amdgpu_amdkfd_gfx_v8.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. struct vi_sdma_mqd;
  46. /*
  47. * Register access functions
  48. */
  49. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  50. uint32_t sh_mem_config,
  51. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  52. uint32_t sh_mem_bases);
  53. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  54. unsigned int vmid);
  55. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  56. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  57. uint32_t queue_id, uint32_t __user *wptr,
  58. uint32_t wptr_shift, uint32_t wptr_mask,
  59. struct mm_struct *mm);
  60. static int kgd_hqd_dump(struct kgd_dev *kgd,
  61. uint32_t pipe_id, uint32_t queue_id,
  62. uint32_t (**dump)[2], uint32_t *n_regs);
  63. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  64. uint32_t __user *wptr, struct mm_struct *mm);
  65. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  66. uint32_t engine_id, uint32_t queue_id,
  67. uint32_t (**dump)[2], uint32_t *n_regs);
  68. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  69. uint32_t pipe_id, uint32_t queue_id);
  70. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  71. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  72. enum kfd_preempt_type reset_type,
  73. unsigned int utimeout, uint32_t pipe_id,
  74. uint32_t queue_id);
  75. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  76. unsigned int utimeout);
  77. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  78. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  79. unsigned int watch_point_id,
  80. uint32_t cntl_val,
  81. uint32_t addr_hi,
  82. uint32_t addr_lo);
  83. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  84. uint32_t gfx_index_val,
  85. uint32_t sq_cmd);
  86. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  87. unsigned int watch_point_id,
  88. unsigned int reg_offset);
  89. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  90. uint8_t vmid);
  91. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  92. uint8_t vmid);
  93. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  94. static void set_scratch_backing_va(struct kgd_dev *kgd,
  95. uint64_t va, uint32_t vmid);
  96. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  97. uint32_t page_table_base);
  98. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  99. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  100. /* Because of REG_GET_FIELD() being used, we put this function in the
  101. * asic specific file.
  102. */
  103. static int get_tile_config(struct kgd_dev *kgd,
  104. struct tile_config *config)
  105. {
  106. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  107. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  108. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  109. MC_ARB_RAMCFG, NOOFBANK);
  110. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  111. MC_ARB_RAMCFG, NOOFRANKS);
  112. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  113. config->num_tile_configs =
  114. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  115. config->macro_tile_config_ptr =
  116. adev->gfx.config.macrotile_mode_array;
  117. config->num_macro_tile_configs =
  118. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  119. return 0;
  120. }
  121. static const struct kfd2kgd_calls kfd2kgd = {
  122. .init_gtt_mem_allocation = alloc_gtt_mem,
  123. .free_gtt_mem = free_gtt_mem,
  124. .get_local_mem_info = get_local_mem_info,
  125. .get_gpu_clock_counter = get_gpu_clock_counter,
  126. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  127. .alloc_pasid = amdgpu_pasid_alloc,
  128. .free_pasid = amdgpu_pasid_free,
  129. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  130. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  131. .init_interrupts = kgd_init_interrupts,
  132. .hqd_load = kgd_hqd_load,
  133. .hqd_sdma_load = kgd_hqd_sdma_load,
  134. .hqd_dump = kgd_hqd_dump,
  135. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  136. .hqd_is_occupied = kgd_hqd_is_occupied,
  137. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  138. .hqd_destroy = kgd_hqd_destroy,
  139. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  140. .address_watch_disable = kgd_address_watch_disable,
  141. .address_watch_execute = kgd_address_watch_execute,
  142. .wave_control_execute = kgd_wave_control_execute,
  143. .address_watch_get_offset = kgd_address_watch_get_offset,
  144. .get_atc_vmid_pasid_mapping_pasid =
  145. get_atc_vmid_pasid_mapping_pasid,
  146. .get_atc_vmid_pasid_mapping_valid =
  147. get_atc_vmid_pasid_mapping_valid,
  148. .get_fw_version = get_fw_version,
  149. .set_scratch_backing_va = set_scratch_backing_va,
  150. .get_tile_config = get_tile_config,
  151. .get_cu_info = get_cu_info,
  152. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  153. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  154. .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
  155. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  156. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  157. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  158. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  159. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  160. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  161. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  162. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  163. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  164. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  165. .invalidate_tlbs = invalidate_tlbs,
  166. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  167. .submit_ib = amdgpu_amdkfd_submit_ib,
