amd64_edac.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *pci_ctl;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /* Per-node stuff */
  14. static struct ecc_settings **ecc_stngs;
  15. /*
  16. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  17. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  18. * or higher value'.
  19. *
  20. *FIXME: Produce a better mapping/linearisation.
  21. */
  22. static const struct scrubrate {
  23. u32 scrubval; /* bit pattern for scrub rate */
  24. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  25. } scrubrates[] = {
  26. { 0x01, 1600000000UL},
  27. { 0x02, 800000000UL},
  28. { 0x03, 400000000UL},
  29. { 0x04, 200000000UL},
  30. { 0x05, 100000000UL},
  31. { 0x06, 50000000UL},
  32. { 0x07, 25000000UL},
  33. { 0x08, 12284069UL},
  34. { 0x09, 6274509UL},
  35. { 0x0A, 3121951UL},
  36. { 0x0B, 1560975UL},
  37. { 0x0C, 781440UL},
  38. { 0x0D, 390720UL},
  39. { 0x0E, 195300UL},
  40. { 0x0F, 97650UL},
  41. { 0x10, 48854UL},
  42. { 0x11, 24427UL},
  43. { 0x12, 12213UL},
  44. { 0x13, 6101UL},
  45. { 0x14, 3051UL},
  46. { 0x15, 1523UL},
  47. { 0x16, 761UL},
  48. { 0x00, 0UL}, /* scrubbing off */
  49. };
  50. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  51. u32 *val, const char *func)
  52. {
  53. int err = 0;
  54. err = pci_read_config_dword(pdev, offset, val);
  55. if (err)
  56. amd64_warn("%s: error reading F%dx%03x.\n",
  57. func, PCI_FUNC(pdev->devfn), offset);
  58. return err;
  59. }
  60. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  61. u32 val, const char *func)
  62. {
  63. int err = 0;
  64. err = pci_write_config_dword(pdev, offset, val);
  65. if (err)
  66. amd64_warn("%s: error writing to F%dx%03x.\n",
  67. func, PCI_FUNC(pdev->devfn), offset);
  68. return err;
  69. }
  70. /*
  71. * Select DCT to which PCI cfg accesses are routed
  72. */
  73. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  74. {
  75. u32 reg = 0;
  76. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  77. reg &= (pvt->model == 0x30) ? ~3 : ~1;
  78. reg |= dct;
  79. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  80. }
  81. /*
  82. *
  83. * Depending on the family, F2 DCT reads need special handling:
  84. *
  85. * K8: has a single DCT only and no address offsets >= 0x100
  86. *
  87. * F10h: each DCT has its own set of regs
  88. * DCT0 -> F2x040..
  89. * DCT1 -> F2x140..
  90. *
  91. * F16h: has only 1 DCT
  92. *
  93. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  94. */
  95. static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
  96. int offset, u32 *val)
  97. {
  98. switch (pvt->fam) {
  99. case 0xf:
  100. if (dct || offset >= 0x100)
  101. return -EINVAL;
  102. break;
  103. case 0x10:
  104. if (dct) {
  105. /*
  106. * Note: If ganging is enabled, barring the regs
  107. * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
  108. * return 0. (cf. Section 2.8.1 F10h BKDG)
  109. */
  110. if (dct_ganging_enabled(pvt))
  111. return 0;
  112. offset += 0x100;
  113. }
  114. break;
  115. case 0x15:
  116. /*
  117. * F15h: F2x1xx addresses do not map explicitly to DCT1.
  118. * We should select which DCT we access using F1x10C[DctCfgSel]
  119. */
  120. dct = (dct && pvt->model == 0x30) ? 3 : dct;
  121. f15h_select_dct(pvt, dct);
  122. break;
  123. case 0x16:
  124. if (dct)
  125. return -EINVAL;
  126. break;
  127. default:
  128. break;
  129. }
  130. return amd64_read_pci_cfg(pvt->F2, offset, val);
  131. }
  132. /*
  133. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  134. * hardware and can involve L2 cache, dcache as well as the main memory. With
  135. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  136. * functionality.
  137. *
  138. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  139. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  140. * bytes/sec for the setting.
  141. *
  142. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  143. * other archs, we might not have access to the caches directly.
  144. */
  145. static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
  146. {
  147. /*
  148. * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
  149. * are shifted down by 0x5, so scrubval 0x5 is written to the register
  150. * as 0x0, scrubval 0x6 as 0x1, etc.
  151. */
  152. if (scrubval >= 0x5 && scrubval <= 0x14) {
  153. scrubval -= 0x5;
  154. pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
  155. pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
  156. } else {
  157. pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
  158. }
  159. }
  160. /*
  161. * Scan the scrub rate mapping table for a close or matching bandwidth value to
  162. * issue. If requested is too big, then use last maximum value found.
  163. */
  164. static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
  165. {
  166. u32 scrubval;
  167. int i;
  168. /*
  169. * map the configured rate (new_bw) to a value specific to the AMD64
  170. * memory controller and apply to register. Search for the first
  171. * bandwidth entry that is greater or equal than the setting requested
  172. * and program that. If at last entry, turn off DRAM scrubbing.
  173. *
  174. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  175. * by falling back to the last element in scrubrates[].
  176. */
  177. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  178. /*
  179. * skip scrub rates which aren't recommended
  180. * (see F10 BKDG, F3x58)
  181. */
  182. if (scrubrates[i].scrubval < min_rate)
  183. continue;
  184. if (scrubrates[i].bandwidth <= new_bw)
  185. break;
  186. }
  187. scrubval = scrubrates[i].scrubval;
  188. if (pvt->fam == 0x17) {
  189. __f17h_set_scrubval(pvt, scrubval);
  190. } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
  191. f15h_select_dct(pvt, 0);
  192. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  193. f15h_select_dct(pvt, 1);
  194. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  195. } else {
  196. pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
  197. }
  198. if (scrubval)
  199. return scrubrates[i].bandwidth;
  200. return 0;
  201. }
  202. static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  203. {
  204. struct amd64_pvt *pvt = mci->pvt_info;
  205. u32 min_scrubrate = 0x5;
  206. if (pvt->fam == 0xf)
  207. min_scrubrate = 0x0;
  208. if (pvt->fam == 0x15) {
  209. /* Erratum #505 */
  210. if (pvt->model < 0x10)
  211. f15h_select_dct(pvt, 0);
  212. if (pvt->model == 0x60)
  213. min_scrubrate = 0x6;
  214. }
  215. return __set_scrub_rate(pvt, bw, min_scrubrate);
  216. }
  217. static int get_scrub_rate(struct mem_ctl_info *mci)
  218. {
  219. struct amd64_pvt *pvt = mci->pvt_info;
  220. int i, retval = -EINVAL;
  221. u32 scrubval = 0;
  222. switch (pvt->fam) {
  223. case 0x15:
  224. /* Erratum #505 */
  225. if (pvt->model < 0x10)
  226. f15h_select_dct(pvt, 0);
  227. if (pvt->model == 0x60)
  228. amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
  229. break;
  230. case 0x17:
  231. amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
  232. if (scrubval & BIT(0)) {
  233. amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
  234. scrubval &= 0xF;
  235. scrubval += 0x5;
  236. } else {
  237. scrubval = 0;
  238. }
  239. break;
  240. default:
  241. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  242. break;
  243. }
  244. scrubval = scrubval & 0x001F;
  245. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  246. if (scrubrates[i].scrubval == scrubval) {
  247. retval = scrubrates[i].bandwidth;
  248. break;
  249. }
  250. }
  251. return retval;
  252. }
  253. /*
  254. * returns true if the SysAddr given by sys_addr matches the
  255. * DRAM base/limit associated with node_id
  256. */
  257. static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
  258. {
  259. u64 addr;
  260. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  261. * all ones if the most significant implemented address bit is 1.
  262. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  263. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  264. * Application Programming.
  265. */
  266. addr = sys_addr & 0x000000ffffffffffull;
  267. return ((addr >= get_dram_base(pvt, nid)) &&
  268. (addr <= get_dram_limit(pvt, nid)));
  269. }
  270. /*
  271. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  272. * mem_ctl_info structure for the node that the SysAddr maps to.
  273. *
  274. * On failure, return NULL.
  275. */
  276. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  277. u64 sys_addr)
  278. {
  279. struct amd64_pvt *pvt;
  280. u8 node_id;
  281. u32 intlv_en, bits;
  282. /*
  283. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  284. * 3.4.4.2) registers to map the SysAddr to a node ID.
  285. */
  286. pvt = mci->pvt_info;
  287. /*
  288. * The value of this field should be the same for all DRAM Base
  289. * registers. Therefore we arbitrarily choose to read it from the
  290. * register for node 0.
  291. */
  292. intlv_en = dram_intlv_en(pvt, 0);
  293. if (intlv_en == 0) {
  294. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  295. if (base_limit_match(pvt, sys_addr, node_id))
  296. goto found;
  297. }
  298. goto err_no_match;
  299. }
  300. if (unlikely((intlv_en != 0x01) &&
  301. (intlv_en != 0x03) &&
  302. (intlv_en != 0x07))) {
  303. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  304. return NULL;
  305. }
  306. bits = (((u32) sys_addr) >> 12) & intlv_en;
  307. for (node_id = 0; ; ) {
  308. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  309. break; /* intlv_sel field matches */
  310. if (++node_id >= DRAM_RANGES)
  311. goto err_no_match;
  312. }
  313. /* sanity test for sys_addr */
  314. if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
  315. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  316. "range for node %d with node interleaving enabled.\n",
  317. __func__, sys_addr, node_id);
  318. return NULL;
  319. }
  320. found:
  321. return edac_mc_find((int)node_id);
  322. err_no_match:
  323. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  324. (unsigned long)sys_addr);
  325. return NULL;
  326. }
  327. /*
  328. * compute the CS base address of the @csrow on the DRAM controller @dct.
  329. * For details see F2x[5C:40] in the processor's BKDG
  330. */
  331. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  332. u64 *base, u64 *mask)
  333. {
  334. u64 csbase, csmask, base_bits, mask_bits;
  335. u8 addr_shift;
  336. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  337. csbase = pvt->csels[dct].csbases[csrow];
  338. csmask = pvt->csels[dct].csmasks[csrow];
  339. base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
  340. mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
  341. addr_shift = 4;
  342. /*
  343. * F16h and F15h, models 30h and later need two addr_shift values:
  344. * 8 for high and 6 for low (cf. F16h BKDG).
  345. */
  346. } else if (pvt->fam == 0x16 ||
  347. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  348. csbase = pvt->csels[dct].csbases[csrow];
  349. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  350. *base = (csbase & GENMASK_ULL(15, 5)) << 6;
  351. *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
  352. *mask = ~0ULL;
  353. /* poke holes for the csmask */
  354. *mask &= ~((GENMASK_ULL(15, 5) << 6) |
  355. (GENMASK_ULL(30, 19) << 8));
  356. *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
  357. *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
  358. return;
  359. } else {
  360. csbase = pvt->csels[dct].csbases[csrow];
  361. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  362. addr_shift = 8;
  363. if (pvt->fam == 0x15)
  364. base_bits = mask_bits =
  365. GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
  366. else
  367. base_bits = mask_bits =
  368. GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
  369. }
  370. *base = (csbase & base_bits) << addr_shift;
  371. *mask = ~0ULL;
  372. /* poke holes for the csmask */
  373. *mask &= ~(mask_bits << addr_shift);
  374. /* OR them in */
  375. *mask |= (csmask & mask_bits) << addr_shift;
  376. }
  377. #define for_each_chip_select(i, dct, pvt) \
  378. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  379. #define chip_select_base(i, dct, pvt) \
  380. pvt->csels[dct].csbases[i]
  381. #define for_each_chip_select_mask(i, dct, pvt) \
  382. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  383. /*
  384. * @input_addr is an InputAddr associated with the node given by mci. Return the
  385. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  386. */
  387. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  388. {
  389. struct amd64_pvt *pvt;
  390. int csrow;
  391. u64 base, mask;
  392. pvt = mci->pvt_info;
  393. for_each_chip_select(csrow, 0, pvt) {
  394. if (!csrow_enabled(csrow, 0, pvt))
  395. continue;
  396. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  397. mask = ~mask;
  398. if ((input_addr & mask) == (base & mask)) {
  399. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  400. (unsigned long)input_addr, csrow,
  401. pvt->mc_node_id);
  402. return csrow;
  403. }
  404. }
  405. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  406. (unsigned long)input_addr, pvt->mc_node_id);
  407. return -1;
  408. }
  409. /*
  410. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  411. * for the node represented by mci. Info is passed back in *hole_base,
  412. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  413. * info is invalid. Info may be invalid for either of the following reasons:
  414. *
  415. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  416. * Address Register does not exist.
