm_table_start +
  962. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  963. (u8 *)&pi->acp_level,
  964. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  965. pi->sram_end);
  966. if (ret)
  967. return ret;
  968. return ret;
  969. }
  970. static void kv_calculate_dfs_bypass_settings(struct amdgpu_device *adev)
  971. {
  972. struct kv_power_info *pi = kv_get_pi(adev);
  973. u32 i;
  974. struct amdgpu_clock_voltage_dependency_table *table =
  975. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  976. if (table && table->count) {
  977. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  978. if (pi->caps_enable_dfs_bypass) {
  979. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  980. pi->graphics_level[i].ClkBypassCntl = 3;
  981. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  982. pi->graphics_level[i].ClkBypassCntl = 2;
  983. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  984. pi->graphics_level[i].ClkBypassCntl = 7;
  985. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  986. pi->graphics_level[i].ClkBypassCntl = 6;
  987. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  988. pi->graphics_level[i].ClkBypassCntl = 8;
  989. else
  990. pi->graphics_level[i].ClkBypassCntl = 0;
  991. } else {
  992. pi->graphics_level[i].ClkBypassCntl = 0;
  993. }
  994. }
  995. } else {
  996. struct sumo_sclk_voltage_mapping_table *table =
  997. &pi->sys_info.sclk_voltage_mapping_table;
  998. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  999. if (pi->caps_enable_dfs_bypass) {
  1000. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  1001. pi->graphics_level[i].ClkBypassCntl = 3;
  1002. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  1003. pi->graphics_level[i].ClkBypassCntl = 2;
  1004. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  1005. pi->graphics_level[i].ClkBypassCntl = 7;
  1006. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  1007. pi->graphics_level[i].ClkBypassCntl = 6;
  1008. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  1009. pi->graphics_level[i].ClkBypassCntl = 8;
  1010. else
  1011. pi->graphics_level[i].ClkBypassCntl = 0;
  1012. } else {
  1013. pi->graphics_level[i].ClkBypassCntl = 0;
  1014. }
  1015. }
  1016. }
  1017. }
  1018. static int kv_enable_ulv(struct amdgpu_device *adev, bool enable)
  1019. {
  1020. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1021. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  1022. }
  1023. static void kv_reset_acp_boot_level(struct amdgpu_device *adev)
  1024. {
  1025. struct kv_power_info *pi = kv_get_pi(adev);
  1026. pi->acp_boot_level = 0xff;
  1027. }
  1028. static void kv_update_current_ps(struct amdgpu_device *adev,
  1029. struct amdgpu_ps *rps)
  1030. {
  1031. struct kv_ps *new_ps = kv_get_ps(rps);
  1032. struct kv_power_info *pi = kv_get_pi(adev);
  1033. pi->current_rps = *rps;
  1034. pi->current_ps = *new_ps;
  1035. pi->current_rps.ps_priv = &pi->current_ps;
  1036. adev->pm.dpm.current_ps = &pi->current_rps;
  1037. }
  1038. static void kv_update_requested_ps(struct amdgpu_device *adev,
  1039. struct amdgpu_ps *rps)
  1040. {
  1041. struct kv_ps *new_ps = kv_get_ps(rps);
  1042. struct kv_power_info *pi = kv_get_pi(adev);
  1043. pi->requested_rps = *rps;
  1044. pi->requested_ps = *new_ps;
  1045. pi->requested_rps.ps_priv = &pi->requested_ps;
  1046. adev->pm.dpm.requested_ps = &pi->requested_rps;
  1047. }
  1048. static void kv_dpm_enable_bapm(void *handle, bool enable)
  1049. {
  1050. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1051. struct kv_power_info *pi = kv_get_pi(adev);
  1052. int ret;
  1053. if (pi->bapm_enable) {
  1054. ret = amdgpu_kv_smc_bapm_enable(adev, enable);
  1055. if (ret)
  1056. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1057. }
  1058. }
  1059. static int kv_dpm_enable(struct amdgpu_device *adev)
  1060. {
  1061. struct kv_power_info *pi = kv_get_pi(adev);
  1062. int ret;
  1063. ret = kv_process_firmware_header(adev);
  1064. if (ret) {
  1065. DRM_ERROR("kv_process_firmware_header failed\n");
  1066. return ret;
  1067. }
  1068. kv_init_fps_limits(adev);
  1069. kv_init_graphics_levels(adev);
  1070. ret = kv_program_bootup_state(adev);
  1071. if (ret) {
  1072. DRM_ERROR("kv_program_bootup_state failed\n");
  1073. return ret;
  1074. }
  1075. kv_calculate_dfs_bypass_settings(adev);
  1076. ret = kv_upload_dpm_settings(adev);
  1077. if (ret) {
  1078. DRM_ERROR("kv_upload_dpm_settings failed\n");
  1079. return ret;
  1080. }
  1081. ret = kv_populate_uvd_table(adev);
  1082. if (ret) {
  1083. DRM_ERROR("kv_populate_uvd_table failed\n");
  1084. return ret;
  1085. }
  1086. ret = kv_populate_vce_table(adev);
  1087. if (ret) {
  1088. DRM_ERROR("kv_populate_vce_table failed\n");
  1089. return ret;
  1090. }
  1091. ret = kv_populate_samu_table(adev);
  1092. if (ret) {
  1093. DRM_ERROR("kv_populate_samu_table failed\n");
  1094. return ret;
  1095. }
  1096. ret = kv_populate_acp_table(adev);
  1097. if (ret) {
  1098. DRM_ERROR("kv_populate_acp_table failed\n");
  1099. return ret;
  1100. }
  1101. kv_program_vc(adev);
  1102. #if 0
  1103. kv_initialize_hardware_cac_manager(adev);
  1104. #endif
  1105. kv_start_am(adev);
  1106. if (pi->enable_auto_thermal_throttling) {
  1107. ret = kv_enable_auto_thermal_throttling(adev);
  1108. if (ret) {
  1109. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  1110. return ret;
  1111. }
  1112. }
  1113. ret = kv_enable_dpm_voltage_scaling(adev);
  1114. if (ret) {
  1115. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  1116. return ret;
  1117. }
  1118. ret = kv_set_dpm_interval(adev);
  1119. if (ret) {
  1120. DRM_ERROR("kv_set_dpm_interval failed\n");
  1121. return ret;
  1122. }
  1123. ret = kv_set_dpm_boot_state(adev);
  1124. if (ret) {
  1125. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  1126. return ret;
  1127. }
  1128. ret = kv_enable_ulv(adev, true);
  1129. if (ret) {
  1130. DRM_ERROR("kv_enable_ulv failed\n");
  1131. return ret;
  1132. }
  1133. kv_start_dpm(adev);
  1134. ret = kv_enable_didt(adev, true);
  1135. if (ret) {
  1136. DRM_ERROR("kv_enable_didt failed\n");
  1137. return ret;
  1138. }
  1139. ret = kv_enable_smc_cac(adev, true);
  1140. if (ret) {
  1141. DRM_ERROR("kv_enable_smc_cac failed\n");
  1142. return ret;
  1143. }
  1144. kv_reset_acp_boot_level(adev);
  1145. ret = amdgpu_kv_smc_bapm_enable(adev, false);
  1146. if (ret) {
  1147. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1148. return ret;
  1149. }
  1150. if (adev->irq.installed &&
  1151. amdgpu_is_internal_thermal_sensor(adev->pm.int_thermal_type)) {
  1152. ret = kv_set_thermal_temperature_range(adev, KV_TEMP_RANGE_MIN, KV_TEMP_RANGE_MAX);
  1153. if (ret) {
  1154. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1155. return ret;
  1156. }
  1157. amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
  1158. AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
  1159. amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq,
  1160. AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
  1161. }
  1162. return ret;
  1163. }
  1164. static void kv_dpm_disable(struct amdgpu_device *adev)
  1165. {
  1166. struct kv_power_info *pi = kv_get_pi(adev);
  1167. amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
  1168. AMDGPU_THERMAL_IRQ_LOW_TO_HIGH);
  1169. amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq,
  1170. AMDGPU_THERMAL_IRQ_HIGH_TO_LOW);
  1171. amdgpu_kv_smc_bapm_enable(adev, false);
  1172. if (adev->asic_type == CHIP_MULLINS)
  1173. kv_enable_nb_dpm(adev, false);
  1174. /* powerup blocks */
  1175. kv_dpm_powergate_acp(adev, false);
  1176. kv_dpm_powergate_samu(adev, false);
  1177. if (pi->caps_vce_pg) /* power on the VCE block */
  1178. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON);
  1179. if (pi->caps_uvd_pg) /* power on the UVD block */
  1180. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON);
  1181. kv_enable_smc_cac(adev, false);
  1182. kv_enable_didt(adev, false);
  1183. kv_clear_vc(adev);
  1184. kv_stop_dpm(adev);
  1185. kv_enable_ulv(adev, false);
  1186. kv_reset_am(adev);
  1187. kv_update_current_ps(adev, adev->pm.dpm.boot_ps);
  1188. }
  1189. #if 0
  1190. static int kv_write_smc_soft_register(struct amdgpu_device *adev,
  1191. u16 reg_offset, u32 value)
  1192. {
  1193. struct kv_power_info *pi = kv_get_pi(adev);
  1194. return amdgpu_kv_copy_bytes_to_smc(adev, pi->soft_regs_start + reg_offset,
  1195. (u8 *)&value, sizeof(u16), pi->sram_end);
  1196. }
  1197. static int kv_read_smc_soft_register(struct amdgpu_device *adev,
  1198. u16 reg_offset, u32 *value)
  1199. {
  1200. struct kv_power_info *pi = kv_get_pi(adev);
  1201. return amdgpu_kv_read_smc_sram_dword(adev, pi->soft_regs_start + reg_offset,
  1202. value, pi->sram_end);
  1203. }
  1204. #endif
  1205. static void kv_init_sclk_t(struct amdgpu_device *adev)
  1206. {
  1207. struct kv_power_info *pi = kv_get_pi(adev);
  1208. pi->low_sclk_interrupt_t = 0;
  1209. }
  1210. static int kv_init_fps_limits(struct amdgpu_device *adev)
  1211. {
  1212. struct kv_power_info *pi = kv_get_pi(adev);
  1213. int ret = 0;
  1214. if (pi->caps_fps) {
  1215. u16 tmp;
  1216. tmp = 45;
  1217. pi->fps_high_t = cpu_to_be16(tmp);
  1218. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1219. pi->dpm_table_start +
  1220. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1221. (u8 *)&pi->fps_high_t,
  1222. sizeof(u16), pi->sram_end);
  1223. tmp = 30;
  1224. pi->fps_low_t = cpu_to_be16(tmp);
  1225. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1226. pi->dpm_table_start +
  1227. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1228. (u8 *)&pi->fps_low_t,
  1229. sizeof(u16), pi->sram_end);
  1230. }
  1231. return ret;
  1232. }
  1233. static void kv_init_powergate_state(struct amdgpu_device *adev)
  1234. {
  1235. struct kv_power_info *pi = kv_get_pi(adev);
  1236. pi->uvd_power_gated = false;
  1237. pi->vce_power_gated = false;
  1238. pi->samu_power_gated = false;
  1239. pi->acp_power_gated = false;
  1240. }
  1241. static int kv_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
  1242. {
  1243. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1244. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1245. }
  1246. static int kv_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
  1247. {
  1248. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1249. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1250. }
  1251. static int kv_enable_samu_dpm(struct amdgpu_device *adev, bool enable)
  1252. {
  1253. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1254. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1255. }
  1256. static int kv_enable_acp_dpm(struct amdgpu_device *adev, bool enable)
  1257. {
  1258. return amdgpu_kv_notify_message_to_smu(adev, enable ?