  168. .get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info,
  169. .gpu_recover = amdgpu_amdkfd_gpu_reset,
  170. .set_compute_idle = amdgpu_amdkfd_set_compute_idle
  171. };
  172. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  173. {
  174. return (struct kfd2kgd_calls *)&kfd2kgd;
  175. }
  176. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  177. {
  178. return (struct amdgpu_device *)kgd;
  179. }
  180. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  181. uint32_t queue, uint32_t vmid)
  182. {
  183. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  184. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  185. mutex_lock(&adev->srbm_mutex);
  186. WREG32(mmSRBM_GFX_CNTL, value);
  187. }
  188. static void unlock_srbm(struct kgd_dev *kgd)
  189. {
  190. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  191. WREG32(mmSRBM_GFX_CNTL, 0);
  192. mutex_unlock(&adev->srbm_mutex);
  193. }
  194. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  195. uint32_t queue_id)
  196. {
  197. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  198. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  199. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  200. lock_srbm(kgd, mec, pipe, queue_id, 0);
  201. }
  202. static void release_queue(struct kgd_dev *kgd)
  203. {
  204. unlock_srbm(kgd);
  205. }
  206. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  207. uint32_t sh_mem_config,
  208. uint32_t sh_mem_ape1_base,
  209. uint32_t sh_mem_ape1_limit,
  210. uint32_t sh_mem_bases)
  211. {
  212. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  213. lock_srbm(kgd, 0, 0, 0, vmid);
  214. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  215. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  216. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  217. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  218. unlock_srbm(kgd);
  219. }
  220. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  221. unsigned int vmid)
  222. {
  223. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  224. /*
  225. * We have to assume that there is no outstanding mapping.
  226. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  227. * a mapping is in progress or because a mapping finished
  228. * and the SW cleared it.
  229. * So the protocol is to always wait & clear.
  230. */
  231. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  232. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  233. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  234. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  235. cpu_relax();
  236. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  237. /* Mapping vmid to pasid also for IH block */
  238. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  239. return 0;
  240. }
  241. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  242. {
  243. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  244. uint32_t mec;
  245. uint32_t pipe;
  246. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  247. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  248. lock_srbm(kgd, mec, pipe, 0, 0);
  249. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  250. unlock_srbm(kgd);
  251. return 0;
  252. }
  253. static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
  254. {
  255. uint32_t retval;
  256. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  257. m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  258. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  259. return retval;
  260. }
  261. static inline struct vi_mqd *get_mqd(void *mqd)
  262. {
  263. return (struct vi_mqd *)mqd;
  264. }
  265. static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
  266. {
  267. return (struct vi_sdma_mqd *)mqd;
  268. }
  269. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  270. uint32_t queue_id, uint32_t __user *wptr,
  271. uint32_t wptr_shift, uint32_t wptr_mask,
  272. struct mm_struct *mm)
  273. {
  274. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  275. struct vi_mqd *m;
  276. uint32_t *mqd_hqd;
  277. uint32_t reg, wptr_val, data;
  278. bool valid_wptr = false;
  279. m = get_mqd(mqd);
  280. acquire_queue(kgd, pipe_id, queue_id);
  281. /* HIQ is set during driver init period with vmid set to 0*/
  282. if (m->cp_hqd_vmid == 0) {
  283. uint32_t value, mec, pipe;
  284. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  285. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  286. pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
  287. mec, pipe, queue_id);
  288. value = RREG32(mmRLC_CP_SCHEDULERS);
  289. value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
  290. ((mec << 5) | (pipe << 3) | queue_id | 0x80));
  291. WREG32(mmRLC_CP_SCHEDULERS, value);
  292. }
  293. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
  294. mqd_hqd = &m->cp_mqd_base_addr_lo;
  295. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
  296. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  297. /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
  298. * This is safe since EOP RPTR==WPTR for any inactive HQD
  299. * on ASICs that do not support context-save.
  300. * EOP writes/reads can start anywhere in the ring.
  301. */
  302. if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
  303. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  304. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  305. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  306. }
  307. for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
  308. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  309. /* Copy userspace write pointer value to register.