  417. *
  418. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  419. * indicating that its contents are not valid.
  420. *
  421. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  422. * complete 32-bit values despite the fact that the bitfields in the DHAR
  423. * only represent bits 31-24 of the base and offset values.
  424. */
  425. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  426. u64 *hole_offset, u64 *hole_size)
  427. {
  428. struct amd64_pvt *pvt = mci->pvt_info;
  429. /* only revE and later have the DRAM Hole Address Register */
  430. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  431. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  432. pvt->ext_model, pvt->mc_node_id);
  433. return 1;
  434. }
  435. /* valid for Fam10h and above */
  436. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  437. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  438. return 1;
  439. }
  440. if (!dhar_valid(pvt)) {
  441. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  442. pvt->mc_node_id);
  443. return 1;
  444. }
  445. /* This node has Memory Hoisting */
  446. /* +------------------+--------------------+--------------------+-----
  447. * | memory | DRAM hole | relocated |
  448. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  449. * | | | DRAM hole |
  450. * | | | [0x100000000, |
  451. * | | | (0x100000000+ |
  452. * | | | (0xffffffff-x))] |
  453. * +------------------+--------------------+--------------------+-----
  454. *
  455. * Above is a diagram of physical memory showing the DRAM hole and the
  456. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  457. * starts at address x (the base address) and extends through address
  458. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  459. * addresses in the hole so that they start at 0x100000000.
  460. */
  461. *hole_base = dhar_base(pvt);
  462. *hole_size = (1ULL << 32) - *hole_base;
  463. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  464. : k8_dhar_offset(pvt);
  465. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  466. pvt->mc_node_id, (unsigned long)*hole_base,
  467. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  468. return 0;
  469. }
  470. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  471. /*
  472. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  473. * assumed that sys_addr maps to the node given by mci.
  474. *
  475. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  476. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  477. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  478. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  479. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  480. * These parts of the documentation are unclear. I interpret them as follows:
  481. *
  482. * When node n receives a SysAddr, it processes the SysAddr as follows:
  483. *
  484. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  485. * Limit registers for node n. If the SysAddr is not within the range
  486. * specified by the base and limit values, then node n ignores the Sysaddr
  487. * (since it does not map to node n). Otherwise continue to step 2 below.
  488. *
  489. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  490. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  491. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  492. * hole. If not, skip to step 3 below. Else get the value of the
  493. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  494. * offset defined by this value from the SysAddr.
  495. *
  496. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  497. * Base register for node n. To obtain the DramAddr, subtract the base
  498. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  499. */
  500. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  501. {
  502. struct amd64_pvt *pvt = mci->pvt_info;
  503. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  504. int ret;
  505. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  506. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  507. &hole_size);
  508. if (!ret) {
  509. if ((sys_addr >= (1ULL << 32)) &&
  510. (sys_addr < ((1ULL << 32) + hole_size))) {
  511. /* use DHAR to translate SysAddr to DramAddr */
  512. dram_addr = sys_addr - hole_offset;
  513. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  514. (unsigned long)sys_addr,
  515. (unsigned long)dram_addr);
  516. return dram_addr;
  517. }
  518. }
  519. /*
  520. * Translate the SysAddr to a DramAddr as shown near the start of
  521. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  522. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  523. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  524. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  525. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  526. * Programmer's Manual Volume 1 Application Programming.
  527. */
  528. dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
  529. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  530. (unsigned long)sys_addr, (unsigned long)dram_addr);
  531. return dram_addr;
  532. }
  533. /*
  534. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  535. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  536. * for node interleaving.
  537. */
  538. static int num_node_interleave_bits(unsigned intlv_en)
  539. {
  540. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  541. int n;
  542. BUG_ON(intlv_en > 7);
  543. n = intlv_shift_table[intlv_en];
  544. return n;
  545. }
  546. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  547. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  548. {
  549. struct amd64_pvt *pvt;
  550. int intlv_shift;
  551. u64 input_addr;
  552. pvt = mci->pvt_info;
  553. /*
  554. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  555. * concerning translating a DramAddr to an InputAddr.
  556. */
  557. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  558. input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
  559. (dram_addr & 0xfff);
  560. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  561. intlv_shift, (unsigned long)dram_addr,
  562. (unsigned long)input_addr);
  563. return input_addr;
  564. }
  565. /*
  566. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  567. * assumed that @sys_addr maps to the node given by mci.
  568. */
  569. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  570. {
  571. u64 input_addr;
  572. input_addr =
  573. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  574. edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
  575. (unsigned long)sys_addr, (unsigned long)input_addr);
  576. return input_addr;
  577. }
  578. /* Map the Error address to a PAGE and PAGE OFFSET. */
  579. static inline void error_address_to_page_and_offset(u64 error_address,
  580. struct err_info *err)
  581. {
  582. err->page = (u32) (error_address >> PAGE_SHIFT);
  583. err->offset = ((u32) error_address) & ~PAGE_MASK;
  584. }
  585. /*
  586. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  587. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  588. * of a node that detected an ECC memory error. mci represents the node that
  589. * the error address maps to (possibly different from the node that detected
  590. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  591. * error.
  592. */
  593. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  594. {
  595. int csrow;
  596. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  597. if (csrow == -1)
  598. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  599. "address 0x%lx\n", (unsigned long)sys_addr);
  600. return csrow;
  601. }
  602. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  603. /*
  604. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  605. * are ECC capable.
  606. */
  607. static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
  608. {
  609. unsigned long edac_cap = EDAC_FLAG_NONE;
  610. u8 bit;
  611. if (pvt->umc) {
  612. u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
  613. for (i = 0; i < NUM_UMCS; i++) {
  614. if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
  615. continue;
  616. umc_en_mask |= BIT(i);
  617. /* UMC Configuration bit 12 (DimmEccEn) */
  618. if (pvt->umc[i].umc_cfg & BIT(12))
  619. dimm_ecc_en_mask |= BIT(i);
  620. }
  621. if (umc_en_mask == dimm_ecc_en_mask)
  622. edac_cap = EDAC_FLAG_SECDED;
  623. } else {
  624. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  625. ? 19
  626. : 17;
  627. if (pvt->dclr0 & BIT(bit))
  628. edac_cap = EDAC_FLAG_SECDED;
  629. }
  630. return edac_cap;
  631. }
  632. static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
  633. static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  634. {
  635. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  636. if (pvt->dram_type == MEM_LRDDR3) {
  637. u32 dcsm = pvt->csels[chan].csmasks[0];
  638. /*
  639. * It's assumed all LRDIMMs in a DCT are going to be of
  640. * same 'type' until proven otherwise. So, use a cs
  641. * value of '0' here to get dcsm value.
  642. */
  643. edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
  644. }
  645. edac_dbg(1, "All DIMMs support ECC:%s\n",
  646. (dclr & BIT(19)) ? "yes" : "no");
  647. edac_dbg(1, " PAR/ERR parity: %s\n",
  648. (dclr & BIT(8)) ? "enabled" : "disabled");
  649. if (pvt->fam == 0x10)
  650. edac_dbg(1, " DCT 128bit mode width: %s\n",
  651. (dclr & BIT(11)) ? "128b" : "64b");
  652. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  653. (dclr & BIT(12)) ? "yes" : "no",
  654. (dclr & BIT(13)) ? "yes" : "no",
  655. (dclr & BIT(14)) ? "yes" : "no",
  656. (dclr & BIT(15)) ? "yes" : "no");
  657. }
  658. static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
  659. {
  660. int dimm, size0, size1, cs0, cs1;
  661. edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
  662. for (dimm = 0; dimm < 4; dimm++) {
  663. size0 = 0;
  664. cs0 = dimm * 2;
  665. if (csrow_enabled(cs0, ctrl, pvt))
  666. size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
  667. size1 = 0;
  668. cs1 = dimm * 2 + 1;
  669. if (csrow_enabled(cs1, ctrl, pvt))
  670. size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
  671. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  672. cs0, size0,
  673. cs1, size1);
  674. }
  675. }
  676. static void __dump_misc_regs_df(struct amd64_pvt *pvt)
  677. {
  678. struct amd64_umc *umc;
  679. u32 i, tmp, umc_base;
  680. for (i = 0; i < NUM_UMCS; i++) {
  681. umc_base = get_umc_base(i);
  682. umc = &pvt->umc[i];
  683. edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
  684. edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
  685. edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
  686. edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
  687. amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
  688. edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
  689. amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
  690. edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
  691. edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
  692. edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
  693. i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
  694. (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
  695. edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
  696. i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
  697. edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
  698. i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
  699. edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
  700. i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
  701. if (pvt->dram_type == MEM_LRDDR4) {
  702. amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
  703. edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
  704. i, 1 << ((tmp >> 4) & 0x3));
  705. }
  706. debug_display_dimm_sizes_df(pvt, i);
  707. }
  708. edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
  709. pvt->dhar, dhar_base(pvt));
  710. }
  711. /* Display and decode various NB registers for debug purposes. */
  712. static void __dump_misc_regs(struct amd64_pvt *pvt)
  713. {
  714. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  715. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  716. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  717. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  718. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  719. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  720. debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  721. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  722. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  723. pvt->dhar, dhar_base(pvt),
  724. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  725. : f10_dhar_offset(pvt));
  726. debug_display_dimm_sizes(pvt, 0);
  727. /* everything below this point is Fam10h and above */
  728. if (pvt->fam == 0xf)
  729. return;
  730. debug_display_dimm_sizes(pvt, 1);
  731. /* Only if NOT ganged does dclr1 have valid info */
  732. if (!dct_ganging_enabled(pvt))
  733. debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  734. }
  735. /* Display and decode various NB registers for debug purposes. */
  736. static void dump_misc_regs(struct amd64_pvt *pvt)
  737. {
  738. if (pvt->umc)
  739. __dump_misc_regs_df(pvt);
  740. else
  741. __dump_misc_regs(pvt);
  742. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  743. amd64_info("using %s syndromes.\n",
  744. ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  745. }
  746. /*
  747. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  748. */
  749. static void prep_chip_selects(struct amd64_pvt *pvt)
  750. {
  751. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  752. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  753. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  754. } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
  755. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  756. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  757. } else {
  758. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  759. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  760. }
  761. }
  762. /*
  763. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  764. */
  765. static void read_dct_base_mask(struct amd64_pvt *pvt)
  766. {
  767. int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
  768. prep_chip_selects(pvt);
  769. if (pvt->umc) {
  770. base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
  771. base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
  772. mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
  773. mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
  774. } else {
  775. base_reg0 = DCSB0;
  776. base_reg1 = DCSB1;
  777. mask_reg0 = DCSM0;
  778. mask_reg1 = DCSM1;
  779. }
  780. for_each_chip_select(cs, 0, pvt) {
  781. int reg0 = base_reg0 + (cs * 4);
  782. int reg1 = base_reg1 + (cs * 4);
  783. u32 *base0 = &pvt->csels[0].csbases[cs];
  784. u32 *base1 = &pvt->csels[1].csbases[cs];
  785. if (pvt->umc) {
  786. if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
  787. edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
  788. cs, *base0, reg0);
  789. if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
  790. edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
  791. cs, *base1, reg1);
  792. } else {
  793. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
  794. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  795. cs, *base0, reg0);
  796. if (pvt->fam == 0xf)
  797. continue;
  798. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
  799. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  800. cs, *base1, (pvt->fam == 0x10) ? reg1
  801. : reg0);
  802. }
  803. }
  804. for_each_chip_select_mask(cs, 0, pvt) {
  805. int reg0 = mask_reg0 + (cs * 4);
  806. int reg1 = mask_reg1 + (cs * 4);
  807. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  808. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  809. if (pvt->umc) {
  810. if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
  811. edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
  812. cs, *mask0, reg0);
  813. if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
  814. edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
  815. cs, *mask1, reg1);
  816. } else {
  817. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
  818. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  819. cs, *mask0, reg0);
  820. if (pvt->fam == 0xf)
  821. continue;
  822. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
  823. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  824. cs, *mask1, (pvt->fam == 0x10) ? reg1
  825. : reg0);
  826. }
  827. }
  828. }
  829. static void determine_memory_type(struct amd64_pvt *pvt)
  830. {
  831. u32 dram_ctrl, dcsm;
  832. switch (pvt->fam) {
  833. case 0xf:
  834. if (pvt->ext_model >= K8_REV_F)
  835. goto ddr3;
  836. pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  837. return;
  838. case 0x10:
  839. if (pvt->dchr0 & DDR3_MODE)
  840. goto ddr3;
  841. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  842. return;
  843. case 0x15:
  844. if (pvt->model < 0x60)
  845. goto ddr3;
  846. /*
  847. * Model 0x60h needs special handling:
  848. *
  849. * We use a Chip Select value of '0' to obtain dcsm.