  1259. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1260. }
  1261. static int kv_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
  1262. {
  1263. struct kv_power_info *pi = kv_get_pi(adev);
  1264. struct amdgpu_uvd_clock_voltage_dependency_table *table =
  1265. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1266. int ret;
  1267. u32 mask;
  1268. if (!gate) {
  1269. if (table->count)
  1270. pi->uvd_boot_level = table->count - 1;
  1271. else
  1272. pi->uvd_boot_level = 0;
  1273. if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
  1274. mask = 1 << pi->uvd_boot_level;
  1275. } else {
  1276. mask = 0x1f;
  1277. }
  1278. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1279. pi->dpm_table_start +
  1280. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1281. (uint8_t *)&pi->uvd_boot_level,
  1282. sizeof(u8), pi->sram_end);
  1283. if (ret)
  1284. return ret;
  1285. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1286. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1287. mask);
  1288. }
  1289. return kv_enable_uvd_dpm(adev, !gate);
  1290. }
  1291. static u8 kv_get_vce_boot_level(struct amdgpu_device *adev, u32 evclk)
  1292. {
  1293. u8 i;
  1294. struct amdgpu_vce_clock_voltage_dependency_table *table =
  1295. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1296. for (i = 0; i < table->count; i++) {
  1297. if (table->entries[i].evclk >= evclk)
  1298. break;
  1299. }
  1300. return i;
  1301. }
  1302. static int kv_update_vce_dpm(struct amdgpu_device *adev,
  1303. struct amdgpu_ps *amdgpu_new_state,
  1304. struct amdgpu_ps *amdgpu_current_state)
  1305. {
  1306. struct kv_power_info *pi = kv_get_pi(adev);
  1307. struct amdgpu_vce_clock_voltage_dependency_table *table =
  1308. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1309. int ret;
  1310. if (amdgpu_new_state->evclk > 0 && amdgpu_current_state->evclk == 0) {
  1311. if (pi->caps_stable_p_state)
  1312. pi->vce_boot_level = table->count - 1;
  1313. else
  1314. pi->vce_boot_level = kv_get_vce_boot_level(adev, amdgpu_new_state->evclk);
  1315. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1316. pi->dpm_table_start +
  1317. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1318. (u8 *)&pi->vce_boot_level,
  1319. sizeof(u8),
  1320. pi->sram_end);
  1321. if (ret)
  1322. return ret;
  1323. if (pi->caps_stable_p_state)
  1324. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1325. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1326. (1 << pi->vce_boot_level));
  1327. kv_enable_vce_dpm(adev, true);
  1328. } else if (amdgpu_new_state->evclk == 0 && amdgpu_current_state->evclk > 0) {
  1329. kv_enable_vce_dpm(adev, false);
  1330. }
  1331. return 0;
  1332. }
  1333. static int kv_update_samu_dpm(struct amdgpu_device *adev, bool gate)
  1334. {
  1335. struct kv_power_info *pi = kv_get_pi(adev);
  1336. struct amdgpu_clock_voltage_dependency_table *table =
  1337. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1338. int ret;
  1339. if (!gate) {
  1340. if (pi->caps_stable_p_state)
  1341. pi->samu_boot_level = table->count - 1;
  1342. else
  1343. pi->samu_boot_level = 0;
  1344. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1345. pi->dpm_table_start +
  1346. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1347. (u8 *)&pi->samu_boot_level,
  1348. sizeof(u8),
  1349. pi->sram_end);
  1350. if (ret)
  1351. return ret;
  1352. if (pi->caps_stable_p_state)
  1353. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1354. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1355. (1 << pi->samu_boot_level));
  1356. }
  1357. return kv_enable_samu_dpm(adev, !gate);
  1358. }
  1359. static u8 kv_get_acp_boot_level(struct amdgpu_device *adev)
  1360. {
  1361. u8 i;
  1362. struct amdgpu_clock_voltage_dependency_table *table =
  1363. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1364. for (i = 0; i < table->count; i++) {
  1365. if (table->entries[i].clk >= 0) /* XXX */
  1366. break;
  1367. }
  1368. if (i >= table->count)
  1369. i = table->count - 1;
  1370. return i;
  1371. }
  1372. static void kv_update_acp_boot_level(struct amdgpu_device *adev)
  1373. {
  1374. struct kv_power_info *pi = kv_get_pi(adev);
  1375. u8 acp_boot_level;
  1376. if (!pi->caps_stable_p_state) {
  1377. acp_boot_level = kv_get_acp_boot_level(adev);
  1378. if (acp_boot_level != pi->acp_boot_level) {
  1379. pi->acp_boot_level = acp_boot_level;
  1380. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1381. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1382. (1 << pi->acp_boot_level));
  1383. }
  1384. }
  1385. }
  1386. static int kv_update_acp_dpm(struct amdgpu_device *adev, bool gate)
  1387. {
  1388. struct kv_power_info *pi = kv_get_pi(adev);
  1389. struct amdgpu_clock_voltage_dependency_table *table =
  1390. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1391. int ret;
  1392. if (!gate) {
  1393. if (pi->caps_stable_p_state)
  1394. pi->acp_boot_level = table->count - 1;
  1395. else
  1396. pi->acp_boot_level = kv_get_acp_boot_level(adev);
  1397. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1398. pi->dpm_table_start +
  1399. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1400. (u8 *)&pi->acp_boot_level,
  1401. sizeof(u8),
  1402. pi->sram_end);
  1403. if (ret)
  1404. return ret;
  1405. if (pi->caps_stable_p_state)
  1406. amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  1407. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1408. (1 << pi->acp_boot_level));
  1409. }
  1410. return kv_enable_acp_dpm(adev, !gate);
  1411. }
  1412. static void kv_dpm_powergate_uvd(void *handle, bool gate)
  1413. {
  1414. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1415. struct kv_power_info *pi = kv_get_pi(adev);
  1416. int ret;
  1417. pi->uvd_power_gated = gate;
  1418. if (gate) {
  1419. /* stop the UVD block */
  1420. ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1421. AMD_PG_STATE_GATE);
  1422. kv_update_uvd_dpm(adev, gate);
  1423. if (pi->caps_uvd_pg)
  1424. /* power off the UVD block */
  1425. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerOFF);
  1426. } else {
  1427. if (pi->caps_uvd_pg)
  1428. /* power on the UVD block */
  1429. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON);
  1430. /* re-init the UVD block */
  1431. kv_update_uvd_dpm(adev, gate);
  1432. ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
  1433. AMD_PG_STATE_UNGATE);
  1434. }
  1435. }
  1436. static void kv_dpm_powergate_vce(void *handle, bool gate)
  1437. {
  1438. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1439. struct kv_power_info *pi = kv_get_pi(adev);
  1440. int ret;
  1441. pi->vce_power_gated = gate;
  1442. if (gate) {
  1443. /* stop the VCE block */
  1444. ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1445. AMD_PG_STATE_GATE);
  1446. kv_enable_vce_dpm(adev, false);
  1447. if (pi->caps_vce_pg) /* power off the VCE block */
  1448. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerOFF);
  1449. } else {
  1450. if (pi->caps_vce_pg) /* power on the VCE block */
  1451. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON);
  1452. kv_enable_vce_dpm(adev, true);
  1453. /* re-init the VCE block */
  1454. ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
  1455. AMD_PG_STATE_UNGATE);
  1456. }
  1457. }
  1458. static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate)
  1459. {
  1460. struct kv_power_info *pi = kv_get_pi(adev);
  1461. if (pi->samu_power_gated == gate)
  1462. return;
  1463. pi->samu_power_gated = gate;
  1464. if (gate) {
  1465. kv_update_samu_dpm(adev, true);
  1466. if (pi->caps_samu_pg)
  1467. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerOFF);
  1468. } else {
  1469. if (pi->caps_samu_pg)
  1470. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerON);
  1471. kv_update_samu_dpm(adev, false);
  1472. }
  1473. }
  1474. static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate)
  1475. {
  1476. struct kv_power_info *pi = kv_get_pi(adev);
  1477. if (pi->acp_power_gated == gate)
  1478. return;
  1479. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1480. return;
  1481. pi->acp_power_gated = gate;
  1482. if (gate) {
  1483. kv_update_acp_dpm(adev, true);
  1484. if (pi->caps_acp_pg)
  1485. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerOFF);
  1486. } else {
  1487. if (pi->caps_acp_pg)
  1488. amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerON);
  1489. kv_update_acp_dpm(adev, false);
  1490. }
  1491. }
