amdgpu_amdkfd_gfx_v7.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  91. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  92. uint32_t queue_id, uint32_t __user *wptr,
  93. uint32_t wptr_shift, uint32_t wptr_mask,
  94. struct mm_struct *mm);
  95. static int kgd_hqd_dump(struct kgd_dev *kgd,
  96. uint32_t pipe_id, uint32_t queue_id,
  97. uint32_t (**dump)[2], uint32_t *n_regs);
  98. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  99. uint32_t __user *wptr, struct mm_struct *mm);
  100. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  101. uint32_t engine_id, uint32_t queue_id,
  102. uint32_t (**dump)[2], uint32_t *n_regs);
  103. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  104. uint32_t pipe_id, uint32_t queue_id);
  105. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  106. enum kfd_preempt_type reset_type,
  107. unsigned int utimeout, uint32_t pipe_id,
  108. uint32_t queue_id);
  109. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  110. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  111. unsigned int utimeout);
  112. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  113. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  114. unsigned int watch_point_id,
  115. uint32_t cntl_val,
  116. uint32_t addr_hi,
  117. uint32_t addr_lo);
  118. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  119. uint32_t gfx_index_val,
  120. uint32_t sq_cmd);
  121. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  122. unsigned int watch_point_id,
  123. unsigned int reg_offset);
  124. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  125. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  126. uint8_t vmid);
  127. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  128. static void set_scratch_backing_va(struct kgd_dev *kgd,
  129. uint64_t va, uint32_t vmid);
  130. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  131. uint32_t page_table_base);
  132. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  133. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  134. static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
  135. /* Because of REG_GET_FIELD() being used, we put this function in the
  136. * asic specific file.
  137. */
  138. static int get_tile_config(struct kgd_dev *kgd,
  139. struct tile_config *config)
  140. {
  141. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  142. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  143. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  144. MC_ARB_RAMCFG, NOOFBANK);
  145. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  146. MC_ARB_RAMCFG, NOOFRANKS);
  147. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  148. config->num_tile_configs =
  149. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  150. config->macro_tile_config_ptr =
  151. adev->gfx.config.macrotile_mode_array;
  152. config->num_macro_tile_configs =
  153. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  154. return 0;
  155. }
  156. static const struct kfd2kgd_calls kfd2kgd = {
  157. .init_gtt_mem_allocation = alloc_gtt_mem,
  158. .free_gtt_mem = free_gtt_mem,
  159. .get_local_mem_info = get_local_mem_info,
  160. .get_gpu_clock_counter = get_gpu_clock_counter,
  161. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  162. .alloc_pasid = amdgpu_pasid_alloc,
  163. .free_pasid = amdgpu_pasid_free,
  164. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  165. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  166. .init_interrupts = kgd_init_interrupts,
  167. .hqd_load = kgd_hqd_load,
  168. .hqd_sdma_load = kgd_hqd_sdma_load,
  169. .hqd_dump = kgd_hqd_dump,
  170. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  171. .hqd_is_occupied = kgd_hqd_is_occupied,
  172. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  173. .hqd_destroy = kgd_hqd_destroy,
  174. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  175. .address_watch_disable = kgd_address_watch_disable,
  176. .address_watch_execute = kgd_address_watch_execute,
  177. .wave_control_execute = kgd_wave_control_execute,
  178. .address_watch_get_offset = kgd_address_watch_get_offset,
  179. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  180. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  181. .get_fw_version = get_fw_version,
  182. .set_scratch_backing_va = set_scratch_backing_va,
  183. .get_tile_config = get_tile_config,
  184. .get_cu_info = get_cu_info,
  185. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  186. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  187. .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
  188. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  189. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  190. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  191. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  192. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  193. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  194. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  195. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  196. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  197. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  198. .invalidate_tlbs = invalidate_tlbs,
