123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Common EFI memory map functions.
- */
- #define pr_fmt(fmt) "efi: " fmt
- #include <linux/init.h>
- #include <linux/kernel.h>
- #include <linux/efi.h>
- #include <linux/io.h>
- #include <asm/early_ioremap.h>
- #include <linux/memblock.h>
- #include <linux/slab.h>
- static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
- {
- return memblock_alloc(size, 0);
- }
- static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
- {
- unsigned int order = get_order(size);
- struct page *p = alloc_pages(GFP_KERNEL, order);
- if (!p)
- return 0;
- return PFN_PHYS(page_to_pfn(p));
- }
- /**
- * efi_memmap_alloc - Allocate memory for the EFI memory map
- * @num_entries: Number of entries in the allocated map.
- *
- * Depending on whether mm_init() has already been invoked or not,
- * either memblock or "normal" page allocation is used.
- *
- * Returns the physical address of the allocated memory map on
- * success, zero on failure.
- */
- phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
- {
- unsigned long size = num_entries * efi.memmap.desc_size;
- if (slab_is_available())
- return __efi_memmap_alloc_late(size);
- return __efi_memmap_alloc_early(size);
- }
- /**
- * __efi_memmap_init - Common code for mapping the EFI memory map
- * @data: EFI memory map data
- * @late: Use early or late mapping function?
- *
- * This function takes care of figuring out which function to use to
- * map the EFI memory map in efi.memmap based on how far into the boot
- * we are.
- *
- * During bootup @late should be %false since we only have access to
- * the early_memremap*() functions as the vmalloc space isn't setup.
- * Once the kernel is fully booted we can fallback to the more robust
- * memremap*() API.
- *
- * Returns zero on success, a negative error code on failure.
- */
- static int __init
- __efi_memmap_init(struct efi_memory_map_data *data, bool late)
- {
- struct efi_memory_map map;
- phys_addr_t phys_map;
- if (efi_enabled(EFI_PARAVIRT))
- return 0;
- phys_map = data->phys_map;
- if (late)
- map.map = memremap(phys_map, data->size, MEMREMAP_WB);
- else
- map.map = early_memremap(phys_map, data->size);
- if (!map.map) {
- pr_err("Could not map the memory map!\n");
- return -ENOMEM;
- }
- map.phys_map = data->phys_map;
- map.nr_map = data->size / data->desc_size;
- map.map_end = map.map + data->size;
- map.desc_version = data->desc_version;
- map.desc_size = data->desc_size;
- map.late = late;
- set_bit(EFI_MEMMAP, &efi.flags);
- efi.memmap = map;
- return 0;
- }
- /**
- * efi_memmap_init_early - Map the EFI memory map data structure
- * @data: EFI memory map data
- *
- * Use early_memremap() to map the passed in EFI memory map and assign
- * it to efi.memmap.
- */
- int __init efi_memmap_init_early(struct efi_memory_map_data *data)
- {
- /* Cannot go backwards */
- WARN_ON(efi.memmap.late);
- return __efi_memmap_init(data, false);
- }
- void __init efi_memmap_unmap(void)
- {
- if (!efi_enabled(EFI_MEMMAP))
- return;
- if (!efi.memmap.late) {
- unsigned long size;
- size = efi.memmap.desc_size * efi.memmap.nr_map;
- early_memunmap(efi.memmap.map, size);
- } else {
- memunmap(efi.memmap.map);
- }
- efi.memmap.map = NULL;
- clear_bit(EFI_MEMMAP, &efi.flags);
- }
- /**
- * efi_memmap_init_late - Map efi.memmap with memremap()
- * @phys_addr: Physical address of the new EFI memory map
- * @size: Size in bytes of the new EFI memory map
- *
- * Setup a mapping of the EFI memory map using ioremap_cache(). This
- * function should only be called once the vmalloc space has been
- * setup and is therefore not suitable for calling during early EFI
- * initialise, e.g. in efi_init(). Additionally, it expects
- * efi_memmap_init_early() to have already been called.
- *
- * The reason there are two EFI memmap initialisation
- * (efi_memmap_init_early() and this late version) is because the
- * early EFI memmap should be explicitly unmapped once EFI
- * initialisation is complete as the fixmap space used to map the EFI
- * memmap (via early_memremap()) is a scarce resource.
- *
- * This late mapping is intended to persist for the duration of
- * runtime so that things like efi_mem_desc_lookup() and
- * efi_mem_attributes() always work.
- *
- * Returns zero on success, a negative error code on failure.
- */
- int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
- {
- struct efi_memory_map_data data = {
- .phys_map = addr,
- .size = size,
- };
- /* Did we forget to unmap the early EFI memmap? */
- WARN_ON(efi.memmap.map);
- /* Were we already called? */
- WARN_ON(efi.memmap.late);
- /*
- * It makes no sense to allow callers to register different
- * values for the following fields. Copy them out of the
- * existing early EFI memmap.