  1492. static void kv_set_valid_clock_range(struct amdgpu_device *adev,
  1493. struct amdgpu_ps *new_rps)
  1494. {
  1495. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1496. struct kv_power_info *pi = kv_get_pi(adev);
  1497. u32 i;
  1498. struct amdgpu_clock_voltage_dependency_table *table =
  1499. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1500. if (table && table->count) {
  1501. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1502. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1503. (i == (pi->graphics_dpm_level_count - 1))) {
  1504. pi->lowest_valid = i;
  1505. break;
  1506. }
  1507. }
  1508. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1509. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1510. break;
  1511. }
  1512. pi->highest_valid = i;
  1513. if (pi->lowest_valid > pi->highest_valid) {
  1514. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1515. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1516. pi->highest_valid = pi->lowest_valid;
  1517. else
  1518. pi->lowest_valid = pi->highest_valid;
  1519. }
  1520. } else {
  1521. struct sumo_sclk_voltage_mapping_table *table =
  1522. &pi->sys_info.sclk_voltage_mapping_table;
  1523. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1524. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1525. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1526. pi->lowest_valid = i;
  1527. break;
  1528. }
  1529. }
  1530. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1531. if (table->entries[i].sclk_frequency <=
  1532. new_ps->levels[new_ps->num_levels - 1].sclk)
  1533. break;
  1534. }
  1535. pi->highest_valid = i;
  1536. if (pi->lowest_valid > pi->highest_valid) {
  1537. if ((new_ps->levels[0].sclk -
  1538. table->entries[pi->highest_valid].sclk_frequency) >
  1539. (table->entries[pi->lowest_valid].sclk_frequency -
  1540. new_ps->levels[new_ps->num_levels -1].sclk))
  1541. pi->highest_valid = pi->lowest_valid;
  1542. else
  1543. pi->lowest_valid = pi->highest_valid;
  1544. }
  1545. }
  1546. }
  1547. static int kv_update_dfs_bypass_settings(struct amdgpu_device *adev,
  1548. struct amdgpu_ps *new_rps)
  1549. {
  1550. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1551. struct kv_power_info *pi = kv_get_pi(adev);
  1552. int ret = 0;
  1553. u8 clk_bypass_cntl;
  1554. if (pi->caps_enable_dfs_bypass) {
  1555. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1556. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1557. ret = amdgpu_kv_copy_bytes_to_smc(adev,
  1558. (pi->dpm_table_start +
  1559. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1560. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1561. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1562. &clk_bypass_cntl,
  1563. sizeof(u8), pi->sram_end);
  1564. }
  1565. return ret;
  1566. }
  1567. static int kv_enable_nb_dpm(struct amdgpu_device *adev,
  1568. bool enable)
  1569. {
  1570. struct kv_power_info *pi = kv_get_pi(adev);
  1571. int ret = 0;
  1572. if (enable) {
  1573. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1574. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Enable);
  1575. if (ret == 0)
  1576. pi->nb_dpm_enabled = true;
  1577. }
  1578. } else {
  1579. if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
  1580. ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Disable);
  1581. if (ret == 0)
  1582. pi->nb_dpm_enabled = false;
  1583. }
  1584. }
  1585. return ret;
  1586. }
  1587. static int kv_dpm_force_performance_level(void *handle,
  1588. enum amd_dpm_forced_level level)
  1589. {
  1590. int ret;
  1591. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1592. if (level == AMD_DPM_FORCED_LEVEL_HIGH) {
  1593. ret = kv_force_dpm_highest(adev);
  1594. if (ret)
  1595. return ret;
  1596. } else if (level == AMD_DPM_FORCED_LEVEL_LOW) {
  1597. ret = kv_force_dpm_lowest(adev);
  1598. if (ret)
  1599. return ret;
  1600. } else if (level == AMD_DPM_FORCED_LEVEL_AUTO) {
  1601. ret = kv_unforce_levels(adev);
  1602. if (ret)
  1603. return ret;
  1604. }
  1605. adev->pm.dpm.forced_level = level;
  1606. return 0;
  1607. }
  1608. static int kv_dpm_pre_set_power_state(void *handle)
  1609. {
  1610. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1611. struct kv_power_info *pi = kv_get_pi(adev);
  1612. struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
  1613. struct amdgpu_ps *new_ps = &requested_ps;
  1614. kv_update_requested_ps(adev, new_ps);
  1615. kv_apply_state_adjust_rules(adev,
  1616. &pi->requested_rps,
  1617. &pi->current_rps);
  1618. return 0;
  1619. }
  1620. static int kv_dpm_set_power_state(void *handle)
  1621. {
  1622. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1623. struct kv_power_info *pi = kv_get_pi(adev);
  1624. struct amdgpu_ps *new_ps = &pi->requested_rps;
  1625. struct amdgpu_ps *old_ps = &pi->current_rps;
  1626. int ret;
  1627. if (pi->bapm_enable) {
  1628. ret = amdgpu_kv_smc_bapm_enable(adev, adev->pm.ac_power);
  1629. if (ret) {
  1630. DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n");
  1631. return ret;
  1632. }
  1633. }
  1634. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1635. if (pi->enable_dpm) {
  1636. kv_set_valid_clock_range(adev, new_ps);
  1637. kv_update_dfs_bypass_settings(adev, new_ps);
  1638. ret = kv_calculate_ds_divider(adev);
  1639. if (ret) {
  1640. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1641. return ret;
  1642. }
  1643. kv_calculate_nbps_level_settings(adev);
  1644. kv_calculate_dpm_settings(adev);
  1645. kv_force_lowest_valid(adev);
  1646. kv_enable_new_levels(adev);
  1647. kv_upload_dpm_settings(adev);
  1648. kv_program_nbps_index_settings(adev, new_ps);
  1649. kv_unforce_levels(adev);
  1650. kv_set_enabled_levels(adev);
  1651. kv_force_lowest_valid(adev);
  1652. kv_unforce_levels(adev);
  1653. ret = kv_update_vce_dpm(adev, new_ps, old_ps);
  1654. if (ret) {
  1655. DRM_ERROR("kv_update_vce_dpm failed\n");
  1656. return ret;
  1657. }
  1658. kv_update_sclk_t(adev);
  1659. if (adev->asic_type == CHIP_MULLINS)
  1660. kv_enable_nb_dpm(adev, true);
  1661. }
  1662. } else {
  1663. if (pi->enable_dpm) {
  1664. kv_set_valid_clock_range(adev, new_ps);
  1665. kv_update_dfs_bypass_settings(adev, new_ps);
  1666. ret = kv_calculate_ds_divider(adev);
  1667. if (ret) {
  1668. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1669. return ret;
  1670. }
  1671. kv_calculate_nbps_level_settings(adev);
  1672. kv_calculate_dpm_settings(adev);
  1673. kv_freeze_sclk_dpm(adev, true);
  1674. kv_upload_dpm_settings(adev);
  1675. kv_program_nbps_index_settings(adev, new_ps);
  1676. kv_freeze_sclk_dpm(adev, false);
  1677. kv_set_enabled_levels(adev);
  1678. ret = kv_update_vce_dpm(adev, new_ps, old_ps);
  1679. if (ret) {
  1680. DRM_ERROR("kv_update_vce_dpm failed\n");
  1681. return ret;
  1682. }
  1683. kv_update_acp_boot_level(adev);
  1684. kv_update_sclk_t(adev);
  1685. kv_enable_nb_dpm(adev, true);
  1686. }
  1687. }
  1688. return 0;
  1689. }
  1690. static void kv_dpm_post_set_power_state(void *handle)
  1691. {
  1692. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1693. struct kv_power_info *pi = kv_get_pi(adev);
  1694. struct amdgpu_ps *new_ps = &pi->requested_rps;
  1695. kv_update_current_ps(adev, new_ps);
  1696. }
  1697. static void kv_dpm_setup_asic(struct amdgpu_device *adev)
  1698. {
  1699. sumo_take_smu_control(adev, true);
  1700. kv_init_powergate_state(adev);
  1701. kv_init_sclk_t(adev);
  1702. }
  1703. #if 0
  1704. static void kv_dpm_reset_asic(struct amdgpu_device *adev)
  1705. {
  1706. struct kv_power_info *pi = kv_get_pi(adev);
  1707. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1708. kv_force_lowest_valid(adev);
  1709. kv_init_graphics_levels(adev);
  1710. kv_program_bootup_state(adev);
  1711. kv_upload_dpm_settings(adev);
  1712. kv_force_lowest_valid(adev);
  1713. kv_unforce_levels(adev);
  1714. } else {
  1715. kv_init_graphics_levels(adev);
  1716. kv_program_bootup_state(adev);
  1717. kv_freeze_sclk_dpm(adev, true);
  1718. kv_upload_dpm_settings(adev);
  1719. kv_freeze_sclk_dpm(adev, false);
  1720. kv_set_enabled_level(adev, pi->graphics_boot_level);
  1721. }
  1722. }
  1723. #endif
  1724. static void kv_construct_max_power_limits_table(struct amdgpu_device *adev,
  1725. struct amdgpu_clock_and_voltage_limits *table)
  1726. {
  1727. struct kv_power_info *pi = kv_get_pi(adev);
  1728. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1729. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1730. table->sclk =