  850. * Theoretically, it is possible to populate LRDIMMs of different
  851. * 'Rank' value on a DCT. But this is not the common case. So,
  852. * it's reasonable to assume all DIMMs are going to be of same
  853. * 'type' until proven otherwise.
  854. */
  855. amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
  856. dcsm = pvt->csels[0].csmasks[0];
  857. if (((dram_ctrl >> 8) & 0x7) == 0x2)
  858. pvt->dram_type = MEM_DDR4;
  859. else if (pvt->dclr0 & BIT(16))
  860. pvt->dram_type = MEM_DDR3;
  861. else if (dcsm & 0x3)
  862. pvt->dram_type = MEM_LRDDR3;
  863. else
  864. pvt->dram_type = MEM_RDDR3;
  865. return;
  866. case 0x16:
  867. goto ddr3;
  868. case 0x17:
  869. if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
  870. pvt->dram_type = MEM_LRDDR4;
  871. else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
  872. pvt->dram_type = MEM_RDDR4;
  873. else
  874. pvt->dram_type = MEM_DDR4;
  875. return;
  876. default:
  877. WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
  878. pvt->dram_type = MEM_EMPTY;
  879. }
  880. return;
  881. ddr3:
  882. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  883. }
  884. /* Get the number of DCT channels the memory controller is using. */
  885. static int k8_early_channel_count(struct amd64_pvt *pvt)
  886. {
  887. int flag;
  888. if (pvt->ext_model >= K8_REV_F)
  889. /* RevF (NPT) and later */
  890. flag = pvt->dclr0 & WIDTH_128;
  891. else
  892. /* RevE and earlier */
  893. flag = pvt->dclr0 & REVE_WIDTH_128;
  894. /* not used */
  895. pvt->dclr1 = 0;
  896. return (flag) ? 2 : 1;
  897. }
  898. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  899. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  900. {
  901. u16 mce_nid = amd_get_nb_id(m->extcpu);
  902. struct mem_ctl_info *mci;
  903. u8 start_bit = 1;
  904. u8 end_bit = 47;
  905. u64 addr;
  906. mci = edac_mc_find(mce_nid);
  907. if (!mci)
  908. return 0;
  909. pvt = mci->pvt_info;
  910. if (pvt->fam == 0xf) {
  911. start_bit = 3;
  912. end_bit = 39;
  913. }
  914. addr = m->addr & GENMASK_ULL(end_bit, start_bit);
  915. /*
  916. * Erratum 637 workaround
  917. */
  918. if (pvt->fam == 0x15) {
  919. u64 cc6_base, tmp_addr;
  920. u32 tmp;
  921. u8 intlv_en;
  922. if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
  923. return addr;
  924. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  925. intlv_en = tmp >> 21 & 0x7;
  926. /* add [47:27] + 3 trailing bits */
  927. cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
  928. /* reverse and add DramIntlvEn */
  929. cc6_base |= intlv_en ^ 0x7;
  930. /* pin at [47:24] */
  931. cc6_base <<= 24;
  932. if (!intlv_en)
  933. return cc6_base | (addr & GENMASK_ULL(23, 0));
  934. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  935. /* faster log2 */
  936. tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
  937. /* OR DramIntlvSel into bits [14:12] */
  938. tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
  939. /* add remaining [11:0] bits from original MC4_ADDR */
  940. tmp_addr |= addr & GENMASK_ULL(11, 0);
  941. return cc6_base | tmp_addr;
  942. }
  943. return addr;
  944. }
  945. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  946. unsigned int device,
  947. struct pci_dev *related)
  948. {
  949. struct pci_dev *dev = NULL;
  950. while ((dev = pci_get_device(vendor, device, dev))) {
  951. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  952. (dev->bus->number == related->bus->number) &&
  953. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  954. break;
  955. }
  956. return dev;
  957. }
  958. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  959. {
  960. struct amd_northbridge *nb;
  961. struct pci_dev *f1 = NULL;
  962. unsigned int pci_func;
  963. int off = range << 3;
  964. u32 llim;
  965. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  966. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  967. if (pvt->fam == 0xf)
  968. return;
  969. if (!dram_rw(pvt, range))
  970. return;
  971. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  972. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  973. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  974. if (pvt->fam != 0x15)
  975. return;
  976. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  977. if (WARN_ON(!nb))
  978. return;
  979. if (pvt->model == 0x60)
  980. pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
  981. else if (pvt->model == 0x30)
  982. pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
  983. else
  984. pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
  985. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  986. if (WARN_ON(!f1))
  987. return;
  988. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  989. pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
  990. /* {[39:27],111b} */
  991. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  992. pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
  993. /* [47:40] */
  994. pvt->ranges[range].lim.hi |= llim >> 13;
  995. pci_dev_put(f1);
  996. }
  997. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  998. struct err_info *err)
  999. {
  1000. struct amd64_pvt *pvt = mci->pvt_info;
  1001. error_address_to_page_and_offset(sys_addr, err);
  1002. /*
  1003. * Find out which node the error address belongs to. This may be
  1004. * different from the node that detected the error.
  1005. */
  1006. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1007. if (!err->src_mci) {
  1008. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  1009. (unsigned long)sys_addr);
  1010. err->err_code = ERR_NODE;
  1011. return;
  1012. }
  1013. /* Now map the sys_addr to a CSROW */
  1014. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  1015. if (err->csrow < 0) {
  1016. err->err_code = ERR_CSROW;
  1017. return;
  1018. }
  1019. /* CHIPKILL enabled */
  1020. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  1021. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1022. if (err->channel < 0) {
  1023. /*
  1024. * Syndrome didn't map, so we don't know which of the
  1025. * 2 DIMMs is in error. So we need to ID 'both' of them
  1026. * as suspect.
  1027. */
  1028. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  1029. "possible error reporting race\n",
  1030. err->syndrome);
  1031. err->err_code = ERR_CHANNEL;
  1032. return;
  1033. }
  1034. } else {
  1035. /*
  1036. * non-chipkill ecc mode
  1037. *
  1038. * The k8 documentation is unclear about how to determine the
  1039. * channel number when using non-chipkill memory. This method
  1040. * was obtained from email communication with someone at AMD.
  1041. * (Wish the email was placed in this comment - norsk)
  1042. */
  1043. err->channel = ((sys_addr & BIT(3)) != 0);
  1044. }
  1045. }
  1046. static int ddr2_cs_size(unsigned i, bool dct_width)
  1047. {
  1048. unsigned shift = 0;
  1049. if (i <= 2)
  1050. shift = i;
  1051. else if (!(i & 0x1))
  1052. shift = i >> 1;
  1053. else
  1054. shift = (i + 1) >> 1;
  1055. return 128 << (shift + !!dct_width);
  1056. }
  1057. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1058. unsigned cs_mode, int cs_mask_nr)
  1059. {
  1060. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1061. if (pvt->ext_model >= K8_REV_F) {
  1062. WARN_ON(cs_mode > 11);
  1063. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1064. }
  1065. else if (pvt->ext_model >= K8_REV_D) {
  1066. unsigned diff;
  1067. WARN_ON(cs_mode > 10);
  1068. /*
  1069. * the below calculation, besides trying to win an obfuscated C
  1070. * contest, maps cs_mode values to DIMM chip select sizes. The
  1071. * mappings are:
  1072. *
  1073. * cs_mode CS size (mb)
  1074. * ======= ============
  1075. * 0 32
  1076. * 1 64
  1077. * 2 128
  1078. * 3 128
  1079. * 4 256
  1080. * 5 512
  1081. * 6 256
  1082. * 7 512
  1083. * 8 1024
  1084. * 9 1024
  1085. * 10 2048
  1086. *
  1087. * Basically, it calculates a value with which to shift the
  1088. * smallest CS size of 32MB.
  1089. *
  1090. * ddr[23]_cs_size have a similar purpose.
  1091. */
  1092. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  1093. return 32 << (cs_mode - diff);
  1094. }
  1095. else {
  1096. WARN_ON(cs_mode > 6);
  1097. return 32 << cs_mode;
  1098. }
  1099. }
  1100. /*
  1101. * Get the number of DCT channels in use.
  1102. *
  1103. * Return:
  1104. * number of Memory Channels in operation
  1105. * Pass back:
  1106. * contents of the DCL0_LOW register
  1107. */
  1108. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  1109. {
  1110. int i, j, channels = 0;
  1111. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  1112. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  1113. return 2;
  1114. /*
  1115. * Need to check if in unganged mode: In such, there are 2 channels,
  1116. * but they are not in 128 bit mode and thus the above 'dclr0' status
  1117. * bit will be OFF.
  1118. *
  1119. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1120. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1121. */
  1122. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  1123. /*
  1124. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1125. * is more than just one DIMM present in unganged mode. Need to check
  1126. * both controllers since DIMMs can be placed in either one.