  199. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  200. .submit_ib = amdgpu_amdkfd_submit_ib,
  201. .get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info,
  202. .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
  203. .gpu_recover = amdgpu_amdkfd_gpu_reset,
  204. .set_compute_idle = amdgpu_amdkfd_set_compute_idle
  205. };
  206. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  207. {
  208. return (struct kfd2kgd_calls *)&kfd2kgd;
  209. }
  210. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  211. {
  212. return (struct amdgpu_device *)kgd;
  213. }
  214. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  215. uint32_t queue, uint32_t vmid)
  216. {
  217. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  218. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  219. mutex_lock(&adev->srbm_mutex);
  220. WREG32(mmSRBM_GFX_CNTL, value);
  221. }
  222. static void unlock_srbm(struct kgd_dev *kgd)
  223. {
  224. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  225. WREG32(mmSRBM_GFX_CNTL, 0);
  226. mutex_unlock(&adev->srbm_mutex);
  227. }
  228. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  229. uint32_t queue_id)
  230. {
  231. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  232. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  233. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  234. lock_srbm(kgd, mec, pipe, queue_id, 0);
  235. }
  236. static void release_queue(struct kgd_dev *kgd)
  237. {
  238. unlock_srbm(kgd);
  239. }
  240. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  241. uint32_t sh_mem_config,
  242. uint32_t sh_mem_ape1_base,
  243. uint32_t sh_mem_ape1_limit,
  244. uint32_t sh_mem_bases)
  245. {
  246. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  247. lock_srbm(kgd, 0, 0, 0, vmid);
  248. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  249. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  250. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  251. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  252. unlock_srbm(kgd);
  253. }
  254. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  255. unsigned int vmid)
  256. {
  257. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  258. /*
  259. * We have to assume that there is no outstanding mapping.
  260. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  261. * a mapping is in progress or because a mapping finished and the
  262. * SW cleared it. So the protocol is to always wait & clear.
  263. */
  264. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  265. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  266. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  267. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  268. cpu_relax();
  269. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  270. /* Mapping vmid to pasid also for IH block */
  271. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  272. return 0;
  273. }
  274. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  275. {
  276. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  277. uint32_t mec;
  278. uint32_t pipe;
  279. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  280. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  281. lock_srbm(kgd, mec, pipe, 0, 0);
  282. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  283. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  284. unlock_srbm(kgd);
  285. return 0;
  286. }
  287. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  288. {
  289. uint32_t retval;
  290. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  291. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  292. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  293. return retval;
  294. }
  295. static inline struct cik_mqd *get_mqd(void *mqd)
  296. {
  297. return (struct cik_mqd *)mqd;
  298. }
  299. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  300. {
  301. return (struct cik_sdma_rlc_registers *)mqd;
  302. }
  303. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  304. uint32_t queue_id, uint32_t __user *wptr,
  305. uint32_t wptr_shift, uint32_t wptr_mask,
  306. struct mm_struct *mm)
  307. {
  308. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  309. struct cik_mqd *m;
  310. uint32_t *mqd_hqd;
  311. uint32_t reg, wptr_val, data;
  312. bool valid_wptr = false;
  313. m = get_mqd(mqd);
  314. acquire_queue(kgd, pipe_id, queue_id);
  315. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  316. mqd_hqd = &m->cp_mqd_base_addr_lo;
  317. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  318. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  319. /* Copy userspace write pointer value to register.
  320. * Activate doorbell logic to monitor subsequent changes.
  321. */
  322. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  323. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  324. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  325. /* read_user_ptr may take the mm->mmap_sem.