- */
- data.desc_version = efi.memmap.desc_version;
- data.desc_size = efi.memmap.desc_size;
- return __efi_memmap_init(&data, true);
- }
- /**
- * efi_memmap_install - Install a new EFI memory map in efi.memmap
- * @addr: Physical address of the memory map
- * @nr_map: Number of entries in the memory map
- *
- * Unlike efi_memmap_init_*(), this function does not allow the caller
- * to switch from early to late mappings. It simply uses the existing
- * mapping function and installs the new memmap.
- *
- * Returns zero on success, a negative error code on failure.
- */
- int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
- {
- struct efi_memory_map_data data;
- efi_memmap_unmap();
- data.phys_map = addr;
- data.size = efi.memmap.desc_size * nr_map;
- data.desc_version = efi.memmap.desc_version;
- data.desc_size = efi.memmap.desc_size;
- return __efi_memmap_init(&data, efi.memmap.late);
- }
- /**
- * efi_memmap_split_count - Count number of additional EFI memmap entries
- * @md: EFI memory descriptor to split
- * @range: Address range (start, end) to split around
- *
- * Returns the number of additional EFI memmap entries required to
- * accomodate @range.
- */
- int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
- {
- u64 m_start, m_end;
- u64 start, end;
- int count = 0;
- start = md->phys_addr;
- end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
- /* modifying range */
- m_start = range->start;
- m_end = range->end;
- if (m_start <= start) {
- /* split into 2 parts */
- if (start < m_end && m_end < end)
- count++;
- }
- if (start < m_start && m_start < end) {
- /* split into 3 parts */
- if (m_end < end)
- count += 2;
- /* split into 2 parts */
- if (end <= m_end)
- count++;
- }
- return count;
- }
- /**
- * efi_memmap_insert - Insert a memory region in an EFI memmap
- * @old_memmap: The existing EFI memory map structure
- * @buf: Address of buffer to store new map
- * @mem: Memory map entry to insert
- *
- * It is suggested that you call efi_memmap_split_count() first
- * to see how large @buf needs to be.
- */
- void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
- struct efi_mem_range *mem)
- {
- u64 m_start, m_end, m_attr;
- efi_memory_desc_t *md;
- u64 start, end;
- void *old, *new;
- /* modifying range */
- m_start = mem->range.start;
- m_end = mem->range.end;
- m_attr = mem->attribute;
- /*
- * The EFI memory map deals with regions in EFI_PAGE_SIZE
- * units. Ensure that the region described by 'mem' is aligned
- * correctly.
- */
- if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
- !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
- WARN_ON(1);
- return;
- }
- for (old = old_memmap->map, new = buf;
- old < old_memmap->map_end;
- old += old_memmap->desc_size, new += old_memmap->desc_size) {
- /* copy original EFI memory descriptor */
- memcpy(new, old, old_memmap->desc_size);
- md = new;
- start = md->phys_addr;
- end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
- if (m_start <= start && end <= m_end)
- md->attribute |= m_attr;
- if (m_start <= start &&
- (start < m_end && m_end < end)) {
- /* first part */
- md->attribute |= m_attr;
- md->num_pages = (m_end - md->phys_addr + 1) >>
- EFI_PAGE_SHIFT;
- /* latter part */
- new += old_memmap->desc_size;
- memcpy(new, old, old_memmap->desc_size);
- md = new;
- md->phys_addr = m_end + 1;
- md->num_pages = (end - md->phys_addr + 1) >>
- EFI_PAGE_SHIFT;
- }
- if ((start < m_start && m_start < end) && m_end < end) {
- /* first part */
- md->num_pages = (m_start - md->phys_addr) >>
- EFI_PAGE_SHIFT;
- /* middle part */
- new += old_memmap->desc_size;
- memcpy(new, old, old_memmap->desc_size);
- md = new;
- md->attribute |= m_attr;
- md->phys_addr = m_start;
- md->num_pages = (m_end - m_start + 1) >>
- EFI_PAGE_SHIFT;
- /* last part */
- new += old_memmap->desc_size;
- memcpy(new, old, old_memmap->desc_size);
- md = new;
- md->phys_addr = m_end + 1;
- md->num_pages = (end - m_end) >>
- EFI_PAGE_SHIFT;
- }
- if ((start < m_start && m_start < end) &&
- (end <= m_end)) {
- /* first part */
- md->num_pages = (m_start - md->phys_addr) >>
- EFI_PAGE_SHIFT;
- /* latter part */
- new += old_memmap->desc_size;
- memcpy(new, old, old_memmap->desc_size);
- md = new;
- md->phys_addr = m_start;
- md->num_pages = (end - md->phys_addr + 1) >>
- EFI_PAGE_SHIFT;
- md->attribute |= m_attr;
- }
- }
- }
|