  1127. */
  1128. for (i = 0; i < 2; i++) {
  1129. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  1130. for (j = 0; j < 4; j++) {
  1131. if (DBAM_DIMM(j, dbam) > 0) {
  1132. channels++;
  1133. break;
  1134. }
  1135. }
  1136. }
  1137. if (channels > 2)
  1138. channels = 2;
  1139. amd64_info("MCT channel count: %d\n", channels);
  1140. return channels;
  1141. }
  1142. static int f17_early_channel_count(struct amd64_pvt *pvt)
  1143. {
  1144. int i, channels = 0;
  1145. /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
  1146. for (i = 0; i < NUM_UMCS; i++)
  1147. channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
  1148. amd64_info("MCT channel count: %d\n", channels);
  1149. return channels;
  1150. }
  1151. static int ddr3_cs_size(unsigned i, bool dct_width)
  1152. {
  1153. unsigned shift = 0;
  1154. int cs_size = 0;
  1155. if (i == 0 || i == 3 || i == 4)
  1156. cs_size = -1;
  1157. else if (i <= 2)
  1158. shift = i;
  1159. else if (i == 12)
  1160. shift = 7;
  1161. else if (!(i & 0x1))
  1162. shift = i >> 1;
  1163. else
  1164. shift = (i + 1) >> 1;
  1165. if (cs_size != -1)
  1166. cs_size = (128 * (1 << !!dct_width)) << shift;
  1167. return cs_size;
  1168. }
  1169. static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
  1170. {
  1171. unsigned shift = 0;
  1172. int cs_size = 0;
  1173. if (i < 4 || i == 6)
  1174. cs_size = -1;
  1175. else if (i == 12)
  1176. shift = 7;
  1177. else if (!(i & 0x1))
  1178. shift = i >> 1;
  1179. else
  1180. shift = (i + 1) >> 1;
  1181. if (cs_size != -1)
  1182. cs_size = rank_multiply * (128 << shift);
  1183. return cs_size;
  1184. }
  1185. static int ddr4_cs_size(unsigned i)
  1186. {
  1187. int cs_size = 0;
  1188. if (i == 0)
  1189. cs_size = -1;
  1190. else if (i == 1)
  1191. cs_size = 1024;
  1192. else
  1193. /* Min cs_size = 1G */
  1194. cs_size = 1024 * (1 << (i >> 1));
  1195. return cs_size;
  1196. }
  1197. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1198. unsigned cs_mode, int cs_mask_nr)
  1199. {
  1200. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1201. WARN_ON(cs_mode > 11);
  1202. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1203. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1204. else
  1205. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1206. }
  1207. /*
  1208. * F15h supports only 64bit DCT interfaces
  1209. */
  1210. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1211. unsigned cs_mode, int cs_mask_nr)
  1212. {
  1213. WARN_ON(cs_mode > 12);
  1214. return ddr3_cs_size(cs_mode, false);
  1215. }
  1216. /* F15h M60h supports DDR4 mapping as well.. */
  1217. static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1218. unsigned cs_mode, int cs_mask_nr)
  1219. {
  1220. int cs_size;
  1221. u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
  1222. WARN_ON(cs_mode > 12);
  1223. if (pvt->dram_type == MEM_DDR4) {
  1224. if (cs_mode > 9)
  1225. return -1;
  1226. cs_size = ddr4_cs_size(cs_mode);
  1227. } else if (pvt->dram_type == MEM_LRDDR3) {
  1228. unsigned rank_multiply = dcsm & 0xf;
  1229. if (rank_multiply == 3)
  1230. rank_multiply = 4;
  1231. cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
  1232. } else {
  1233. /* Minimum cs size is 512mb for F15hM60h*/
  1234. if (cs_mode == 0x1)
  1235. return -1;
  1236. cs_size = ddr3_cs_size(cs_mode, false);
  1237. }
  1238. return cs_size;
  1239. }
  1240. /*
  1241. * F16h and F15h model 30h have only limited cs_modes.
  1242. */
  1243. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1244. unsigned cs_mode, int cs_mask_nr)
  1245. {
  1246. WARN_ON(cs_mode > 12);
  1247. if (cs_mode == 6 || cs_mode == 8 ||
  1248. cs_mode == 9 || cs_mode == 12)
  1249. return -1;
  1250. else
  1251. return ddr3_cs_size(cs_mode, false);
  1252. }
  1253. static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
  1254. unsigned int cs_mode, int csrow_nr)
  1255. {
  1256. u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
  1257. /* Each mask is used for every two base addresses. */
  1258. u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
  1259. /* Register [31:1] = Address [39:9]. Size is in kBs here. */
  1260. u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
  1261. edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
  1262. /* Return size in MBs. */
  1263. return size >> 10;
  1264. }
  1265. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1266. {
  1267. if (pvt->fam == 0xf)
  1268. return;
  1269. if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1270. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1271. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1272. edac_dbg(0, " DCTs operate in %s mode\n",
  1273. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1274. if (!dct_ganging_enabled(pvt))
  1275. edac_dbg(0, " Address range split per DCT: %s\n",
  1276. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1277. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  1278. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1279. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1280. edac_dbg(0, " channel interleave: %s, "
  1281. "interleave bits selector: 0x%x\n",
  1282. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1283. dct_sel_interleave_addr(pvt));
  1284. }
  1285. amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
  1286. }
  1287. /*
  1288. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1289. * 2.10.12 Memory Interleaving Modes).
  1290. */
  1291. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1292. u8 intlv_en, int num_dcts_intlv,
  1293. u32 dct_sel)
  1294. {
  1295. u8 channel = 0;
  1296. u8 select;
  1297. if (!(intlv_en))
  1298. return (u8)(dct_sel);
  1299. if (num_dcts_intlv == 2) {
  1300. select = (sys_addr >> 8) & 0x3;
  1301. channel = select ? 0x3 : 0;
  1302. } else if (num_dcts_intlv == 4) {
  1303. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1304. switch (intlv_addr) {
  1305. case 0x4:
  1306. channel = (sys_addr >> 8) & 0x3;
  1307. break;
  1308. case 0x5:
  1309. channel = (sys_addr >> 9) & 0x3;
  1310. break;
  1311. }
  1312. }
  1313. return channel;
  1314. }
  1315. /*
  1316. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1317. * Interleaving Modes.
  1318. */
  1319. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1320. bool hi_range_sel, u8 intlv_en)
  1321. {
  1322. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1323. if (dct_ganging_enabled(pvt))
  1324. return 0;
  1325. if (hi_range_sel)
  1326. return dct_sel_high;
  1327. /*
  1328. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1329. */
  1330. if (dct_interleave_enabled(pvt)) {
  1331. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1332. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1333. if (!intlv_addr)
  1334. return sys_addr >> 6 & 1;
  1335. if (intlv_addr & 0x2) {
  1336. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1337. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
  1338. return ((sys_addr >> shift) & 1) ^ temp;
  1339. }
  1340. if (intlv_addr & 0x4) {
  1341. u8 shift = intlv_addr & 0x1 ? 9 : 8;
  1342. return (sys_addr >> shift) & 1;
  1343. }
  1344. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1345. }
  1346. if (dct_high_range_enabled(pvt))
  1347. return ~dct_sel_high & 1;
  1348. return 0;
  1349. }
  1350. /* Convert the sys_addr to the normalized DCT address */
  1351. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1352. u64 sys_addr, bool hi_rng,
  1353. u32 dct_sel_base_addr)
  1354. {
  1355. u64 chan_off;
  1356. u64 dram_base = get_dram_base(pvt, range);
  1357. u64 hole_off = f10_dhar_offset(pvt);
  1358. u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1359. if (hi_rng) {
  1360. /*
  1361. * if
  1362. * base address of high range is below 4Gb
  1363. * (bits [47:27] at [31:11])
  1364. * DRAM address space on this DCT is hoisted above 4Gb &&
  1365. * sys_addr > 4Gb
  1366. *
  1367. * remove hole offset from sys_addr
  1368. * else
  1369. * remove high range offset from sys_addr
  1370. */
  1371. if ((!(dct_sel_base_addr >> 16) ||
  1372. dct_sel_base_addr < dhar_base(pvt)) &&
  1373. dhar_valid(pvt) &&
  1374. (sys_addr >= BIT_64(32)))
  1375. chan_off = hole_off;
  1376. else
  1377. chan_off = dct_sel_base_off;
  1378. } else {
  1379. /*
  1380. * if
  1381. * we have a valid hole &&
  1382. * sys_addr > 4Gb
  1383. *
  1384. * remove hole
  1385. * else
  1386. * remove dram base to normalize to DCT address
  1387. */
  1388. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1389. chan_off = hole_off;
  1390. else
  1391. chan_off = dram_base;
  1392. }
  1393. return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
  1394. }
  1395. /*
  1396. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1397. * spare row
  1398. */
  1399. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1400. {
  1401. int tmp_cs;
  1402. if (online_spare_swap_done(pvt, dct) &&
  1403. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1404. for_each_chip_select(tmp_cs, dct, pvt) {
  1405. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1406. csrow = tmp_cs;
  1407. break;
  1408. }
  1409. }
  1410. }
  1411. return csrow;
  1412. }
  1413. /*
  1414. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1415. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1416. *
  1417. * Return:
  1418. * -EINVAL: NOT FOUND
  1419. * 0..csrow = Chip-Select Row
  1420. */
  1421. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1422. {
  1423. struct mem_ctl_info *mci;
  1424. struct amd64_pvt *pvt;
  1425. u64 cs_base, cs_mask;
  1426. int cs_found = -EINVAL;
  1427. int csrow;
  1428. mci = edac_mc_find(nid);
  1429. if (!mci)
  1430. return cs_found;
  1431. pvt = mci->pvt_info;
  1432. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1433. for_each_chip_select(csrow, dct, pvt) {
  1434. if (!csrow_enabled(csrow, dct, pvt))
  1435. continue;
  1436. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1437. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1438. csrow, cs_base, cs_mask);
  1439. cs_mask = ~cs_mask;
  1440. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1441. (in_addr & cs_mask), (cs_base & cs_mask));
  1442. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1443. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1444. cs_found = csrow;
  1445. break;
  1446. }
  1447. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1448. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1449. break;
  1450. }
  1451. }
  1452. return cs_found;
  1453. }
  1454. /*
  1455. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1456. * swapped with a region located at the bottom of memory so that the GPU can use
  1457. * the interleaved region and thus two channels.
  1458. */
  1459. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1460. {
  1461. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1462. if (pvt->fam == 0x10) {
  1463. /* only revC3 and revE have that feature */
  1464. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1465. return sys_addr;
  1466. }
  1467. amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
  1468. if (!(swap_reg & 0x1))
  1469. return sys_addr;
  1470. swap_base = (swap_reg >> 3) & 0x7f;
  1471. swap_limit = (swap_reg >> 11) & 0x7f;
  1472. rgn_size = (swap_reg >> 20) & 0x7f;
  1473. tmp_addr = sys_addr >> 27;
  1474. if (!(sys_addr >> 34) &&
  1475. (((tmp_addr >= swap_base) &&
  1476. (tmp_addr <= swap_limit)) ||
  1477. (tmp_addr < rgn_size)))
  1478. return sys_addr ^ (u64)swap_base << 27;
  1479. return sys_addr;
  1480. }
  1481. /* For a given @dram_range, check if @sys_addr falls within it. */
  1482. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1483. u64 sys_addr, int *chan_sel)
  1484. {
  1485. int cs_found = -EINVAL;
  1486. u64 chan_addr;
  1487. u32 dct_sel_base;
  1488. u8 channel;
  1489. bool high_range = false;
  1490. u8 node_id = dram_dst_node(pvt, range);
  1491. u8 intlv_en = dram_intlv_en(pvt, range);
  1492. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1493. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1494. range, sys_addr, get_dram_limit(pvt, range));
  1495. if (dhar_valid(pvt) &&
  1496. dhar_base(pvt) <= sys_addr &&
  1497. sys_addr < BIT_64(32)) {
  1498. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1499. sys_addr);
  1500. return -EINVAL;
  1501. }
  1502. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1503. return -EINVAL;
  1504. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1505. dct_sel_base = dct_sel_baseaddr(pvt);
  1506. /*
  1507. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1508. * select between DCT0 and DCT1.