  326. * release srbm_mutex to avoid circular dependency between
  327. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  328. */
  329. release_queue(kgd);
  330. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  331. acquire_queue(kgd, pipe_id, queue_id);
  332. if (valid_wptr)
  333. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  334. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  335. WREG32(mmCP_HQD_ACTIVE, data);
  336. release_queue(kgd);
  337. return 0;
  338. }
  339. static int kgd_hqd_dump(struct kgd_dev *kgd,
  340. uint32_t pipe_id, uint32_t queue_id,
  341. uint32_t (**dump)[2], uint32_t *n_regs)
  342. {
  343. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  344. uint32_t i = 0, reg;
  345. #define HQD_N_REGS (35+4)
  346. #define DUMP_REG(addr) do { \
  347. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  348. break; \
  349. (*dump)[i][0] = (addr) << 2; \
  350. (*dump)[i++][1] = RREG32(addr); \
  351. } while (0)
  352. *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
  353. if (*dump == NULL)
  354. return -ENOMEM;
  355. acquire_queue(kgd, pipe_id, queue_id);
  356. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  357. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  358. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  359. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  360. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  361. DUMP_REG(reg);
  362. release_queue(kgd);
  363. WARN_ON_ONCE(i != HQD_N_REGS);
  364. *n_regs = i;
  365. return 0;
  366. }
  367. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  368. uint32_t __user *wptr, struct mm_struct *mm)
  369. {
  370. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  371. struct cik_sdma_rlc_registers *m;
  372. unsigned long end_jiffies;
  373. uint32_t sdma_base_addr;
  374. uint32_t data;
  375. m = get_sdma_mqd(mqd);
  376. sdma_base_addr = get_sdma_base_addr(m);
  377. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  378. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  379. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  380. while (true) {
  381. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  382. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  383. break;
  384. if (time_after(jiffies, end_jiffies))
  385. return -ETIME;
  386. usleep_range(500, 1000);
  387. }
  388. if (m->sdma_engine_id) {
  389. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  390. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  391. RESUME_CTX, 0);
  392. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  393. } else {
  394. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  395. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  396. RESUME_CTX, 0);
  397. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  398. }
  399. data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
  400. ENABLE, 1);
  401. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  402. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
  403. if (read_user_wptr(mm, wptr, data))
  404. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  405. else
  406. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  407. m->sdma_rlc_rb_rptr);
  408. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  409. m->sdma_rlc_virtual_addr);
  410. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  411. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  412. m->sdma_rlc_rb_base_hi);
  413. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  414. m->sdma_rlc_rb_rptr_addr_lo);
  415. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  416. m->sdma_rlc_rb_rptr_addr_hi);
  417. data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
  418. RB_ENABLE, 1);
  419. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  420. return 0;
  421. }
  422. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  423. uint32_t engine_id, uint32_t queue_id,
  424. uint32_t (**dump)[2], uint32_t *n_regs)
  425. {
  426. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  427. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  428. queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  429. uint32_t i = 0, reg;
  430. #undef HQD_N_REGS
  431. #define HQD_N_REGS (19+4)
  432. *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
  433. if (*dump == NULL)
  434. return -ENOMEM;
  435. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  436. DUMP_REG(sdma_offset + reg);
  437. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  438. reg++)
  439. DUMP_REG(sdma_offset + reg);
  440. WARN_ON_ONCE(i != HQD_N_REGS);
  441. *n_regs = i;
  442. return 0;
  443. }
  444. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  445. uint32_t pipe_id, uint32_t queue_id)
  446. {
  447. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  448. uint32_t act;
  449. bool retval = false;
  450. uint32_t low, high;
  451. acquire_queue(kgd, pipe_id, queue_id);
  452. act = RREG32(mmCP_HQD_ACTIVE);
  453. if (act) {
  454. low = lower_32_bits(queue_address >> 8);
  455. high = upper_32_bits(queue_address >> 8);
  456. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  457. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  458. retval = true;
  459. }
  460. release_queue(kgd);
  461. return retval;
  462. }
  463. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  464. {
  465. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  466. struct cik_sdma_rlc_registers *m;
  467. uint32_t sdma_base_addr;
  468. uint32_t sdma_rlc_rb_cntl;
  469. m = get_sdma_mqd(mqd);
  470. sdma_base_addr = get_sdma_base_addr(m);
  471. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  472. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  473. return true;
  474. return false;
  475. }
  476. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  477. enum kfd_preempt_type reset_type,
  478. unsigned int utimeout, uint32_t pipe_id,
  479. uint32_t queue_id)
  480. {
  481. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  482. uint32_t temp;
  483. enum hqd_dequeue_request_type type;
  484. unsigned long flags, end_jiffies;
  485. int retry;
  486. if (adev->in_gpu_reset)
  487. return -EIO;
  488. acquire_queue(kgd, pipe_id, queue_id);
  489. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  490. switch (reset_type) {
  491. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  492. type = DRAIN_PIPE;
  493. break;
  494. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  495. type = RESET_WAVES;
  496. break;
  497. default:
  498. type = DRAIN_PIPE;
  499. break;
  500. }
  501. /* Workaround: If IQ timer is active and the wait time is close to or
  502. * equal to 0, dequeueing is not safe. Wait until either the wait time
  503. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  504. * cleared before continuing. Also, ensure wait times are set to at
  505. * least 0x3.