  1731. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1732. table->vddc =
  1733. kv_convert_2bit_index_to_voltage(adev,
  1734. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1735. }
  1736. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1737. }
  1738. static void kv_patch_voltage_values(struct amdgpu_device *adev)
  1739. {
  1740. int i;
  1741. struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
  1742. &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1743. struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
  1744. &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1745. struct amdgpu_clock_voltage_dependency_table *samu_table =
  1746. &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1747. struct amdgpu_clock_voltage_dependency_table *acp_table =
  1748. &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1749. if (uvd_table->count) {
  1750. for (i = 0; i < uvd_table->count; i++)
  1751. uvd_table->entries[i].v =
  1752. kv_convert_8bit_index_to_voltage(adev,
  1753. uvd_table->entries[i].v);
  1754. }
  1755. if (vce_table->count) {
  1756. for (i = 0; i < vce_table->count; i++)
  1757. vce_table->entries[i].v =
  1758. kv_convert_8bit_index_to_voltage(adev,
  1759. vce_table->entries[i].v);
  1760. }
  1761. if (samu_table->count) {
  1762. for (i = 0; i < samu_table->count; i++)
  1763. samu_table->entries[i].v =
  1764. kv_convert_8bit_index_to_voltage(adev,
  1765. samu_table->entries[i].v);
  1766. }
  1767. if (acp_table->count) {
  1768. for (i = 0; i < acp_table->count; i++)
  1769. acp_table->entries[i].v =
  1770. kv_convert_8bit_index_to_voltage(adev,
  1771. acp_table->entries[i].v);
  1772. }
  1773. }
  1774. static void kv_construct_boot_state(struct amdgpu_device *adev)
  1775. {
  1776. struct kv_power_info *pi = kv_get_pi(adev);
  1777. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1778. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1779. pi->boot_pl.ds_divider_index = 0;
  1780. pi->boot_pl.ss_divider_index = 0;
  1781. pi->boot_pl.allow_gnb_slow = 1;
  1782. pi->boot_pl.force_nbp_state = 0;
  1783. pi->boot_pl.display_wm = 0;
  1784. pi->boot_pl.vce_wm = 0;
  1785. }
  1786. static int kv_force_dpm_highest(struct amdgpu_device *adev)
  1787. {
  1788. int ret;
  1789. u32 enable_mask, i;
  1790. ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
  1791. if (ret)
  1792. return ret;
  1793. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1794. if (enable_mask & (1 << i))
  1795. break;
  1796. }
  1797. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1798. return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
  1799. else
  1800. return kv_set_enabled_level(adev, i);
  1801. }
  1802. static int kv_force_dpm_lowest(struct amdgpu_device *adev)
  1803. {
  1804. int ret;
  1805. u32 enable_mask, i;
  1806. ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask);
  1807. if (ret)
  1808. return ret;
  1809. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1810. if (enable_mask & (1 << i))
  1811. break;
  1812. }
  1813. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  1814. return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i);
  1815. else
  1816. return kv_set_enabled_level(adev, i);
  1817. }
  1818. static u8 kv_get_sleep_divider_id_from_clock(struct amdgpu_device *adev,
  1819. u32 sclk, u32 min_sclk_in_sr)
  1820. {
  1821. struct kv_power_info *pi = kv_get_pi(adev);
  1822. u32 i;
  1823. u32 temp;
  1824. u32 min = max(min_sclk_in_sr, (u32)KV_MINIMUM_ENGINE_CLOCK);
  1825. if (sclk < min)
  1826. return 0;
  1827. if (!pi->caps_sclk_ds)
  1828. return 0;
  1829. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1830. temp = sclk >> i;
  1831. if (temp >= min)
  1832. break;
  1833. }
  1834. return (u8)i;
  1835. }
  1836. static int kv_get_high_voltage_limit(struct amdgpu_device *adev, int *limit)
  1837. {
  1838. struct kv_power_info *pi = kv_get_pi(adev);
  1839. struct amdgpu_clock_voltage_dependency_table *table =
  1840. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1841. int i;
  1842. if (table && table->count) {
  1843. for (i = table->count - 1; i >= 0; i--) {
  1844. if (pi->high_voltage_t &&
  1845. (kv_convert_8bit_index_to_voltage(adev, table->entries[i].v) <=
  1846. pi->high_voltage_t)) {
  1847. *limit = i;
  1848. return 0;
  1849. }
  1850. }
  1851. } else {
  1852. struct sumo_sclk_voltage_mapping_table *table =
  1853. &pi->sys_info.sclk_voltage_mapping_table;
  1854. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1855. if (pi->high_voltage_t &&
  1856. (kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit) <=
  1857. pi->high_voltage_t)) {
  1858. *limit = i;
  1859. return 0;
  1860. }
  1861. }
  1862. }
  1863. *limit = 0;
  1864. return 0;
  1865. }
  1866. static void kv_apply_state_adjust_rules(struct amdgpu_device *adev,
  1867. struct amdgpu_ps *new_rps,
  1868. struct amdgpu_ps *old_rps)
  1869. {
  1870. struct kv_ps *ps = kv_get_ps(new_rps);
  1871. struct kv_power_info *pi = kv_get_pi(adev);
  1872. u32 min_sclk = 10000; /* ??? */
  1873. u32 sclk, mclk = 0;
  1874. int i, limit;
  1875. bool force_high;
  1876. struct amdgpu_clock_voltage_dependency_table *table =
  1877. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1878. u32 stable_p_state_sclk = 0;
  1879. struct amdgpu_clock_and_voltage_limits *max_limits =
  1880. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1881. if (new_rps->vce_active) {
  1882. new_rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk;
  1883. new_rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk;
  1884. } else {
  1885. new_rps->evclk = 0;
  1886. new_rps->ecclk = 0;
  1887. }
  1888. mclk = max_limits->mclk;
  1889. sclk = min_sclk;
  1890. if (pi->caps_stable_p_state) {
  1891. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1892. for (i = table->count - 1; i >= 0; i--) {
  1893. if (stable_p_state_sclk >= table->entries[i].clk) {
  1894. stable_p_state_sclk = table->entries[i].clk;
  1895. break;
  1896. }
  1897. }
  1898. if (i > 0)
  1899. stable_p_state_sclk = table->entries[0].clk;
  1900. sclk = stable_p_state_sclk;
  1901. }
  1902. if (new_rps->vce_active) {
  1903. if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk)
  1904. sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk;
  1905. }
  1906. ps->need_dfs_bypass = true;
  1907. for (i = 0; i < ps->num_levels; i++) {
  1908. if (ps->levels[i].sclk < sclk)
  1909. ps->levels[i].sclk = sclk;
  1910. }
  1911. if (table && table->count) {
  1912. for (i = 0; i < ps->num_levels; i++) {
  1913. if (pi->high_voltage_t &&
  1914. (pi->high_voltage_t <
  1915. kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
  1916. kv_get_high_voltage_limit(adev, &limit);
  1917. ps->levels[i].sclk = table->entries[limit].clk;
  1918. }
  1919. }
  1920. } else {
  1921. struct sumo_sclk_voltage_mapping_table *table =
  1922. &pi->sys_info.sclk_voltage_mapping_table;
  1923. for (i = 0; i < ps->num_levels; i++) {
  1924. if (pi->high_voltage_t &&
  1925. (pi->high_voltage_t <
  1926. kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) {
  1927. kv_get_high_voltage_limit(adev, &limit);
  1928. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1929. }
  1930. }
  1931. }
  1932. if (pi->caps_stable_p_state) {
  1933. for (i = 0; i < ps->num_levels; i++) {
  1934. ps->levels[i].sclk = stable_p_state_sclk;
  1935. }
  1936. }
  1937. pi->video_start = new_rps->dclk || new_rps->vclk ||
  1938. new_rps->evclk || new_rps->ecclk;
  1939. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1940. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1941. pi->battery_state = true;
  1942. else
  1943. pi->battery_state = false;
  1944. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1945. ps->dpm0_pg_nb_ps_lo = 0x1;
  1946. ps->dpm0_pg_nb_ps_hi = 0x0;
  1947. ps->dpmx_nb_ps_lo = 0x1;
  1948. ps->dpmx_nb_ps_hi = 0x0;
  1949. } else {
  1950. ps->dpm0_pg_nb_ps_lo = 0x3;
  1951. ps->dpm0_pg_nb_ps_hi = 0x0;
  1952. ps->dpmx_nb_ps_lo = 0x3;
  1953. ps->dpmx_nb_ps_hi = 0x0;
  1954. if (pi->sys_info.nb_dpm_enable) {
  1955. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1956. pi->video_start || (adev->pm.dpm.new_active_crtc_count >= 3) ||
  1957. pi->disable_nb_ps3_in_battery;
  1958. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1959. ps->dpm0_pg_nb_ps_hi = 0x2;
  1960. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1961. ps->dpmx_nb_ps_hi = 0x2;
  1962. }
  1963. }
  1964. }