  1509. */
  1510. if (dct_high_range_enabled(pvt) &&
  1511. !dct_ganging_enabled(pvt) &&
  1512. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1513. high_range = true;
  1514. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1515. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1516. high_range, dct_sel_base);
  1517. /* Remove node interleaving, see F1x120 */
  1518. if (intlv_en)
  1519. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1520. (chan_addr & 0xfff);
  1521. /* remove channel interleave */
  1522. if (dct_interleave_enabled(pvt) &&
  1523. !dct_high_range_enabled(pvt) &&
  1524. !dct_ganging_enabled(pvt)) {
  1525. if (dct_sel_interleave_addr(pvt) != 1) {
  1526. if (dct_sel_interleave_addr(pvt) == 0x3)
  1527. /* hash 9 */
  1528. chan_addr = ((chan_addr >> 10) << 9) |
  1529. (chan_addr & 0x1ff);
  1530. else
  1531. /* A[6] or hash 6 */
  1532. chan_addr = ((chan_addr >> 7) << 6) |
  1533. (chan_addr & 0x3f);
  1534. } else
  1535. /* A[12] */
  1536. chan_addr = ((chan_addr >> 13) << 12) |
  1537. (chan_addr & 0xfff);
  1538. }
  1539. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1540. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1541. if (cs_found >= 0)
  1542. *chan_sel = channel;
  1543. return cs_found;
  1544. }
  1545. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1546. u64 sys_addr, int *chan_sel)
  1547. {
  1548. int cs_found = -EINVAL;
  1549. int num_dcts_intlv = 0;
  1550. u64 chan_addr, chan_offset;
  1551. u64 dct_base, dct_limit;
  1552. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1553. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1554. u64 dhar_offset = f10_dhar_offset(pvt);
  1555. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1556. u8 node_id = dram_dst_node(pvt, range);
  1557. u8 intlv_en = dram_intlv_en(pvt, range);
  1558. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1559. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1560. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1561. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1562. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1563. range, sys_addr, get_dram_limit(pvt, range));
  1564. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1565. !(get_dram_limit(pvt, range) >= sys_addr))
  1566. return -EINVAL;
  1567. if (dhar_valid(pvt) &&
  1568. dhar_base(pvt) <= sys_addr &&
  1569. sys_addr < BIT_64(32)) {
  1570. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1571. sys_addr);
  1572. return -EINVAL;
  1573. }
  1574. /* Verify sys_addr is within DCT Range. */
  1575. dct_base = (u64) dct_sel_baseaddr(pvt);
  1576. dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
  1577. if (!(dct_cont_base_reg & BIT(0)) &&
  1578. !(dct_base <= (sys_addr >> 27) &&
  1579. dct_limit >= (sys_addr >> 27)))
  1580. return -EINVAL;
  1581. /* Verify number of dct's that participate in channel interleaving. */
  1582. num_dcts_intlv = (int) hweight8(intlv_en);
  1583. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1584. return -EINVAL;
  1585. if (pvt->model >= 0x60)
  1586. channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
  1587. else
  1588. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1589. num_dcts_intlv, dct_sel);
  1590. /* Verify we stay within the MAX number of channels allowed */
  1591. if (channel > 3)
  1592. return -EINVAL;
  1593. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1594. /* Get normalized DCT addr */
  1595. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1596. chan_offset = dhar_offset;
  1597. else
  1598. chan_offset = dct_base << 27;
  1599. chan_addr = sys_addr - chan_offset;
  1600. /* remove channel interleave */
  1601. if (num_dcts_intlv == 2) {
  1602. if (intlv_addr == 0x4)
  1603. chan_addr = ((chan_addr >> 9) << 8) |
  1604. (chan_addr & 0xff);
  1605. else if (intlv_addr == 0x5)
  1606. chan_addr = ((chan_addr >> 10) << 9) |
  1607. (chan_addr & 0x1ff);
  1608. else
  1609. return -EINVAL;
  1610. } else if (num_dcts_intlv == 4) {
  1611. if (intlv_addr == 0x4)
  1612. chan_addr = ((chan_addr >> 10) << 8) |
  1613. (chan_addr & 0xff);
  1614. else if (intlv_addr == 0x5)
  1615. chan_addr = ((chan_addr >> 11) << 9) |
  1616. (chan_addr & 0x1ff);
  1617. else
  1618. return -EINVAL;
  1619. }
  1620. if (dct_offset_en) {
  1621. amd64_read_pci_cfg(pvt->F1,
  1622. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1623. &tmp);
  1624. chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
  1625. }
  1626. f15h_select_dct(pvt, channel);
  1627. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1628. /*
  1629. * Find Chip select:
  1630. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1631. * there is support for 4 DCT's, but only 2 are currently functional.
  1632. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1633. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1634. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1635. */
  1636. alias_channel = (channel == 3) ? 1 : channel;
  1637. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1638. if (cs_found >= 0)
  1639. *chan_sel = alias_channel;
  1640. return cs_found;
  1641. }
  1642. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1643. u64 sys_addr,
  1644. int *chan_sel)
  1645. {
  1646. int cs_found = -EINVAL;
  1647. unsigned range;
  1648. for (range = 0; range < DRAM_RANGES; range++) {
  1649. if (!dram_rw(pvt, range))
  1650. continue;
  1651. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1652. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1653. sys_addr,
  1654. chan_sel);
  1655. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1656. (get_dram_limit(pvt, range) >= sys_addr)) {
  1657. cs_found = f1x_match_to_this_node(pvt, range,
  1658. sys_addr, chan_sel);
  1659. if (cs_found >= 0)
  1660. break;
  1661. }
  1662. }
  1663. return cs_found;
  1664. }
  1665. /*
  1666. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1667. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1668. *
  1669. * The @sys_addr is usually an error address received from the hardware
  1670. * (MCX_ADDR).
  1671. */
  1672. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1673. struct err_info *err)
  1674. {
  1675. struct amd64_pvt *pvt = mci->pvt_info;
  1676. error_address_to_page_and_offset(sys_addr, err);
  1677. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1678. if (err->csrow < 0) {
  1679. err->err_code = ERR_CSROW;
  1680. return;
  1681. }
  1682. /*
  1683. * We need the syndromes for channel detection only when we're
  1684. * ganged. Otherwise @chan should already contain the channel at
  1685. * this point.
  1686. */
  1687. if (dct_ganging_enabled(pvt))
  1688. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1689. }
  1690. /*
  1691. * debug routine to display the memory sizes of all logical DIMMs and its
  1692. * CSROWs
  1693. */
  1694. static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1695. {
  1696. int dimm, size0, size1;
  1697. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1698. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1699. if (pvt->fam == 0xf) {
  1700. /* K8 families < revF not supported yet */
  1701. if (pvt->ext_model < K8_REV_F)
  1702. return;
  1703. else
  1704. WARN_ON(ctrl != 0);
  1705. }
  1706. if (pvt->fam == 0x10) {
  1707. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
  1708. : pvt->dbam0;
  1709. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
  1710. pvt->csels[1].csbases :
  1711. pvt->csels[0].csbases;
  1712. } else if (ctrl) {
  1713. dbam = pvt->dbam0;
  1714. dcsb = pvt->csels[1].csbases;
  1715. }
  1716. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1717. ctrl, dbam);
  1718. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1719. /* Dump memory sizes for DIMM and its CSROWs */
  1720. for (dimm = 0; dimm < 4; dimm++) {
  1721. size0 = 0;
  1722. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1723. /*
  1724. * For F15m60h, we need multiplier for LRDIMM cs_size
  1725. * calculation. We pass dimm value to the dbam_to_cs
  1726. * mapper so we can find the multiplier from the
  1727. * corresponding DCSM.
  1728. */
  1729. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1730. DBAM_DIMM(dimm, dbam),
  1731. dimm);
  1732. size1 = 0;
  1733. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1734. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1735. DBAM_DIMM(dimm, dbam),
  1736. dimm);
  1737. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1738. dimm * 2, size0,
  1739. dimm * 2 + 1, size1);
  1740. }
  1741. }
  1742. static struct amd64_family_type family_types[] = {
  1743. [K8_CPUS] = {
  1744. .ctl_name = "K8",
  1745. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1746. .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  1747. .ops = {
  1748. .early_channel_count = k8_early_channel_count,
  1749. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1750. .dbam_to_cs = k8_dbam_to_chip_select,
  1751. }
  1752. },
  1753. [F10_CPUS] = {
  1754. .ctl_name = "F10h",
  1755. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1756. .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  1757. .ops = {
  1758. .early_channel_count = f1x_early_channel_count,
  1759. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1760. .dbam_to_cs = f10_dbam_to_chip_select,
  1761. }
  1762. },
  1763. [F15_CPUS] = {
  1764. .ctl_name = "F15h",
  1765. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1766. .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
  1767. .ops = {
  1768. .early_channel_count = f1x_early_channel_count,
  1769. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1770. .dbam_to_cs = f15_dbam_to_chip_select,
  1771. }
  1772. },
  1773. [F15_M30H_CPUS] = {
  1774. .ctl_name = "F15h_M30h",
  1775. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1776. .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
  1777. .ops = {
  1778. .early_channel_count = f1x_early_channel_count,
  1779. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1780. .dbam_to_cs = f16_dbam_to_chip_select,
  1781. }
  1782. },
  1783. [F15_M60H_CPUS] = {
  1784. .ctl_name = "F15h_M60h",
  1785. .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
  1786. .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
  1787. .ops = {
  1788. .early_channel_count = f1x_early_channel_count,
  1789. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1790. .dbam_to_cs = f15_m60h_dbam_to_chip_select,
  1791. }
  1792. },
  1793. [F16_CPUS] = {
  1794. .ctl_name = "F16h",
  1795. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1796. .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
  1797. .ops = {
  1798. .early_channel_count = f1x_early_channel_count,
  1799. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1800. .dbam_to_cs = f16_dbam_to_chip_select,
  1801. }
  1802. },
  1803. [F16_M30H_CPUS] = {
  1804. .ctl_name = "F16h_M30h",
  1805. .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
  1806. .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
  1807. .ops = {
  1808. .early_channel_count = f1x_early_channel_count,
  1809. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1810. .dbam_to_cs = f16_dbam_to_chip_select,
  1811. }
  1812. },
  1813. [F17_CPUS] = {
  1814. .ctl_name = "F17h",
  1815. .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
  1816. .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
  1817. .ops = {
  1818. .early_channel_count = f17_early_channel_count,
  1819. .dbam_to_cs = f17_base_addr_to_cs_size,
  1820. }
  1821. },
  1822. [F17_M10H_CPUS] = {
  1823. .ctl_name = "F17h_M10h",
  1824. .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
  1825. .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
  1826. .ops = {
  1827. .early_channel_count = f17_early_channel_count,
  1828. .dbam_to_cs = f17_base_addr_to_cs_size,
  1829. }
  1830. },
  1831. };
  1832. /*
  1833. * These are tables of eigenvectors (one per line) which can be used for the
  1834. * construction of the syndrome tables. The modified syndrome search algorithm
  1835. * uses those to find the symbol in error and thus the DIMM.
  1836. *
  1837. * Algorithm courtesy of Ross LaFetra from AMD.