  506. */
  507. local_irq_save(flags);
  508. preempt_disable();
  509. retry = 5000; /* wait for 500 usecs at maximum */
  510. while (true) {
  511. temp = RREG32(mmCP_HQD_IQ_TIMER);
  512. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  513. pr_debug("HW is processing IQ\n");
  514. goto loop;
  515. }
  516. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  517. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  518. == 3) /* SEM-rearm is safe */
  519. break;
  520. /* Wait time 3 is safe for CP, but our MMIO read/write
  521. * time is close to 1 microsecond, so check for 10 to
  522. * leave more buffer room
  523. */
  524. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  525. >= 10)
  526. break;
  527. pr_debug("IQ timer is active\n");
  528. } else
  529. break;
  530. loop:
  531. if (!retry) {
  532. pr_err("CP HQD IQ timer status time out\n");
  533. break;
  534. }
  535. ndelay(100);
  536. --retry;
  537. }
  538. retry = 1000;
  539. while (true) {
  540. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  541. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  542. break;
  543. pr_debug("Dequeue request is pending\n");
  544. if (!retry) {
  545. pr_err("CP HQD dequeue request time out\n");
  546. break;
  547. }
  548. ndelay(100);
  549. --retry;
  550. }
  551. local_irq_restore(flags);
  552. preempt_enable();
  553. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  554. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  555. while (true) {
  556. temp = RREG32(mmCP_HQD_ACTIVE);
  557. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  558. break;
  559. if (time_after(jiffies, end_jiffies)) {
  560. pr_err("cp queue preemption time out\n");
  561. release_queue(kgd);
  562. return -ETIME;
  563. }
  564. usleep_range(500, 1000);
  565. }
  566. release_queue(kgd);
  567. return 0;
  568. }
  569. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  570. unsigned int utimeout)
  571. {
  572. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  573. struct cik_sdma_rlc_registers *m;
  574. uint32_t sdma_base_addr;
  575. uint32_t temp;
  576. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  577. m = get_sdma_mqd(mqd);
  578. sdma_base_addr = get_sdma_base_addr(m);
  579. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  580. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  581. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  582. while (true) {
  583. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  584. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  585. break;
  586. if (time_after(jiffies, end_jiffies))
  587. return -ETIME;
  588. usleep_range(500, 1000);
  589. }
  590. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  591. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  592. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  593. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  594. m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  595. return 0;
  596. }
  597. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  598. {
  599. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  600. union TCP_WATCH_CNTL_BITS cntl;
  601. unsigned int i;
  602. cntl.u32All = 0;
  603. cntl.bitfields.valid = 0;
  604. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  605. cntl.bitfields.atc = 1;
  606. /* Turning off this address until we set all the registers */
  607. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  608. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  609. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  610. return 0;
  611. }
  612. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  613. unsigned int watch_point_id,
  614. uint32_t cntl_val,
  615. uint32_t addr_hi,
  616. uint32_t addr_lo)
  617. {
  618. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  619. union TCP_WATCH_CNTL_BITS cntl;
  620. cntl.u32All = cntl_val;
  621. /* Turning off this watch point until we set all the registers */
  622. cntl.bitfields.valid = 0;
  623. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  624. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  625. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  626. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  627. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  628. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  629. /* Enable the watch point */
  630. cntl.bitfields.valid = 1;
  631. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  632. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  633. return 0;
  634. }
  635. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  636. uint32_t gfx_index_val,
  637. uint32_t sq_cmd)
  638. {
  639. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  640. uint32_t data;