  1965. static void kv_dpm_power_level_enabled_for_throttle(struct amdgpu_device *adev,
  1966. u32 index, bool enable)
  1967. {
  1968. struct kv_power_info *pi = kv_get_pi(adev);
  1969. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1970. }
  1971. static int kv_calculate_ds_divider(struct amdgpu_device *adev)
  1972. {
  1973. struct kv_power_info *pi = kv_get_pi(adev);
  1974. u32 sclk_in_sr = 10000; /* ??? */
  1975. u32 i;
  1976. if (pi->lowest_valid > pi->highest_valid)
  1977. return -EINVAL;
  1978. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1979. pi->graphics_level[i].DeepSleepDivId =
  1980. kv_get_sleep_divider_id_from_clock(adev,
  1981. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1982. sclk_in_sr);
  1983. }
  1984. return 0;
  1985. }
  1986. static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev)
  1987. {
  1988. struct kv_power_info *pi = kv_get_pi(adev);
  1989. u32 i;
  1990. bool force_high;
  1991. struct amdgpu_clock_and_voltage_limits *max_limits =
  1992. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1993. u32 mclk = max_limits->mclk;
  1994. if (pi->lowest_valid > pi->highest_valid)
  1995. return -EINVAL;
  1996. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) {
  1997. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1998. pi->graphics_level[i].GnbSlow = 1;
  1999. pi->graphics_level[i].ForceNbPs1 = 0;
  2000. pi->graphics_level[i].UpH = 0;
  2001. }
  2002. if (!pi->sys_info.nb_dpm_enable)
  2003. return 0;
  2004. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  2005. (adev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  2006. if (force_high) {
  2007. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2008. pi->graphics_level[i].GnbSlow = 0;
  2009. } else {
  2010. if (pi->battery_state)
  2011. pi->graphics_level[0].ForceNbPs1 = 1;
  2012. pi->graphics_level[1].GnbSlow = 0;
  2013. pi->graphics_level[2].GnbSlow = 0;
  2014. pi->graphics_level[3].GnbSlow = 0;
  2015. pi->graphics_level[4].GnbSlow = 0;
  2016. }
  2017. } else {
  2018. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  2019. pi->graphics_level[i].GnbSlow = 1;
  2020. pi->graphics_level[i].ForceNbPs1 = 0;
  2021. pi->graphics_level[i].UpH = 0;
  2022. }
  2023. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  2024. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  2025. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  2026. if (pi->lowest_valid != pi->highest_valid)
  2027. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  2028. }
  2029. }
  2030. return 0;
  2031. }
  2032. static int kv_calculate_dpm_settings(struct amdgpu_device *adev)
  2033. {
  2034. struct kv_power_info *pi = kv_get_pi(adev);
  2035. u32 i;
  2036. if (pi->lowest_valid > pi->highest_valid)
  2037. return -EINVAL;
  2038. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2039. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  2040. return 0;
  2041. }
  2042. static void kv_init_graphics_levels(struct amdgpu_device *adev)
  2043. {
  2044. struct kv_power_info *pi = kv_get_pi(adev);
  2045. u32 i;
  2046. struct amdgpu_clock_voltage_dependency_table *table =
  2047. &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  2048. if (table && table->count) {
  2049. u32 vid_2bit;
  2050. pi->graphics_dpm_level_count = 0;
  2051. for (i = 0; i < table->count; i++) {
  2052. if (pi->high_voltage_t &&
  2053. (pi->high_voltage_t <
  2054. kv_convert_8bit_index_to_voltage(adev, table->entries[i].v)))
  2055. break;
  2056. kv_set_divider_value(adev, i, table->entries[i].clk);
  2057. vid_2bit = kv_convert_vid7_to_vid2(adev,
  2058. &pi->sys_info.vid_mapping_table,
  2059. table->entries[i].v);
  2060. kv_set_vid(adev, i, vid_2bit);
  2061. kv_set_at(adev, i, pi->at[i]);
  2062. kv_dpm_power_level_enabled_for_throttle(adev, i, true);
  2063. pi->graphics_dpm_level_count++;
  2064. }
  2065. } else {
  2066. struct sumo_sclk_voltage_mapping_table *table =
  2067. &pi->sys_info.sclk_voltage_mapping_table;
  2068. pi->graphics_dpm_level_count = 0;
  2069. for (i = 0; i < table->num_max_dpm_entries; i++) {
  2070. if (pi->high_voltage_t &&
  2071. pi->high_voltage_t <
  2072. kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit))
  2073. break;
  2074. kv_set_divider_value(adev, i, table->entries[i].sclk_frequency);
  2075. kv_set_vid(adev, i, table->entries[i].vid_2bit);
  2076. kv_set_at(adev, i, pi->at[i]);
  2077. kv_dpm_power_level_enabled_for_throttle(adev, i, true);
  2078. pi->graphics_dpm_level_count++;
  2079. }
  2080. }
  2081. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  2082. kv_dpm_power_level_enable(adev, i, false);
  2083. }
  2084. static void kv_enable_new_levels(struct amdgpu_device *adev)
  2085. {
  2086. struct kv_power_info *pi = kv_get_pi(adev);
  2087. u32 i;
  2088. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  2089. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  2090. kv_dpm_power_level_enable(adev, i, true);
  2091. }
  2092. }
  2093. static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level)
  2094. {
  2095. u32 new_mask = (1 << level);
  2096. return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  2097. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2098. new_mask);
  2099. }
  2100. static int kv_set_enabled_levels(struct amdgpu_device *adev)
  2101. {
  2102. struct kv_power_info *pi = kv_get_pi(adev);
  2103. u32 i, new_mask = 0;
  2104. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2105. new_mask |= (1 << i);
  2106. return amdgpu_kv_send_msg_to_smc_with_parameter(adev,
  2107. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2108. new_mask);
  2109. }
  2110. static void kv_program_nbps_index_settings(struct amdgpu_device *adev,
  2111. struct amdgpu_ps *new_rps)
  2112. {
  2113. struct kv_ps *new_ps = kv_get_ps(new_rps);
  2114. struct kv_power_info *pi = kv_get_pi(adev);
  2115. u32 nbdpmconfig1;
  2116. if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS)
  2117. return;
  2118. if (pi->sys_info.nb_dpm_enable) {
  2119. nbdpmconfig1 = RREG32_SMC(ixNB_DPM_CONFIG_1);
  2120. nbdpmconfig1 &= ~(NB_DPM_CONFIG_1__Dpm0PgNbPsLo_MASK |
  2121. NB_DPM_CONFIG_1__Dpm0PgNbPsHi_MASK |
  2122. NB_DPM_CONFIG_1__DpmXNbPsLo_MASK |
  2123. NB_DPM_CONFIG_1__DpmXNbPsHi_MASK);
  2124. nbdpmconfig1 |= (new_ps->dpm0_pg_nb_ps_lo << NB_DPM_CONFIG_1__Dpm0PgNbPsLo__SHIFT) |
  2125. (new_ps->dpm0_pg_nb_ps_hi << NB_DPM_CONFIG_1__Dpm0PgNbPsHi__SHIFT) |
  2126. (new_ps->dpmx_nb_ps_lo << NB_DPM_CONFIG_1__DpmXNbPsLo__SHIFT) |
  2127. (new_ps->dpmx_nb_ps_hi << NB_DPM_CONFIG_1__DpmXNbPsHi__SHIFT);
  2128. WREG32_SMC(ixNB_DPM_CONFIG_1, nbdpmconfig1);
  2129. }
  2130. }
  2131. static int kv_set_thermal_temperature_range(struct amdgpu_device *adev,
  2132. int min_temp, int max_temp)
  2133. {
  2134. int low_temp = 0 * 1000;
  2135. int high_temp = 255 * 1000;
  2136. u32 tmp;
  2137. if (low_temp < min_temp)
  2138. low_temp = min_temp;
  2139. if (high_temp > max_temp)
  2140. high_temp = max_temp;
  2141. if (high_temp < low_temp) {
  2142. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  2143. return -EINVAL;
  2144. }
  2145. tmp = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2146. tmp &= ~(CG_THERMAL_INT_CTRL__DIG_THERM_INTH_MASK |
  2147. CG_THERMAL_INT_CTRL__DIG_THERM_INTL_MASK);
  2148. tmp |= ((49 + (high_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTH__SHIFT) |
  2149. ((49 + (low_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTL__SHIFT);
  2150. WREG32_SMC(ixCG_THERMAL_INT_CTRL, tmp);
  2151. adev->pm.dpm.thermal.min_temp = low_temp;
  2152. adev->pm.dpm.thermal.max_temp = high_temp;
  2153. return 0;
  2154. }
  2155. union igp_info {
  2156. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  2157. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  2158. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  2159. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  2160. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  2161. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  2162. };
  2163. static int kv_parse_sys_info_table(struct amdgpu_device *adev)
  2164. {
  2165. struct kv_power_info *pi = kv_get_pi(adev);
  2166. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  2167. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  2168. union igp_info *igp_info;
  2169. u8 frev, crev;
  2170. u16 data_offset;
  2171. int i;
  2172. if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  2173. &frev, &crev, &data_offset)) {
  2174. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  2175. data_offset);