  1838. */
  1839. static const u16 x4_vectors[] = {
  1840. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1841. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1842. 0x0001, 0x0002, 0x0004, 0x0008,
  1843. 0x1013, 0x3032, 0x4044, 0x8088,
  1844. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1845. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1846. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1847. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1848. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1849. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1850. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1851. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1852. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1853. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1854. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1855. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1856. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1857. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1858. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1859. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1860. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1861. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1862. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1863. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1864. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1865. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1866. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1867. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1868. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1869. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1870. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1871. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1872. 0x4807, 0xc40e, 0x130c, 0x3208,
  1873. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1874. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1875. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1876. };
  1877. static const u16 x8_vectors[] = {
  1878. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1879. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1880. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1881. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1882. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1883. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1884. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1885. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1886. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1887. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1888. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1889. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1890. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1891. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1892. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1893. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1894. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1895. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1896. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1897. };
  1898. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1899. unsigned v_dim)
  1900. {
  1901. unsigned int i, err_sym;
  1902. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1903. u16 s = syndrome;
  1904. unsigned v_idx = err_sym * v_dim;
  1905. unsigned v_end = (err_sym + 1) * v_dim;
  1906. /* walk over all 16 bits of the syndrome */
  1907. for (i = 1; i < (1U << 16); i <<= 1) {
  1908. /* if bit is set in that eigenvector... */
  1909. if (v_idx < v_end && vectors[v_idx] & i) {
  1910. u16 ev_comp = vectors[v_idx++];
  1911. /* ... and bit set in the modified syndrome, */
  1912. if (s & i) {
  1913. /* remove it. */
  1914. s ^= ev_comp;
  1915. if (!s)
  1916. return err_sym;
  1917. }
  1918. } else if (s & i)
  1919. /* can't get to zero, move to next symbol */
  1920. break;
  1921. }
  1922. }
  1923. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1924. return -1;
  1925. }
  1926. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1927. {
  1928. if (sym_size == 4)
  1929. switch (err_sym) {
  1930. case 0x20:
  1931. case 0x21:
  1932. return 0;
  1933. break;
  1934. case 0x22:
  1935. case 0x23:
  1936. return 1;
  1937. break;
  1938. default:
  1939. return err_sym >> 4;
  1940. break;
  1941. }
  1942. /* x8 symbols */
  1943. else
  1944. switch (err_sym) {
  1945. /* imaginary bits not in a DIMM */
  1946. case 0x10:
  1947. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1948. err_sym);
  1949. return -1;
  1950. break;
  1951. case 0x11:
  1952. return 0;
  1953. break;
  1954. case 0x12:
  1955. return 1;
  1956. break;
  1957. default:
  1958. return err_sym >> 3;
  1959. break;
  1960. }
  1961. return -1;
  1962. }
  1963. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1964. {
  1965. struct amd64_pvt *pvt = mci->pvt_info;
  1966. int err_sym = -1;
  1967. if (pvt->ecc_sym_sz == 8)
  1968. err_sym = decode_syndrome(syndrome, x8_vectors,
  1969. ARRAY_SIZE(x8_vectors),
  1970. pvt->ecc_sym_sz);
  1971. else if (pvt->ecc_sym_sz == 4)
  1972. err_sym = decode_syndrome(syndrome, x4_vectors,
  1973. ARRAY_SIZE(x4_vectors),
  1974. pvt->ecc_sym_sz);
  1975. else {
  1976. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1977. return err_sym;
  1978. }
  1979. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1980. }
  1981. static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
  1982. u8 ecc_type)
  1983. {
  1984. enum hw_event_mc_err_type err_type;
  1985. const char *string;
  1986. if (ecc_type == 2)
  1987. err_type = HW_EVENT_ERR_CORRECTED;
  1988. else if (ecc_type == 1)
  1989. err_type = HW_EVENT_ERR_UNCORRECTED;
  1990. else if (ecc_type == 3)
  1991. err_type = HW_EVENT_ERR_DEFERRED;
  1992. else {
  1993. WARN(1, "Something is rotten in the state of Denmark.\n");
  1994. return;
  1995. }
  1996. switch (err->err_code) {
  1997. case DECODE_OK:
  1998. string = "";
  1999. break;
  2000. case ERR_NODE:
  2001. string = "Failed to map error addr to a node";
  2002. break;
  2003. case ERR_CSROW:
  2004. string = "Failed to map error addr to a csrow";
  2005. break;
  2006. case ERR_CHANNEL:
  2007. string = "Unknown syndrome - possible error reporting race";
  2008. break;
  2009. case ERR_SYND:
  2010. string = "MCA_SYND not valid - unknown syndrome and csrow";
  2011. break;
  2012. case ERR_NORM_ADDR:
  2013. string = "Cannot decode normalized address";
  2014. break;
  2015. default:
  2016. string = "WTF error";
  2017. break;
  2018. }
  2019. edac_mc_handle_error(err_type, mci, 1,
  2020. err->page, err->offset, err->syndrome,
  2021. err->csrow, err->channel, -1,
  2022. string, "");
  2023. }
  2024. static inline void decode_bus_error(int node_id, struct mce *m)
  2025. {
  2026. struct mem_ctl_info *mci;
  2027. struct amd64_pvt *pvt;
  2028. u8 ecc_type = (m->status >> 45) & 0x3;
  2029. u8 xec = XEC(m->status, 0x1f);
  2030. u16 ec = EC(m->status);
  2031. u64 sys_addr;
  2032. struct err_info err;
  2033. mci = edac_mc_find(node_id);
  2034. if (!mci)
  2035. return;
  2036. pvt = mci->pvt_info;
  2037. /* Bail out early if this was an 'observed' error */
  2038. if (PP(ec) == NBSL_PP_OBS)
  2039. return;
  2040. /* Do only ECC errors */
  2041. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  2042. return;
  2043. memset(&err, 0, sizeof(err));
  2044. sys_addr = get_error_address(pvt, m);
  2045. if (ecc_type == 2)
  2046. err.syndrome = extract_syndrome(m->status);
  2047. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  2048. __log_ecc_error(mci, &err, ecc_type);
  2049. }
  2050. /*
  2051. * To find the UMC channel represented by this bank we need to match on its
  2052. * instance_id. The instance_id of a bank is held in the lower 32 bits of its
  2053. * IPID.
  2054. */
  2055. static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
  2056. {
  2057. u32 umc_instance_id[] = {0x50f00, 0x150f00};
  2058. u32 instance_id = m->ipid & GENMASK(31, 0);
  2059. int i, channel = -1;
  2060. for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
  2061. if (umc_instance_id[i] == instance_id)
  2062. channel = i;
  2063. return channel;
  2064. }
  2065. static void decode_umc_error(int node_id, struct mce *m)
  2066. {
  2067. u8 ecc_type = (m->status >> 45) & 0x3;
  2068. struct mem_ctl_info *mci;
  2069. struct amd64_pvt *pvt;
  2070. struct err_info err;
  2071. u64 sys_addr;
  2072. mci = edac_mc_find(node_id);
  2073. if (!mci)
  2074. return;
  2075. pvt = mci->pvt_info;
  2076. memset(&err, 0, sizeof(err));
  2077. if (m->status & MCI_STATUS_DEFERRED)
  2078. ecc_type = 3;
  2079. err.channel = find_umc_channel(pvt, m);
  2080. if (err.channel < 0) {
  2081. err.err_code = ERR_CHANNEL;
  2082. goto log_error;
  2083. }
  2084. if (!(m->status & MCI_STATUS_SYNDV)) {
  2085. err.err_code = ERR_SYND;
  2086. goto log_error;
  2087. }
  2088. if (ecc_type == 2) {
  2089. u8 length = (m->synd >> 18) & 0x3f;
  2090. if (length)
  2091. err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
  2092. else
  2093. err.err_code = ERR_CHANNEL;
  2094. }
  2095. err.csrow = m->synd & 0x7;
  2096. if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
  2097. err.err_code = ERR_NORM_ADDR;
  2098. goto log_error;
  2099. }
  2100. error_address_to_page_and_offset(sys_addr, &err);
  2101. log_error:
  2102. __log_ecc_error(mci, &err, ecc_type);
  2103. }
  2104. /*
  2105. * Use pvt->F3 which contains the F3 CPU PCI device to get the related
  2106. * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
  2107. * Reserve F0 and F6 on systems with a UMC.
  2108. */
  2109. static int
  2110. reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
  2111. {
  2112. if (pvt->umc) {
  2113. pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
  2114. if (!pvt->F0) {
  2115. amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
  2116. return -ENODEV;
  2117. }
  2118. pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
  2119. if (!pvt->F6) {
  2120. pci_dev_put(pvt->F0);
  2121. pvt->F0 = NULL;
  2122. amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
  2123. return -ENODEV;
  2124. }
  2125. edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
  2126. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  2127. edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
  2128. return 0;
  2129. }
  2130. /* Reserve the ADDRESS MAP Device */
  2131. pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
  2132. if (!pvt->F1) {
  2133. amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
  2134. return -ENODEV;
  2135. }
  2136. /* Reserve the DCT Device */
  2137. pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
  2138. if (!pvt->F2) {
  2139. pci_dev_put(pvt->F1);
  2140. pvt->F1 = NULL;
  2141. amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
  2142. return -ENODEV;
  2143. }
  2144. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  2145. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  2146. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  2147. return 0;
  2148. }
  2149. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  2150. {
  2151. if (pvt->umc) {
  2152. pci_dev_put(pvt->F0);
  2153. pci_dev_put(pvt->F6);
  2154. } else {
  2155. pci_dev_put(pvt->F1);
  2156. pci_dev_put(pvt->F2);
  2157. }
  2158. }
  2159. static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
  2160. {
  2161. pvt->ecc_sym_sz = 4;
  2162. if (pvt->umc) {
  2163. u8 i;
  2164. for (i = 0; i < NUM_UMCS; i++) {
  2165. /* Check enabled channels only: */
  2166. if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
  2167. (pvt->umc[i].ecc_ctrl & BIT(7))) {
  2168. pvt->ecc_sym_sz = 8;
  2169. break;
  2170. }
  2171. }
  2172. return;
  2173. }
  2174. if (pvt->fam >= 0x10) {
  2175. u32 tmp;
  2176. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  2177. /* F16h has only DCT0, so no need to read dbam1. */
  2178. if (pvt->fam != 0x16)
  2179. amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
  2180. /* F10h, revD and later can do x8 ECC too. */
  2181. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  2182. pvt->ecc_sym_sz = 8;
  2183. }
  2184. }
  2185. /*
  2186. * Retrieve the hardware registers of the memory controller.
  2187. */
  2188. static void __read_mc_regs_df(struct amd64_pvt *pvt)
  2189. {
  2190. u8 nid = pvt->mc_node_id;
  2191. struct amd64_umc *umc;
  2192. u32 i, umc_base;
  2193. /* Read registers from each UMC */
  2194. for (i = 0; i < NUM_UMCS; i++) {
  2195. umc_base = get_umc_base(i);
  2196. umc = &pvt->umc[i];
  2197. amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
  2198. amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
  2199. amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
  2200. amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
  2201. amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
  2202. }
  2203. }
  2204. /*
  2205. * Retrieve the hardware registers of the memory controller (this includes the
  2206. * 'Address Map' and 'Misc' device regs)
  2207. */
  2208. static void read_mc_regs(struct amd64_pvt *pvt)
  2209. {
  2210. unsigned int range;
  2211. u64 msr_val;
  2212. /*
  2213. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  2214. * those are Read-As-Zero.
  2215. */
  2216. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  2217. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  2218. /* Check first whether TOP_MEM2 is enabled: */
  2219. rdmsrl(MSR_K8_SYSCFG, msr_val);
  2220. if (msr_val & BIT(21)) {
  2221. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  2222. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  2223. } else {
  2224. edac_dbg(0, " TOP_MEM2 disabled\n");
  2225. }
  2226. if (pvt->umc) {
  2227. __read_mc_regs_df(pvt);
  2228. amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
  2229. goto skip;
  2230. }
  2231. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  2232. read_dram_ctl_register(pvt);
  2233. for (range = 0; range < DRAM_RANGES; range++) {
  2234. u8 rw;
  2235. /* read settings for this DRAM range */
  2236. read_dram_base_limit_regs(pvt, range);
  2237. rw = dram_rw(pvt, range);
  2238. if (!rw)
  2239. continue;
  2240. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  2241. range,
  2242. get_dram_base(pvt, range),
  2243. get_dram_limit(pvt, range));
  2244. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  2245. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  2246. (rw & 0x1) ? "R" : "-",
  2247. (rw & 0x2) ? "W" : "-",
  2248. dram_intlv_sel(pvt, range),
  2249. dram_dst_node(pvt, range));
  2250. }
  2251. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  2252. amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
  2253. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  2254. amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
  2255. amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
  2256. if (!dct_ganging_enabled(pvt)) {
  2257. amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
  2258. amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
  2259. }
  2260. skip:
  2261. read_dct_base_mask(pvt);
  2262. determine_memory_type(pvt);
  2263. edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
  2264. determine_ecc_sym_sz(pvt);
  2265. dump_misc_regs(pvt);
  2266. }
  2267. /*
  2268. * NOTE: CPU Revision Dependent code
  2269. *
  2270. * Input:
  2271. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  2272. * k8 private pointer to -->
  2273. * DRAM Bank Address mapping register
  2274. * node_id
  2275. * DCL register where dual_channel_active is
  2276. *
  2277. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2278. *
  2279. * Bits: CSROWs
  2280. * 0-3 CSROWs 0 and 1
  2281. * 4-7 CSROWs 2 and 3
  2282. * 8-11 CSROWs 4 and 5
  2283. * 12-15 CSROWs 6 and 7
  2284. *
  2285. * Values range from: 0 to 15
  2286. * The meaning of the values depends on CPU revision and dual-channel state,
  2287. * see relevant BKDG more info.