  641. mutex_lock(&adev->grbm_idx_mutex);
  642. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  643. WREG32(mmSQ_CMD, sq_cmd);
  644. /* Restore the GRBM_GFX_INDEX register */
  645. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  646. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  647. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  648. WREG32(mmGRBM_GFX_INDEX, data);
  649. mutex_unlock(&adev->grbm_idx_mutex);
  650. return 0;
  651. }
  652. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  653. unsigned int watch_point_id,
  654. unsigned int reg_offset)
  655. {
  656. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  657. }
  658. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  659. uint8_t vmid)
  660. {
  661. uint32_t reg;
  662. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  663. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  664. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  665. }
  666. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  667. uint8_t vmid)
  668. {
  669. uint32_t reg;
  670. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  671. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  672. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  673. }
  674. static void set_scratch_backing_va(struct kgd_dev *kgd,
  675. uint64_t va, uint32_t vmid)
  676. {
  677. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  678. lock_srbm(kgd, 0, 0, 0, vmid);
  679. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  680. unlock_srbm(kgd);
  681. }
  682. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  683. {
  684. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  685. const union amdgpu_firmware_header *hdr;
  686. switch (type) {
  687. case KGD_ENGINE_PFP:
  688. hdr = (const union amdgpu_firmware_header *)
  689. adev->gfx.pfp_fw->data;
  690. break;
  691. case KGD_ENGINE_ME:
  692. hdr = (const union amdgpu_firmware_header *)
  693. adev->gfx.me_fw->data;
  694. break;
  695. case KGD_ENGINE_CE:
  696. hdr = (const union amdgpu_firmware_header *)
  697. adev->gfx.ce_fw->data;
  698. break;
  699. case KGD_ENGINE_MEC1:
  700. hdr = (const union amdgpu_firmware_header *)
  701. adev->gfx.mec_fw->data;
  702. break;
  703. case KGD_ENGINE_MEC2:
  704. hdr = (const union amdgpu_firmware_header *)
  705. adev->gfx.mec2_fw->data;
  706. break;
  707. case KGD_ENGINE_RLC:
  708. hdr = (const union amdgpu_firmware_header *)
  709. adev->gfx.rlc_fw->data;
  710. break;
  711. case KGD_ENGINE_SDMA1:
  712. hdr = (const union amdgpu_firmware_header *)
  713. adev->sdma.instance[0].fw->data;
  714. break;
  715. case KGD_ENGINE_SDMA2:
  716. hdr = (const union amdgpu_firmware_header *)
  717. adev->sdma.instance[1].fw->data;
  718. break;
  719. default:
  720. return 0;
  721. }
  722. if (hdr == NULL)
  723. return 0;
  724. /* Only 12 bit in use*/
  725. return hdr->common.ucode_version;
  726. }
  727. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  728. uint32_t page_table_base)
  729. {
  730. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  731. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  732. pr_err("trying to set page table base for wrong VMID\n");
  733. return;
  734. }
  735. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
  736. }
  737. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  738. {
  739. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  740. int vmid;
  741. unsigned int tmp;
  742. if (adev->in_gpu_reset)
  743. return -EIO;
  744. for (vmid = 0; vmid < 16; vmid++) {
  745. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  746. continue;
  747. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  748. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  749. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  750. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  751. RREG32(mmVM_INVALIDATE_RESPONSE);
  752. break;
  753. }
  754. }
  755. return 0;
  756. }
  757. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  758. {
  759. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  760. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  761. pr_err("non kfd vmid\n");
  762. return 0;
  763. }
  764. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  765. RREG32(mmVM_INVALIDATE_RESPONSE);
  766. return 0;
  767. }
  768. /**
  769. * read_vmid_from_vmfault_reg - read vmid from register
  770. *
  771. * adev: amdgpu_device pointer
  772. * @vmid: vmid pointer
  773. * read vmid from register (CIK).
  774. */
  775. static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
  776. {
  777. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  778. uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
  779. return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
  780. }