  2176. if (crev != 8) {
  2177. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  2178. return -EINVAL;
  2179. }
  2180. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  2181. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  2182. pi->sys_info.bootup_nb_voltage_index =
  2183. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  2184. if (igp_info->info_8.ucHtcTmpLmt == 0)
  2185. pi->sys_info.htc_tmp_lmt = 203;
  2186. else
  2187. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  2188. if (igp_info->info_8.ucHtcHystLmt == 0)
  2189. pi->sys_info.htc_hyst_lmt = 5;
  2190. else
  2191. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  2192. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  2193. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  2194. }
  2195. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  2196. pi->sys_info.nb_dpm_enable = true;
  2197. else
  2198. pi->sys_info.nb_dpm_enable = false;
  2199. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  2200. pi->sys_info.nbp_memory_clock[i] =
  2201. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  2202. pi->sys_info.nbp_n_clock[i] =
  2203. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  2204. }
  2205. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  2206. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  2207. pi->caps_enable_dfs_bypass = true;
  2208. sumo_construct_sclk_voltage_mapping_table(adev,
  2209. &pi->sys_info.sclk_voltage_mapping_table,
  2210. igp_info->info_8.sAvail_SCLK);
  2211. sumo_construct_vid_mapping_table(adev,
  2212. &pi->sys_info.vid_mapping_table,
  2213. igp_info->info_8.sAvail_SCLK);
  2214. kv_construct_max_power_limits_table(adev,
  2215. &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  2216. }
  2217. return 0;
  2218. }
  2219. union power_info {
  2220. struct _ATOM_POWERPLAY_INFO info;
  2221. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  2222. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  2223. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  2224. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  2225. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  2226. };
  2227. union pplib_clock_info {
  2228. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  2229. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  2230. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  2231. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  2232. };
  2233. union pplib_power_state {
  2234. struct _ATOM_PPLIB_STATE v1;
  2235. struct _ATOM_PPLIB_STATE_V2 v2;
  2236. };
  2237. static void kv_patch_boot_state(struct amdgpu_device *adev,
  2238. struct kv_ps *ps)
  2239. {
  2240. struct kv_power_info *pi = kv_get_pi(adev);
  2241. ps->num_levels = 1;
  2242. ps->levels[0] = pi->boot_pl;
  2243. }
  2244. static void kv_parse_pplib_non_clock_info(struct amdgpu_device *adev,
  2245. struct amdgpu_ps *rps,
  2246. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2247. u8 table_rev)
  2248. {
  2249. struct kv_ps *ps = kv_get_ps(rps);
  2250. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2251. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2252. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2253. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2254. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2255. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2256. } else {
  2257. rps->vclk = 0;
  2258. rps->dclk = 0;
  2259. }
  2260. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2261. adev->pm.dpm.boot_ps = rps;
  2262. kv_patch_boot_state(adev, ps);
  2263. }
  2264. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2265. adev->pm.dpm.uvd_ps = rps;
  2266. }
  2267. static void kv_parse_pplib_clock_info(struct amdgpu_device *adev,
  2268. struct amdgpu_ps *rps, int index,
  2269. union pplib_clock_info *clock_info)
  2270. {
  2271. struct kv_power_info *pi = kv_get_pi(adev);
  2272. struct kv_ps *ps = kv_get_ps(rps);
  2273. struct kv_pl *pl = &ps->levels[index];
  2274. u32 sclk;
  2275. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2276. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2277. pl->sclk = sclk;
  2278. pl->vddc_index = clock_info->sumo.vddcIndex;
  2279. ps->num_levels = index + 1;
  2280. if (pi->caps_sclk_ds) {
  2281. pl->ds_divider_index = 5;
  2282. pl->ss_divider_index = 5;
  2283. }
  2284. }
  2285. static int kv_parse_power_table(struct amdgpu_device *adev)
  2286. {
  2287. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  2288. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2289. union pplib_power_state *power_state;
  2290. int i, j, k, non_clock_array_index, clock_array_index;
  2291. union pplib_clock_info *clock_info;
  2292. struct _StateArray *state_array;
  2293. struct _ClockInfoArray *clock_info_array;
  2294. struct _NonClockInfoArray *non_clock_info_array;
  2295. union power_info *power_info;
  2296. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2297. u16 data_offset;
  2298. u8 frev, crev;
  2299. u8 *power_state_offset;
  2300. struct kv_ps *ps;
  2301. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  2302. &frev, &crev, &data_offset))
  2303. return -EINVAL;
  2304. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2305. amdgpu_add_thermal_controller(adev);
  2306. state_array = (struct _StateArray *)
  2307. (mode_info->atom_context->bios + data_offset +
  2308. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2309. clock_info_array = (struct _ClockInfoArray *)
  2310. (mode_info->atom_context->bios + data_offset +
  2311. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2312. non_clock_info_array = (struct _NonClockInfoArray *)
  2313. (mode_info->atom_context->bios + data_offset +
  2314. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2315. adev->pm.dpm.ps = kcalloc(state_array->ucNumEntries,
  2316. sizeof(struct amdgpu_ps),
  2317. GFP_KERNEL);
  2318. if (!adev->pm.dpm.ps)
  2319. return -ENOMEM;
  2320. power_state_offset = (u8 *)state_array->states;
  2321. for (i = 0; i < state_array->ucNumEntries; i++) {
  2322. u8 *idx;
  2323. power_state = (union pplib_power_state *)power_state_offset;
  2324. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2325. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2326. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2327. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2328. if (ps == NULL) {
  2329. kfree(adev->pm.dpm.ps);
  2330. return -ENOMEM;
  2331. }
  2332. adev->pm.dpm.ps[i].ps_priv = ps;
  2333. k = 0;
  2334. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2335. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2336. clock_array_index = idx[j];
  2337. if (clock_array_index >= clock_info_array->ucNumEntries)
  2338. continue;
  2339. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2340. break;
  2341. clock_info = (union pplib_clock_info *)
  2342. ((u8 *)&clock_info_array->clockInfo[0] +
  2343. (clock_array_index * clock_info_array->ucEntrySize));
  2344. kv_parse_pplib_clock_info(adev,
  2345. &adev->pm.dpm.ps[i], k,
  2346. clock_info);
  2347. k++;
  2348. }
  2349. kv_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
  2350. non_clock_info,
  2351. non_clock_info_array->ucEntrySize);
  2352. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2353. }
  2354. adev->pm.dpm.num_ps = state_array->ucNumEntries;
  2355. /* fill in the vce power states */
  2356. for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) {
  2357. u32 sclk;
  2358. clock_array_index = adev->pm.dpm.vce_states[i].clk_idx;
  2359. clock_info = (union pplib_clock_info *)
  2360. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2361. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2362. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2363. adev->pm.dpm.vce_states[i].sclk = sclk;
  2364. adev->pm.dpm.vce_states[i].mclk = 0;
  2365. }
  2366. return 0;
  2367. }
  2368. static int kv_dpm_init(struct amdgpu_device *adev)
  2369. {
  2370. struct kv_power_info *pi;
  2371. int ret, i;
  2372. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2373. if (pi == NULL)
  2374. return -ENOMEM;
  2375. adev->pm.dpm.priv = pi;
  2376. ret = amdgpu_get_platform_caps(adev);
  2377. if (ret)
  2378. return ret;
  2379. ret = amdgpu_parse_extended_power_table(adev);
  2380. if (ret)
  2381. return ret;
  2382. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2383. pi->at[i] = TRINITY_AT_DFLT;
  2384. pi->sram_end = SMC_RAM_END;
  2385. pi->enable_nb_dpm = true;