  2288. *
  2289. * The memory controller provides for total of only 8 CSROWs in its current
  2290. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2291. * single channel or two (2) DIMMs in dual channel mode.
  2292. *
  2293. * The following code logic collapses the various tables for CSROW based on CPU
  2294. * revision.
  2295. *
  2296. * Returns:
  2297. * The number of PAGE_SIZE pages on the specified CSROW number it
  2298. * encompasses
  2299. *
  2300. */
  2301. static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
  2302. {
  2303. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  2304. int csrow_nr = csrow_nr_orig;
  2305. u32 cs_mode, nr_pages;
  2306. if (!pvt->umc)
  2307. csrow_nr >>= 1;
  2308. cs_mode = DBAM_DIMM(csrow_nr, dbam);
  2309. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
  2310. nr_pages <<= 20 - PAGE_SHIFT;
  2311. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  2312. csrow_nr_orig, dct, cs_mode);
  2313. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  2314. return nr_pages;
  2315. }
  2316. /*
  2317. * Initialize the array of csrow attribute instances, based on the values
  2318. * from pci config hardware registers.
  2319. */
  2320. static int init_csrows(struct mem_ctl_info *mci)
  2321. {
  2322. struct amd64_pvt *pvt = mci->pvt_info;
  2323. enum edac_type edac_mode = EDAC_NONE;
  2324. struct csrow_info *csrow;
  2325. struct dimm_info *dimm;
  2326. int i, j, empty = 1;
  2327. int nr_pages = 0;
  2328. u32 val;
  2329. if (!pvt->umc) {
  2330. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  2331. pvt->nbcfg = val;
  2332. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  2333. pvt->mc_node_id, val,
  2334. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  2335. }
  2336. /*
  2337. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  2338. */
  2339. for_each_chip_select(i, 0, pvt) {
  2340. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  2341. bool row_dct1 = false;
  2342. if (pvt->fam != 0xf)
  2343. row_dct1 = !!csrow_enabled(i, 1, pvt);
  2344. if (!row_dct0 && !row_dct1)
  2345. continue;
  2346. csrow = mci->csrows[i];
  2347. empty = 0;
  2348. edac_dbg(1, "MC node: %d, csrow: %d\n",
  2349. pvt->mc_node_id, i);
  2350. if (row_dct0) {
  2351. nr_pages = get_csrow_nr_pages(pvt, 0, i);
  2352. csrow->channels[0]->dimm->nr_pages = nr_pages;
  2353. }
  2354. /* K8 has only one DCT */
  2355. if (pvt->fam != 0xf && row_dct1) {
  2356. int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
  2357. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  2358. nr_pages += row_dct1_pages;
  2359. }
  2360. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  2361. /* Determine DIMM ECC mode: */
  2362. if (pvt->umc) {
  2363. if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
  2364. edac_mode = EDAC_S4ECD4ED;
  2365. else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
  2366. edac_mode = EDAC_SECDED;
  2367. } else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
  2368. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
  2369. ? EDAC_S4ECD4ED
  2370. : EDAC_SECDED;
  2371. }
  2372. for (j = 0; j < pvt->channel_count; j++) {
  2373. dimm = csrow->channels[j]->dimm;
  2374. dimm->mtype = pvt->dram_type;
  2375. dimm->edac_mode = edac_mode;
  2376. dimm->grain = 64;
  2377. }
  2378. }
  2379. return empty;
  2380. }
  2381. /* get all cores on this DCT */
  2382. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  2383. {
  2384. int cpu;
  2385. for_each_online_cpu(cpu)
  2386. if (amd_get_nb_id(cpu) == nid)
  2387. cpumask_set_cpu(cpu, mask);
  2388. }
  2389. /* check MCG_CTL on all the cpus on this node */
  2390. static bool nb_mce_bank_enabled_on_node(u16 nid)
  2391. {
  2392. cpumask_var_t mask;
  2393. int cpu, nbe;
  2394. bool ret = false;
  2395. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2396. amd64_warn("%s: Error allocating mask\n", __func__);
  2397. return false;
  2398. }
  2399. get_cpus_on_this_dct_cpumask(mask, nid);
  2400. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2401. for_each_cpu(cpu, mask) {
  2402. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2403. nbe = reg->l & MSR_MCGCTL_NBE;
  2404. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2405. cpu, reg->q,
  2406. (nbe ? "enabled" : "disabled"));
  2407. if (!nbe)
  2408. goto out;
  2409. }
  2410. ret = true;
  2411. out:
  2412. free_cpumask_var(mask);
  2413. return ret;
  2414. }
  2415. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  2416. {
  2417. cpumask_var_t cmask;
  2418. int cpu;
  2419. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2420. amd64_warn("%s: error allocating mask\n", __func__);
  2421. return -ENOMEM;
  2422. }
  2423. get_cpus_on_this_dct_cpumask(cmask, nid);
  2424. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2425. for_each_cpu(cpu, cmask) {
  2426. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2427. if (on) {
  2428. if (reg->l & MSR_MCGCTL_NBE)
  2429. s->flags.nb_mce_enable = 1;
  2430. reg->l |= MSR_MCGCTL_NBE;
  2431. } else {
  2432. /*
  2433. * Turn off NB MCE reporting only when it was off before
  2434. */
  2435. if (!s->flags.nb_mce_enable)
  2436. reg->l &= ~MSR_MCGCTL_NBE;
  2437. }
  2438. }
  2439. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2440. free_cpumask_var(cmask);
  2441. return 0;
  2442. }
  2443. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2444. struct pci_dev *F3)
  2445. {
  2446. bool ret = true;
  2447. u32 value, mask = 0x3; /* UECC/CECC enable */
  2448. if (toggle_ecc_err_reporting(s, nid, ON)) {
  2449. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  2450. return false;
  2451. }
  2452. amd64_read_pci_cfg(F3, NBCTL, &value);
  2453. s->old_nbctl = value & mask;
  2454. s->nbctl_valid = true;
  2455. value |= mask;
  2456. amd64_write_pci_cfg(F3, NBCTL, value);
  2457. amd64_read_pci_cfg(F3, NBCFG, &value);
  2458. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2459. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2460. if (!(value & NBCFG_ECC_ENABLE)) {
  2461. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  2462. s->flags.nb_ecc_prev = 0;
  2463. /* Attempt to turn on DRAM ECC Enable */
  2464. value |= NBCFG_ECC_ENABLE;
  2465. amd64_write_pci_cfg(F3, NBCFG, value);
  2466. amd64_read_pci_cfg(F3, NBCFG, &value);
  2467. if (!(value & NBCFG_ECC_ENABLE)) {
  2468. amd64_warn("Hardware rejected DRAM ECC enable,"
  2469. "check memory DIMM configuration.\n");
  2470. ret = false;
  2471. } else {
  2472. amd64_info("Hardware accepted DRAM ECC Enable\n");
  2473. }
  2474. } else {
  2475. s->flags.nb_ecc_prev = 1;
  2476. }
  2477. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2478. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2479. return ret;
  2480. }
  2481. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2482. struct pci_dev *F3)
  2483. {
  2484. u32 value, mask = 0x3; /* UECC/CECC enable */
  2485. if (!s->nbctl_valid)
  2486. return;
  2487. amd64_read_pci_cfg(F3, NBCTL, &value);
  2488. value &= ~mask;
  2489. value |= s->old_nbctl;
  2490. amd64_write_pci_cfg(F3, NBCTL, value);
  2491. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2492. if (!s->flags.nb_ecc_prev) {
  2493. amd64_read_pci_cfg(F3, NBCFG, &value);
  2494. value &= ~NBCFG_ECC_ENABLE;
  2495. amd64_write_pci_cfg(F3, NBCFG, value);
  2496. }
  2497. /* restore the NB Enable MCGCTL bit */
  2498. if (toggle_ecc_err_reporting(s, nid, OFF))
  2499. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2500. }
  2501. /*
  2502. * EDAC requires that the BIOS have ECC enabled before
  2503. * taking over the processing of ECC errors. A command line
  2504. * option allows to force-enable hardware ECC later in
  2505. * enable_ecc_error_reporting().
  2506. */
  2507. static const char *ecc_msg =
  2508. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2509. " Either enable ECC checking or force module loading by setting "
  2510. "'ecc_enable_override'.\n"
  2511. " (Note that use of the override may cause unknown side effects.)\n";
  2512. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2513. {
  2514. bool nb_mce_en = false;
  2515. u8 ecc_en = 0, i;
  2516. u32 value;
  2517. if (boot_cpu_data.x86 >= 0x17) {
  2518. u8 umc_en_mask = 0, ecc_en_mask = 0;
  2519. for (i = 0; i < NUM_UMCS; i++) {
  2520. u32 base = get_umc_base(i);
  2521. /* Only check enabled UMCs. */
  2522. if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
  2523. continue;
  2524. if (!(value & UMC_SDP_INIT))
  2525. continue;
  2526. umc_en_mask |= BIT(i);
  2527. if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
  2528. continue;
  2529. if (value & UMC_ECC_ENABLED)
  2530. ecc_en_mask |= BIT(i);
  2531. }
  2532. /* Check whether at least one UMC is enabled: */
  2533. if (umc_en_mask)
  2534. ecc_en = umc_en_mask == ecc_en_mask;
  2535. else
  2536. edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
  2537. /* Assume UMC MCA banks are enabled. */
  2538. nb_mce_en = true;
  2539. } else {
  2540. amd64_read_pci_cfg(F3, NBCFG, &value);
  2541. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2542. nb_mce_en = nb_mce_bank_enabled_on_node(nid);
  2543. if (!nb_mce_en)
  2544. edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
  2545. MSR_IA32_MCG_CTL, nid);
  2546. }
  2547. amd64_info("Node %d: DRAM ECC %s.\n",
  2548. nid, (ecc_en ? "enabled" : "disabled"));
  2549. if (!ecc_en || !nb_mce_en) {
  2550. amd64_info("%s", ecc_msg);
  2551. return false;
  2552. }
  2553. return true;
  2554. }
  2555. static inline void
  2556. f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
  2557. {
  2558. u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
  2559. for (i = 0; i < NUM_UMCS; i++) {
  2560. if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
  2561. ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
  2562. cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
  2563. dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6));
  2564. dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
  2565. }
  2566. }
  2567. /* Set chipkill only if ECC is enabled: */
  2568. if (ecc_en) {
  2569. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2570. if (!cpk_en)
  2571. return;
  2572. if (dev_x4)
  2573. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2574. else if (dev_x16)
  2575. mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
  2576. else
  2577. mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
  2578. }
  2579. }
  2580. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2581. struct amd64_family_type *fam)
  2582. {
  2583. struct amd64_pvt *pvt = mci->pvt_info;
  2584. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2585. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2586. if (pvt->umc) {
  2587. f17h_determine_edac_ctl_cap(mci, pvt);
  2588. } else {
  2589. if (pvt->nbcap & NBCAP_SECDED)
  2590. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2591. if (pvt->nbcap & NBCAP_CHIPKILL)
  2592. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2593. }
  2594. mci->edac_cap = determine_edac_cap(pvt);
  2595. mci->mod_name = EDAC_MOD_STR;
  2596. mci->ctl_name = fam->ctl_name;
  2597. mci->dev_name = pci_name(pvt->F3);
  2598. mci->ctl_page_to_phys = NULL;
  2599. /* memory scrubber interface */
  2600. mci->set_sdram_scrub_rate = set_scrub_rate;
  2601. mci->get_sdram_scrub_rate = get_scrub_rate;
  2602. }
  2603. /*
  2604. * returns a pointer to the family descriptor on success, NULL otherwise.