  310. * Activate doorbell logic to monitor subsequent changes.
  311. */
  312. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  313. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  314. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  315. /* read_user_ptr may take the mm->mmap_sem.
  316. * release srbm_mutex to avoid circular dependency between
  317. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  318. */
  319. release_queue(kgd);
  320. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  321. acquire_queue(kgd, pipe_id, queue_id);
  322. if (valid_wptr)
  323. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  324. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  325. WREG32(mmCP_HQD_ACTIVE, data);
  326. release_queue(kgd);
  327. return 0;
  328. }
  329. static int kgd_hqd_dump(struct kgd_dev *kgd,
  330. uint32_t pipe_id, uint32_t queue_id,
  331. uint32_t (**dump)[2], uint32_t *n_regs)
  332. {
  333. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  334. uint32_t i = 0, reg;
  335. #define HQD_N_REGS (54+4)
  336. #define DUMP_REG(addr) do { \
  337. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  338. break; \
  339. (*dump)[i][0] = (addr) << 2; \
  340. (*dump)[i++][1] = RREG32(addr); \
  341. } while (0)
  342. *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
  343. if (*dump == NULL)
  344. return -ENOMEM;
  345. acquire_queue(kgd, pipe_id, queue_id);
  346. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  347. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  348. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  349. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  350. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
  351. DUMP_REG(reg);
  352. release_queue(kgd);
  353. WARN_ON_ONCE(i != HQD_N_REGS);
  354. *n_regs = i;
  355. return 0;
  356. }
  357. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  358. uint32_t __user *wptr, struct mm_struct *mm)
  359. {
  360. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  361. struct vi_sdma_mqd *m;
  362. unsigned long end_jiffies;
  363. uint32_t sdma_base_addr;
  364. uint32_t data;
  365. m = get_sdma_mqd(mqd);
  366. sdma_base_addr = get_sdma_base_addr(m);
  367. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  368. m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  369. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  370. while (true) {
  371. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  372. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  373. break;
  374. if (time_after(jiffies, end_jiffies))
  375. return -ETIME;
  376. usleep_range(500, 1000);
  377. }
  378. if (m->sdma_engine_id) {
  379. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  380. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  381. RESUME_CTX, 0);
  382. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  383. } else {
  384. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  385. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  386. RESUME_CTX, 0);
  387. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  388. }
  389. data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
  390. ENABLE, 1);
  391. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  392. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
  393. if (read_user_wptr(mm, wptr, data))
  394. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  395. else
  396. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  397. m->sdmax_rlcx_rb_rptr);
  398. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  399. m->sdmax_rlcx_virtual_addr);
  400. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
  401. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  402. m->sdmax_rlcx_rb_base_hi);
  403. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  404. m->sdmax_rlcx_rb_rptr_addr_lo);
  405. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  406. m->sdmax_rlcx_rb_rptr_addr_hi);
  407. data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
  408. RB_ENABLE, 1);
  409. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  410. return 0;
  411. }
  412. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  413. uint32_t engine_id, uint32_t queue_id,
  414. uint32_t (**dump)[2], uint32_t *n_regs)
  415. {
  416. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  417. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  418. queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  419. uint32_t i = 0, reg;
  420. #undef HQD_N_REGS
  421. #define HQD_N_REGS (19+4+2+3+7)
  422. *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
  423. if (*dump == NULL)
  424. return -ENOMEM;
  425. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  426. DUMP_REG(sdma_offset + reg);
  427. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  428. reg++)
  429. DUMP_REG(sdma_offset + reg);
  430. for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
  431. reg++)
  432. DUMP_REG(sdma_offset + reg);
  433. for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
  434. reg++)
  435. DUMP_REG(sdma_offset + reg);
  436. for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