  2386. pi->caps_power_containment = true;
  2387. pi->caps_cac = true;
  2388. pi->enable_didt = false;
  2389. if (pi->enable_didt) {
  2390. pi->caps_sq_ramping = true;
  2391. pi->caps_db_ramping = true;
  2392. pi->caps_td_ramping = true;
  2393. pi->caps_tcp_ramping = true;
  2394. }
  2395. if (adev->powerplay.pp_feature & PP_SCLK_DEEP_SLEEP_MASK)
  2396. pi->caps_sclk_ds = true;
  2397. else
  2398. pi->caps_sclk_ds = false;
  2399. pi->enable_auto_thermal_throttling = true;
  2400. pi->disable_nb_ps3_in_battery = false;
  2401. if (amdgpu_bapm == 0)
  2402. pi->bapm_enable = false;
  2403. else
  2404. pi->bapm_enable = true;
  2405. pi->voltage_drop_t = 0;
  2406. pi->caps_sclk_throttle_low_notification = false;
  2407. pi->caps_fps = false; /* true? */
  2408. pi->caps_uvd_pg = (adev->pg_flags & AMD_PG_SUPPORT_UVD) ? true : false;
  2409. pi->caps_uvd_dpm = true;
  2410. pi->caps_vce_pg = (adev->pg_flags & AMD_PG_SUPPORT_VCE) ? true : false;
  2411. pi->caps_samu_pg = (adev->pg_flags & AMD_PG_SUPPORT_SAMU) ? true : false;
  2412. pi->caps_acp_pg = (adev->pg_flags & AMD_PG_SUPPORT_ACP) ? true : false;
  2413. pi->caps_stable_p_state = false;
  2414. ret = kv_parse_sys_info_table(adev);
  2415. if (ret)
  2416. return ret;
  2417. kv_patch_voltage_values(adev);
  2418. kv_construct_boot_state(adev);
  2419. ret = kv_parse_power_table(adev);
  2420. if (ret)
  2421. return ret;
  2422. pi->enable_dpm = true;
  2423. return 0;
  2424. }
  2425. static void
  2426. kv_dpm_debugfs_print_current_performance_level(void *handle,
  2427. struct seq_file *m)
  2428. {
  2429. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2430. struct kv_power_info *pi = kv_get_pi(adev);
  2431. u32 current_index =
  2432. (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
  2433. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
  2434. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
  2435. u32 sclk, tmp;
  2436. u16 vddc;
  2437. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2438. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2439. } else {
  2440. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2441. tmp = (RREG32_SMC(ixSMU_VOLTAGE_STATUS) &
  2442. SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2443. SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL__SHIFT;
  2444. vddc = kv_convert_8bit_index_to_voltage(adev, (u16)tmp);
  2445. seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
  2446. seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
  2447. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2448. current_index, sclk, vddc);
  2449. }
  2450. }
  2451. static void
  2452. kv_dpm_print_power_state(void *handle, void *request_ps)
  2453. {
  2454. int i;
  2455. struct amdgpu_ps *rps = (struct amdgpu_ps *)request_ps;
  2456. struct kv_ps *ps = kv_get_ps(rps);
  2457. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2458. amdgpu_dpm_print_class_info(rps->class, rps->class2);
  2459. amdgpu_dpm_print_cap_info(rps->caps);
  2460. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2461. for (i = 0; i < ps->num_levels; i++) {
  2462. struct kv_pl *pl = &ps->levels[i];
  2463. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2464. i, pl->sclk,
  2465. kv_convert_8bit_index_to_voltage(adev, pl->vddc_index));
  2466. }
  2467. amdgpu_dpm_print_ps_status(adev, rps);
  2468. }
  2469. static void kv_dpm_fini(struct amdgpu_device *adev)
  2470. {
  2471. int i;
  2472. for (i = 0; i < adev->pm.dpm.num_ps; i++) {
  2473. kfree(adev->pm.dpm.ps[i].ps_priv);
  2474. }
  2475. kfree(adev->pm.dpm.ps);
  2476. kfree(adev->pm.dpm.priv);
  2477. amdgpu_free_extended_power_table(adev);
  2478. }
  2479. static void kv_dpm_display_configuration_changed(void *handle)
  2480. {
  2481. }
  2482. static u32 kv_dpm_get_sclk(void *handle, bool low)
  2483. {
  2484. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2485. struct kv_power_info *pi = kv_get_pi(adev);
  2486. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2487. if (low)
  2488. return requested_state->levels[0].sclk;
  2489. else
  2490. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2491. }
  2492. static u32 kv_dpm_get_mclk(void *handle, bool low)
  2493. {
  2494. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2495. struct kv_power_info *pi = kv_get_pi(adev);
  2496. return pi->sys_info.bootup_uma_clk;
  2497. }
  2498. /* get temperature in millidegrees */
  2499. static int kv_dpm_get_temp(void *handle)
  2500. {
  2501. u32 temp;
  2502. int actual_temp = 0;
  2503. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2504. temp = RREG32_SMC(0xC0300E0C);
  2505. if (temp)
  2506. actual_temp = (temp / 8) - 49;
  2507. else
  2508. actual_temp = 0;
  2509. actual_temp = actual_temp * 1000;
  2510. return actual_temp;
  2511. }
  2512. static int kv_dpm_early_init(void *handle)
  2513. {
  2514. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2515. adev->powerplay.pp_funcs = &kv_dpm_funcs;
  2516. adev->powerplay.pp_handle = adev;
  2517. kv_dpm_set_irq_funcs(adev);
  2518. return 0;
  2519. }
  2520. static int kv_dpm_late_init(void *handle)
  2521. {
  2522. /* powerdown unused blocks for now */
  2523. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2524. if (!adev->pm.dpm_enabled)
  2525. return 0;
  2526. kv_dpm_powergate_acp(adev, true);
  2527. kv_dpm_powergate_samu(adev, true);
  2528. return 0;
  2529. }
  2530. static int kv_dpm_sw_init(void *handle)
  2531. {
  2532. int ret;
  2533. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2534. ret = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 230,
  2535. &adev->pm.dpm.thermal.irq);
  2536. if (ret)
  2537. return ret;
  2538. ret = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 231,
  2539. &adev->pm.dpm.thermal.irq);
  2540. if (ret)
  2541. return ret;
  2542. /* default to balanced state */
  2543. adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
  2544. adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
  2545. adev->pm.dpm.forced_level = AMD_DPM_FORCED_LEVEL_AUTO;
  2546. adev->pm.default_sclk = adev->clock.default_sclk;
  2547. adev->pm.default_mclk = adev->clock.default_mclk;
  2548. adev->pm.current_sclk = adev->clock.default_sclk;
  2549. adev->pm.current_mclk = adev->clock.default_mclk;
  2550. adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
  2551. if (amdgpu_dpm == 0)
  2552. return 0;
  2553. INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler);
  2554. mutex_lock(&adev->pm.mutex);
  2555. ret = kv_dpm_init(adev);
  2556. if (ret)
  2557. goto dpm_failed;
  2558. adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
  2559. if (amdgpu_dpm == 1)
  2560. amdgpu_pm_print_power_states(adev);
  2561. mutex_unlock(&adev->pm.mutex);
  2562. DRM_INFO("amdgpu: dpm initialized\n");
  2563. return 0;
  2564. dpm_failed:
  2565. kv_dpm_fini(adev);
  2566. mutex_unlock(&adev->pm.mutex);
  2567. DRM_ERROR("amdgpu: dpm initialization failed\n");
  2568. return ret;
  2569. }
  2570. static int kv_dpm_sw_fini(void *handle)
  2571. {
  2572. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2573. flush_work(&adev->pm.dpm.thermal.work);
  2574. mutex_lock(&adev->pm.mutex);
  2575. kv_dpm_fini(adev);
  2576. mutex_unlock(&adev->pm.mutex);
  2577. return 0;
  2578. }
  2579. static int kv_dpm_hw_init(void *handle)
  2580. {
  2581. int ret;
  2582. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2583. if (!amdgpu_dpm)
  2584. return 0;
  2585. mutex_lock(&adev->pm.mutex);
  2586. kv_dpm_setup_asic(adev);
  2587. ret = kv_dpm_enable(adev);
  2588. if (ret)
  2589. adev->pm.dpm_enabled = false;
  2590. else
  2591. adev->pm.dpm_enabled = true;
  2592. mutex_unlock(&adev->pm.mutex);
  2593. amdgpu_pm_compute_clocks(adev);
  2594. return ret;
  2595. }
  2596. static int kv_dpm_hw_fini(void *handle)
  2597. {
  2598. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2599. if (adev->pm.dpm_enabled) {
  2600. mutex_lock(&adev->pm.mutex);
  2601. kv_dpm_disable(adev);
  2602. mutex_unlock(&adev->pm.mutex);
  2603. }
  2604. return 0;
  2605. }
  2606. static int kv_dpm_suspend(void *handle)
  2607. {
  2608. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2609. if (adev->pm.dpm_enabled) {
  2610. mutex_lock(&adev->pm.mutex);
  2611. /* disable dpm */
  2612. kv_dpm_disable(adev);
  2613. /* reset the power state */
  2614. adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
  2615. mutex_unlock(&adev->pm.mutex);
  2616. }
  2617. return 0;
  2618. }
  2619. static int kv_dpm_resume(void *handle)
  2620. {