  2605. */
  2606. static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
  2607. {
  2608. struct amd64_family_type *fam_type = NULL;
  2609. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2610. pvt->stepping = boot_cpu_data.x86_stepping;
  2611. pvt->model = boot_cpu_data.x86_model;
  2612. pvt->fam = boot_cpu_data.x86;
  2613. switch (pvt->fam) {
  2614. case 0xf:
  2615. fam_type = &family_types[K8_CPUS];
  2616. pvt->ops = &family_types[K8_CPUS].ops;
  2617. break;
  2618. case 0x10:
  2619. fam_type = &family_types[F10_CPUS];
  2620. pvt->ops = &family_types[F10_CPUS].ops;
  2621. break;
  2622. case 0x15:
  2623. if (pvt->model == 0x30) {
  2624. fam_type = &family_types[F15_M30H_CPUS];
  2625. pvt->ops = &family_types[F15_M30H_CPUS].ops;
  2626. break;
  2627. } else if (pvt->model == 0x60) {
  2628. fam_type = &family_types[F15_M60H_CPUS];
  2629. pvt->ops = &family_types[F15_M60H_CPUS].ops;
  2630. break;
  2631. }
  2632. fam_type = &family_types[F15_CPUS];
  2633. pvt->ops = &family_types[F15_CPUS].ops;
  2634. break;
  2635. case 0x16:
  2636. if (pvt->model == 0x30) {
  2637. fam_type = &family_types[F16_M30H_CPUS];
  2638. pvt->ops = &family_types[F16_M30H_CPUS].ops;
  2639. break;
  2640. }
  2641. fam_type = &family_types[F16_CPUS];
  2642. pvt->ops = &family_types[F16_CPUS].ops;
  2643. break;
  2644. case 0x17:
  2645. if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
  2646. fam_type = &family_types[F17_M10H_CPUS];
  2647. pvt->ops = &family_types[F17_M10H_CPUS].ops;
  2648. break;
  2649. }
  2650. fam_type = &family_types[F17_CPUS];
  2651. pvt->ops = &family_types[F17_CPUS].ops;
  2652. break;
  2653. default:
  2654. amd64_err("Unsupported family!\n");
  2655. return NULL;
  2656. }
  2657. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2658. (pvt->fam == 0xf ?
  2659. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2660. : "revE or earlier ")
  2661. : ""), pvt->mc_node_id);
  2662. return fam_type;
  2663. }
  2664. static const struct attribute_group *amd64_edac_attr_groups[] = {
  2665. #ifdef CONFIG_EDAC_DEBUG
  2666. &amd64_edac_dbg_group,
  2667. #endif
  2668. #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
  2669. &amd64_edac_inj_group,
  2670. #endif
  2671. NULL
  2672. };
  2673. static int init_one_instance(unsigned int nid)
  2674. {
  2675. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2676. struct amd64_family_type *fam_type = NULL;
  2677. struct mem_ctl_info *mci = NULL;
  2678. struct edac_mc_layer layers[2];
  2679. struct amd64_pvt *pvt = NULL;
  2680. u16 pci_id1, pci_id2;
  2681. int err = 0, ret;
  2682. ret = -ENOMEM;
  2683. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2684. if (!pvt)
  2685. goto err_ret;
  2686. pvt->mc_node_id = nid;
  2687. pvt->F3 = F3;
  2688. ret = -EINVAL;
  2689. fam_type = per_family_init(pvt);
  2690. if (!fam_type)
  2691. goto err_free;
  2692. if (pvt->fam >= 0x17) {
  2693. pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
  2694. if (!pvt->umc) {
  2695. ret = -ENOMEM;
  2696. goto err_free;
  2697. }
  2698. pci_id1 = fam_type->f0_id;
  2699. pci_id2 = fam_type->f6_id;
  2700. } else {
  2701. pci_id1 = fam_type->f1_id;
  2702. pci_id2 = fam_type->f2_id;
  2703. }
  2704. err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
  2705. if (err)
  2706. goto err_post_init;
  2707. read_mc_regs(pvt);
  2708. /*
  2709. * We need to determine how many memory channels there are. Then use
  2710. * that information for calculating the size of the dynamic instance
  2711. * tables in the 'mci' structure.
  2712. */
  2713. ret = -EINVAL;
  2714. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2715. if (pvt->channel_count < 0)
  2716. goto err_siblings;
  2717. ret = -ENOMEM;
  2718. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2719. layers[0].size = pvt->csels[0].b_cnt;
  2720. layers[0].is_virt_csrow = true;
  2721. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2722. /*
  2723. * Always allocate two channels since we can have setups with DIMMs on
  2724. * only one channel. Also, this simplifies handling later for the price
  2725. * of a couple of KBs tops.
  2726. */
  2727. layers[1].size = 2;
  2728. layers[1].is_virt_csrow = false;
  2729. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2730. if (!mci)
  2731. goto err_siblings;
  2732. mci->pvt_info = pvt;
  2733. mci->pdev = &pvt->F3->dev;
  2734. setup_mci_misc_attrs(mci, fam_type);
  2735. if (init_csrows(mci))
  2736. mci->edac_cap = EDAC_FLAG_NONE;
  2737. ret = -ENODEV;
  2738. if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
  2739. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2740. goto err_add_mc;
  2741. }
  2742. return 0;
  2743. err_add_mc:
  2744. edac_mc_free(mci);
  2745. err_siblings:
  2746. free_mc_sibling_devs(pvt);
  2747. err_post_init:
  2748. if (pvt->fam >= 0x17)
  2749. kfree(pvt->umc);
  2750. err_free:
  2751. kfree(pvt);
  2752. err_ret:
  2753. return ret;
  2754. }
  2755. static int probe_one_instance(unsigned int nid)
  2756. {
  2757. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2758. struct ecc_settings *s;
  2759. int ret;
  2760. ret = -ENOMEM;
  2761. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2762. if (!s)
  2763. goto err_out;
  2764. ecc_stngs[nid] = s;
  2765. if (!ecc_enabled(F3, nid)) {
  2766. ret = 0;
  2767. if (!ecc_enable_override)
  2768. goto err_enable;
  2769. if (boot_cpu_data.x86 >= 0x17) {
  2770. amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
  2771. goto err_enable;
  2772. } else
  2773. amd64_warn("Forcing ECC on!\n");
  2774. if (!enable_ecc_error_reporting(s, nid, F3))
  2775. goto err_enable;
  2776. }
  2777. ret = init_one_instance(nid);
  2778. if (ret < 0) {
  2779. amd64_err("Error probing instance: %d\n", nid);
  2780. if (boot_cpu_data.x86 < 0x17)
  2781. restore_ecc_error_reporting(s, nid, F3);
  2782. goto err_enable;
  2783. }
  2784. return ret;
  2785. err_enable:
  2786. kfree(s);
  2787. ecc_stngs[nid] = NULL;
  2788. err_out:
  2789. return ret;
  2790. }
  2791. static void remove_one_instance(unsigned int nid)
  2792. {
  2793. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2794. struct ecc_settings *s = ecc_stngs[nid];
  2795. struct mem_ctl_info *mci;
  2796. struct amd64_pvt *pvt;
  2797. mci = find_mci_by_dev(&F3->dev);
  2798. WARN_ON(!mci);
  2799. /* Remove from EDAC CORE tracking list */
  2800. mci = edac_mc_del_mc(&F3->dev);
  2801. if (!mci)
  2802. return;
  2803. pvt = mci->pvt_info;
  2804. restore_ecc_error_reporting(s, nid, F3);
  2805. free_mc_sibling_devs(pvt);
  2806. kfree(ecc_stngs[nid]);
  2807. ecc_stngs[nid] = NULL;
  2808. /* Free the EDAC CORE resources */
  2809. mci->pvt_info = NULL;
  2810. kfree(pvt);
  2811. edac_mc_free(mci);
  2812. }
  2813. static void setup_pci_device(void)
  2814. {
  2815. struct mem_ctl_info *mci;
  2816. struct amd64_pvt *pvt;
  2817. if (pci_ctl)
  2818. return;
  2819. mci = edac_mc_find(0);
  2820. if (!mci)
  2821. return;
  2822. pvt = mci->pvt_info;
  2823. if (pvt->umc)
  2824. pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
  2825. else
  2826. pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2827. if (!pci_ctl) {
  2828. pr_warn("%s(): Unable to create PCI control\n", __func__);
  2829. pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
  2830. }
  2831. }
  2832. static const struct x86_cpu_id amd64_cpuids[] = {
  2833. { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2834. { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2835. { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2836. { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2837. { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
  2838. { }
  2839. };
  2840. MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
  2841. static int __init amd64_edac_init(void)
  2842. {
  2843. const char *owner;
  2844. int err = -ENODEV;
  2845. int i;
  2846. owner = edac_get_owner();
  2847. if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
  2848. return -EBUSY;
  2849. if (!x86_match_cpu(amd64_cpuids))
  2850. return -ENODEV;
  2851. if (amd_cache_northbridges() < 0)
  2852. return -ENODEV;
  2853. opstate_init();
  2854. err = -ENOMEM;
  2855. ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
  2856. if (!ecc_stngs)
  2857. goto err_free;
  2858. msrs = msrs_alloc();
  2859. if (!msrs)
  2860. goto err_free;
  2861. for (i = 0; i < amd_nb_num(); i++) {
  2862. err = probe_one_instance(i);
  2863. if (err) {
  2864. /* unwind properly */
  2865. while (--i >= 0)
  2866. remove_one_instance(i);
  2867. goto err_pci;
  2868. }
  2869. }
  2870. if (!edac_has_mcs()) {
  2871. err = -ENODEV;
  2872. goto err_pci;
  2873. }
  2874. /* register stuff with EDAC MCE */
  2875. if (report_gart_errors)
  2876. amd_report_gart_errors(true);
  2877. if (boot_cpu_data.x86 >= 0x17)
  2878. amd_register_ecc_decoder(decode_umc_error);
  2879. else
  2880. amd_register_ecc_decoder(decode_bus_error);
  2881. setup_pci_device();
  2882. #ifdef CONFIG_X86_32
  2883. amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
  2884. #endif
  2885. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2886. return 0;
  2887. err_pci:
  2888. msrs_free(msrs);
  2889. msrs = NULL;
  2890. err_free:
  2891. kfree(ecc_stngs);
  2892. ecc_stngs = NULL;
  2893. return err;
  2894. }
  2895. static void __exit amd64_edac_exit(void)
  2896. {
  2897. int i;
  2898. if (pci_ctl)
  2899. edac_pci_release_generic_ctl(pci_ctl);
  2900. /* unregister from EDAC MCE */
  2901. amd_report_gart_errors(false);
  2902. if (boot_cpu_data.x86 >= 0x17)
  2903. amd_unregister_ecc_decoder(decode_umc_error);
  2904. else
  2905. amd_unregister_ecc_decoder(decode_bus_error);
  2906. for (i = 0; i < amd_nb_num(); i++)
  2907. remove_one_instance(i);
  2908. kfree(ecc_stngs);
  2909. ecc_stngs = NULL;
  2910. msrs_free(msrs);
  2911. msrs = NULL;
  2912. }
  2913. module_init(amd64_edac_init);
  2914. module_exit(amd64_edac_exit);
  2915. MODULE_LICENSE("GPL");
  2916. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2917. "Dave Peterson, Thayne Harbaugh");
  2918. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2919. EDAC_AMD64_VERSION);
  2920. module_param(edac_op_state, int, 0444);
  2921. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");