  437. reg++)
  438. DUMP_REG(sdma_offset + reg);
  439. WARN_ON_ONCE(i != HQD_N_REGS);
  440. *n_regs = i;
  441. return 0;
  442. }
  443. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  444. uint32_t pipe_id, uint32_t queue_id)
  445. {
  446. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  447. uint32_t act;
  448. bool retval = false;
  449. uint32_t low, high;
  450. acquire_queue(kgd, pipe_id, queue_id);
  451. act = RREG32(mmCP_HQD_ACTIVE);
  452. if (act) {
  453. low = lower_32_bits(queue_address >> 8);
  454. high = upper_32_bits(queue_address >> 8);
  455. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  456. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  457. retval = true;
  458. }
  459. release_queue(kgd);
  460. return retval;
  461. }
  462. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  463. {
  464. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  465. struct vi_sdma_mqd *m;
  466. uint32_t sdma_base_addr;
  467. uint32_t sdma_rlc_rb_cntl;
  468. m = get_sdma_mqd(mqd);
  469. sdma_base_addr = get_sdma_base_addr(m);
  470. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  471. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  472. return true;
  473. return false;
  474. }
  475. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  476. enum kfd_preempt_type reset_type,
  477. unsigned int utimeout, uint32_t pipe_id,
  478. uint32_t queue_id)
  479. {
  480. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  481. uint32_t temp;
  482. enum hqd_dequeue_request_type type;
  483. unsigned long flags, end_jiffies;
  484. int retry;
  485. struct vi_mqd *m = get_mqd(mqd);
  486. if (adev->in_gpu_reset)
  487. return -EIO;
  488. acquire_queue(kgd, pipe_id, queue_id);
  489. if (m->cp_hqd_vmid == 0)
  490. WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
  491. switch (reset_type) {
  492. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  493. type = DRAIN_PIPE;
  494. break;
  495. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  496. type = RESET_WAVES;
  497. break;
  498. default:
  499. type = DRAIN_PIPE;
  500. break;
  501. }
  502. /* Workaround: If IQ timer is active and the wait time is close to or
  503. * equal to 0, dequeueing is not safe. Wait until either the wait time
  504. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  505. * cleared before continuing. Also, ensure wait times are set to at
  506. * least 0x3.
  507. */
  508. local_irq_save(flags);
  509. preempt_disable();
  510. retry = 5000; /* wait for 500 usecs at maximum */
  511. while (true) {
  512. temp = RREG32(mmCP_HQD_IQ_TIMER);
  513. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  514. pr_debug("HW is processing IQ\n");
  515. goto loop;
  516. }
  517. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  518. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  519. == 3) /* SEM-rearm is safe */
  520. break;
  521. /* Wait time 3 is safe for CP, but our MMIO read/write
  522. * time is close to 1 microsecond, so check for 10 to
  523. * leave more buffer room
  524. */
  525. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  526. >= 10)
  527. break;
  528. pr_debug("IQ timer is active\n");
  529. } else
  530. break;
  531. loop:
  532. if (!retry) {
  533. pr_err("CP HQD IQ timer status time out\n");
  534. break;
  535. }
  536. ndelay(100);
  537. --retry;
  538. }
  539. retry = 1000;
  540. while (true) {
  541. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  542. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  543. break;
  544. pr_debug("Dequeue request is pending\n");
  545. if (!retry) {
  546. pr_err("CP HQD dequeue request time out\n");
  547. break;
  548. }
  549. ndelay(100);
  550. --retry;
  551. }
  552. local_irq_restore(flags);
  553. preempt_enable();
  554. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  555. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  556. while (true) {
  557. temp = RREG32(mmCP_HQD_ACTIVE);
  558. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  559. break;
  560. if (time_after(jiffies, end_jiffies)) {
  561. pr_err("cp queue preemption time out.\n");
  562. release_queue(kgd);
  563. return -ETIME;
  564. }
  565. usleep_range(500, 1000);
  566. }
  567. release_queue(kgd);
  568. return 0;
  569. }
  570. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  571. unsigned int utimeout)
  572. {
  573. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  574. struct vi_sdma_mqd *m;
  575. uint32_t sdma_base_addr;
  576. uint32_t temp;
  577. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  578. m = get_sdma_mqd(mqd);
  579. sdma_base_addr = get_sdma_base_addr(m);
  580. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  581. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  582. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  583. while (true) {
  584. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  585. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  586. break;
  587. if (time_after(jiffies, end_jiffies))
  588. return -ETIME;
  589. usleep_range(500, 1000);
  590. }