  2621. int ret;
  2622. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2623. if (adev->pm.dpm_enabled) {
  2624. /* asic init will reset to the boot state */
  2625. mutex_lock(&adev->pm.mutex);
  2626. kv_dpm_setup_asic(adev);
  2627. ret = kv_dpm_enable(adev);
  2628. if (ret)
  2629. adev->pm.dpm_enabled = false;
  2630. else
  2631. adev->pm.dpm_enabled = true;
  2632. mutex_unlock(&adev->pm.mutex);
  2633. if (adev->pm.dpm_enabled)
  2634. amdgpu_pm_compute_clocks(adev);
  2635. }
  2636. return 0;
  2637. }
  2638. static bool kv_dpm_is_idle(void *handle)
  2639. {
  2640. return true;
  2641. }
  2642. static int kv_dpm_wait_for_idle(void *handle)
  2643. {
  2644. return 0;
  2645. }
  2646. static int kv_dpm_soft_reset(void *handle)
  2647. {
  2648. return 0;
  2649. }
  2650. static int kv_dpm_set_interrupt_state(struct amdgpu_device *adev,
  2651. struct amdgpu_irq_src *src,
  2652. unsigned type,
  2653. enum amdgpu_interrupt_state state)
  2654. {
  2655. u32 cg_thermal_int;
  2656. switch (type) {
  2657. case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH:
  2658. switch (state) {
  2659. case AMDGPU_IRQ_STATE_DISABLE:
  2660. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2661. cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
  2662. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2663. break;
  2664. case AMDGPU_IRQ_STATE_ENABLE:
  2665. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2666. cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
  2667. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2668. break;
  2669. default:
  2670. break;
  2671. }
  2672. break;
  2673. case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW:
  2674. switch (state) {
  2675. case AMDGPU_IRQ_STATE_DISABLE:
  2676. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2677. cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
  2678. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2679. break;
  2680. case AMDGPU_IRQ_STATE_ENABLE:
  2681. cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL);
  2682. cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
  2683. WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int);
  2684. break;
  2685. default:
  2686. break;
  2687. }
  2688. break;
  2689. default:
  2690. break;
  2691. }
  2692. return 0;
  2693. }
  2694. static int kv_dpm_process_interrupt(struct amdgpu_device *adev,
  2695. struct amdgpu_irq_src *source,
  2696. struct amdgpu_iv_entry *entry)
  2697. {
  2698. bool queue_thermal = false;
  2699. if (entry == NULL)
  2700. return -EINVAL;
  2701. switch (entry->src_id) {
  2702. case 230: /* thermal low to high */
  2703. DRM_DEBUG("IH: thermal low to high\n");
  2704. adev->pm.dpm.thermal.high_to_low = false;
  2705. queue_thermal = true;
  2706. break;
  2707. case 231: /* thermal high to low */
  2708. DRM_DEBUG("IH: thermal high to low\n");
  2709. adev->pm.dpm.thermal.high_to_low = true;
  2710. queue_thermal = true;
  2711. break;
  2712. default:
  2713. break;
  2714. }
  2715. if (queue_thermal)
  2716. schedule_work(&adev->pm.dpm.thermal.work);
  2717. return 0;
  2718. }
  2719. static int kv_dpm_set_clockgating_state(void *handle,
  2720. enum amd_clockgating_state state)
  2721. {
  2722. return 0;
  2723. }
  2724. static int kv_dpm_set_powergating_state(void *handle,
  2725. enum amd_powergating_state state)
  2726. {
  2727. return 0;
  2728. }
  2729. static inline bool kv_are_power_levels_equal(const struct kv_pl *kv_cpl1,
  2730. const struct kv_pl *kv_cpl2)
  2731. {
  2732. return ((kv_cpl1->sclk == kv_cpl2->sclk) &&
  2733. (kv_cpl1->vddc_index == kv_cpl2->vddc_index) &&
  2734. (kv_cpl1->ds_divider_index == kv_cpl2->ds_divider_index) &&
  2735. (kv_cpl1->force_nbp_state == kv_cpl2->force_nbp_state));
  2736. }
  2737. static int kv_check_state_equal(void *handle,
  2738. void *current_ps,
  2739. void *request_ps,
  2740. bool *equal)
  2741. {
  2742. struct kv_ps *kv_cps;
  2743. struct kv_ps *kv_rps;
  2744. int i;
  2745. struct amdgpu_ps *cps = (struct amdgpu_ps *)current_ps;
  2746. struct amdgpu_ps *rps = (struct amdgpu_ps *)request_ps;
  2747. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2748. if (adev == NULL || cps == NULL || rps == NULL || equal == NULL)
  2749. return -EINVAL;
  2750. kv_cps = kv_get_ps(cps);
  2751. kv_rps = kv_get_ps(rps);
  2752. if (kv_cps == NULL) {
  2753. *equal = false;
  2754. return 0;
  2755. }
  2756. if (kv_cps->num_levels != kv_rps->num_levels) {
  2757. *equal = false;
  2758. return 0;
  2759. }
  2760. for (i = 0; i < kv_cps->num_levels; i++) {
  2761. if (!kv_are_power_levels_equal(&(kv_cps->levels[i]),
  2762. &(kv_rps->levels[i]))) {
  2763. *equal = false;
  2764. return 0;
  2765. }
  2766. }
  2767. /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
  2768. *equal = ((cps->vclk == rps->vclk) && (cps->dclk == rps->dclk));
  2769. *equal &= ((cps->evclk == rps->evclk) && (cps->ecclk == rps->ecclk));
  2770. return 0;
  2771. }
  2772. static int kv_dpm_read_sensor(void *handle, int idx,
  2773. void *value, int *size)
  2774. {
  2775. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  2776. struct kv_power_info *pi = kv_get_pi(adev);
  2777. uint32_t sclk;
  2778. u32 pl_index =
  2779. (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) &
  2780. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >>
  2781. TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT;
  2782. /* size must be at least 4 bytes for all sensors */
  2783. if (*size < 4)
  2784. return -EINVAL;
  2785. switch (idx) {
  2786. case AMDGPU_PP_SENSOR_GFX_SCLK:
  2787. if (pl_index < SMU__NUM_SCLK_DPM_STATE) {
  2788. sclk = be32_to_cpu(
  2789. pi->graphics_level[pl_index].SclkFrequency);
  2790. *((uint32_t *)value) = sclk;
  2791. *size = 4;
  2792. return 0;
  2793. }
  2794. return -EINVAL;
  2795. case AMDGPU_PP_SENSOR_GPU_TEMP:
  2796. *((uint32_t *)value) = kv_dpm_get_temp(adev);
  2797. *size = 4;
  2798. return 0;
  2799. default:
  2800. return -EINVAL;
  2801. }
  2802. }
  2803. static int kv_set_powergating_by_smu(void *handle,
  2804. uint32_t block_type, bool gate)
  2805. {
  2806. switch (block_type) {
  2807. case AMD_IP_BLOCK_TYPE_UVD:
  2808. kv_dpm_powergate_uvd(handle, gate);
  2809. break;
  2810. case AMD_IP_BLOCK_TYPE_VCE:
  2811. kv_dpm_powergate_vce(handle, gate);
  2812. break;
  2813. default:
  2814. break;
  2815. }
  2816. return 0;
  2817. }
  2818. static const struct amd_ip_funcs kv_dpm_ip_funcs = {
  2819. .name = "kv_dpm",
  2820. .early_init = kv_dpm_early_init,
  2821. .late_init = kv_dpm_late_init,
  2822. .sw_init = kv_dpm_sw_init,
  2823. .sw_fini = kv_dpm_sw_fini,
  2824. .hw_init = kv_dpm_hw_init,
  2825. .hw_fini = kv_dpm_hw_fini,
  2826. .suspend = kv_dpm_suspend,
  2827. .resume = kv_dpm_resume,
  2828. .is_idle = kv_dpm_is_idle,
  2829. .wait_for_idle = kv_dpm_wait_for_idle,
  2830. .soft_reset = kv_dpm_soft_reset,
  2831. .set_clockgating_state = kv_dpm_set_clockgating_state,
  2832. .set_powergating_state = kv_dpm_set_powergating_state,
  2833. };
  2834. const struct amdgpu_ip_block_version kv_smu_ip_block =
  2835. {
  2836. .type = AMD_IP_BLOCK_TYPE_SMC,
  2837. .major = 1,
  2838. .minor = 0,
  2839. .rev = 0,
  2840. .funcs = &kv_dpm_ip_funcs,
  2841. };
  2842. static const struct amd_pm_funcs kv_dpm_funcs = {
  2843. .pre_set_power_state = &kv_dpm_pre_set_power_state,
  2844. .set_power_state = &kv_dpm_set_power_state,
  2845. .post_set_power_state = &kv_dpm_post_set_power_state,
  2846. .display_configuration_changed = &kv_dpm_display_configuration_changed,
  2847. .get_sclk = &kv_dpm_get_sclk,
  2848. .get_mclk = &kv_dpm_get_mclk,
  2849. .print_power_state = &kv_dpm_print_power_state,
  2850. .debugfs_print_current_performance_level = &kv_dpm_debugfs_print_current_performance_level,
  2851. .force_performance_level = &kv_dpm_force_performance_level,
  2852. .set_powergating_by_smu = kv_set_powergating_by_smu,
  2853. .enable_bapm = &kv_dpm_enable_bapm,
  2854. .get_vce_clock_state = amdgpu_get_vce_clock_state,
  2855. .check_state_equal = kv_check_state_equal,
  2856. .read_sensor = &kv_dpm_read_sensor,
  2857. };
  2858. static const struct amdgpu_irq_src_funcs kv_dpm_irq_funcs = {
  2859. .set = kv_dpm_set_interrupt_state,
  2860. .process = kv_dpm_process_interrupt,
  2861. };
  2862. static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev)
  2863. {
  2864. adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST;
  2865. adev->pm.dpm.thermal.irq.funcs = &kv_dpm_irq_funcs;
  2866. }