  591. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  592. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  593. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  594. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  595. m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  596. return 0;
  597. }
  598. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  599. uint8_t vmid)
  600. {
  601. uint32_t reg;
  602. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  603. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  604. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  605. }
  606. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  607. uint8_t vmid)
  608. {
  609. uint32_t reg;
  610. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  611. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  612. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  613. }
  614. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  615. {
  616. return 0;
  617. }
  618. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  619. unsigned int watch_point_id,
  620. uint32_t cntl_val,
  621. uint32_t addr_hi,
  622. uint32_t addr_lo)
  623. {
  624. return 0;
  625. }
  626. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  627. uint32_t gfx_index_val,
  628. uint32_t sq_cmd)
  629. {
  630. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  631. uint32_t data = 0;
  632. mutex_lock(&adev->grbm_idx_mutex);
  633. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  634. WREG32(mmSQ_CMD, sq_cmd);
  635. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  636. INSTANCE_BROADCAST_WRITES, 1);
  637. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  638. SH_BROADCAST_WRITES, 1);
  639. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  640. SE_BROADCAST_WRITES, 1);
  641. WREG32(mmGRBM_GFX_INDEX, data);
  642. mutex_unlock(&adev->grbm_idx_mutex);
  643. return 0;
  644. }
  645. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  646. unsigned int watch_point_id,
  647. unsigned int reg_offset)
  648. {
  649. return 0;
  650. }
  651. static void set_scratch_backing_va(struct kgd_dev *kgd,
  652. uint64_t va, uint32_t vmid)
  653. {
  654. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  655. lock_srbm(kgd, 0, 0, 0, vmid);
  656. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  657. unlock_srbm(kgd);
  658. }
  659. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  660. {
  661. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  662. const union amdgpu_firmware_header *hdr;
  663. switch (type) {
  664. case KGD_ENGINE_PFP:
  665. hdr = (const union amdgpu_firmware_header *)
  666. adev->gfx.pfp_fw->data;
  667. break;
  668. case KGD_ENGINE_ME:
  669. hdr = (const union amdgpu_firmware_header *)
  670. adev->gfx.me_fw->data;
  671. break;
  672. case KGD_ENGINE_CE:
  673. hdr = (const union amdgpu_firmware_header *)
  674. adev->gfx.ce_fw->data;
  675. break;
  676. case KGD_ENGINE_MEC1:
  677. hdr = (const union amdgpu_firmware_header *)
  678. adev->gfx.mec_fw->data;
  679. break;
  680. case KGD_ENGINE_MEC2:
  681. hdr = (const union amdgpu_firmware_header *)
  682. adev->gfx.mec2_fw->data;
  683. break;
  684. case KGD_ENGINE_RLC:
  685. hdr = (const union amdgpu_firmware_header *)
  686. adev->gfx.rlc_fw->data;
  687. break;
  688. case KGD_ENGINE_SDMA1:
  689. hdr = (const union amdgpu_firmware_header *)
  690. adev->sdma.instance[0].fw->data;
  691. break;
  692. case KGD_ENGINE_SDMA2:
  693. hdr = (const union amdgpu_firmware_header *)
  694. adev->sdma.instance[1].fw->data;
  695. break;
  696. default:
  697. return 0;
  698. }
  699. if (hdr == NULL)
  700. return 0;
  701. /* Only 12 bit in use*/
  702. return hdr->common.ucode_version;
  703. }
  704. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  705. uint32_t page_table_base)
  706. {
  707. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  708. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  709. pr_err("trying to set page table base for wrong VMID\n");
  710. return;
  711. }
  712. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
  713. }
  714. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  715. {
  716. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  717. int vmid;
  718. unsigned int tmp;
  719. if (adev->in_gpu_reset)
  720. return -EIO;
  721. for (vmid = 0; vmid < 16; vmid++) {
  722. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  723. continue;
  724. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  725. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  726. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  727. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  728. RREG32(mmVM_INVALIDATE_RESPONSE);
  729. break;
  730. }
  731. }
  732. return 0;
  733. }
  734. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  735. {
  736. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  737. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  738. pr_err("non kfd vmid %d\n", vmid);
  739. return -EINVAL;
  740. }
  741. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  742. RREG32(mmVM_INVALIDATE_RESPONSE);
  743. return 0;
  744. }