imx6q-cpufreq.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/cpu_cooling.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/nvmem-consumer.h>
  15. #include <linux/of.h>
  16. #include <linux/of_address.h>
  17. #include <linux/pm_opp.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/regulator/consumer.h>
  20. #define PU_SOC_VOLTAGE_NORMAL 1250000
  21. #define PU_SOC_VOLTAGE_HIGH 1275000
  22. #define FREQ_1P2_GHZ 1200000000
  23. static struct regulator *arm_reg;
  24. static struct regulator *pu_reg;
  25. static struct regulator *soc_reg;
  26. enum IMX6_CPUFREQ_CLKS {
  27. ARM,
  28. PLL1_SYS,
  29. STEP,
  30. PLL1_SW,
  31. PLL2_PFD2_396M,
  32. /* MX6UL requires two more clks */
  33. PLL2_BUS,
  34. SECONDARY_SEL,
  35. };
  36. #define IMX6Q_CPUFREQ_CLK_NUM 5
  37. #define IMX6UL_CPUFREQ_CLK_NUM 7
  38. static int num_clks;
  39. static struct clk_bulk_data clks[] = {
  40. { .id = "arm" },
  41. { .id = "pll1_sys" },
  42. { .id = "step" },
  43. { .id = "pll1_sw" },
  44. { .id = "pll2_pfd2_396m" },
  45. { .id = "pll2_bus" },
  46. { .id = "secondary_sel" },
  47. };
  48. static struct device *cpu_dev;
  49. static struct thermal_cooling_device *cdev;
  50. static bool free_opp;
  51. static struct cpufreq_frequency_table *freq_table;
  52. static unsigned int max_freq;
  53. static unsigned int transition_latency;
  54. static u32 *imx6_soc_volt;
  55. static u32 soc_opp_count;
  56. static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
  57. {
  58. struct dev_pm_opp *opp;
  59. unsigned long freq_hz, volt, volt_old;
  60. unsigned int old_freq, new_freq;
  61. bool pll1_sys_temp_enabled = false;
  62. int ret;
  63. new_freq = freq_table[index].frequency;
  64. freq_hz = new_freq * 1000;
  65. old_freq = clk_get_rate(clks[ARM].clk) / 1000;
  66. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  67. if (IS_ERR(opp)) {
  68. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  69. return PTR_ERR(opp);
  70. }
  71. volt = dev_pm_opp_get_voltage(opp);
  72. dev_pm_opp_put(opp);
  73. volt_old = regulator_get_voltage(arm_reg);
  74. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  75. old_freq / 1000, volt_old / 1000,
  76. new_freq / 1000, volt / 1000);
  77. /* scaling up? scale voltage before frequency */
  78. if (new_freq > old_freq) {
  79. if (!IS_ERR(pu_reg)) {
  80. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  81. if (ret) {
  82. dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
  83. return ret;
  84. }
  85. }
  86. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  87. if (ret) {
  88. dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
  89. return ret;
  90. }
  91. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  92. if (ret) {
  93. dev_err(cpu_dev,
  94. "failed to scale vddarm up: %d\n", ret);
  95. return ret;
  96. }
  97. }
  98. /*
  99. * The setpoints are selected per PLL/PDF frequencies, so we need to
  100. * reprogram PLL for frequency scaling. The procedure of reprogramming
  101. * PLL1 is as below.
  102. * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
  103. * flow is slightly different from other i.MX6 OSC.
  104. * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
  105. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  106. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  107. * - Disable pll2_pfd2_396m_clk
  108. */
  109. if (of_machine_is_compatible("fsl,imx6ul") ||
  110. of_machine_is_compatible("fsl,imx6ull")) {
  111. /*
  112. * When changing pll1_sw_clk's parent to pll1_sys_clk,
  113. * CPU may run at higher than 528MHz, this will lead to
  114. * the system unstable if the voltage is lower than the
  115. * voltage of 528MHz, so lower the CPU frequency to one
  116. * half before changing CPU frequency.
  117. */
  118. clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
  119. clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
  120. if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
  121. clk_set_parent(clks[SECONDARY_SEL].clk,
  122. clks[PLL2_BUS].clk);
  123. else
  124. clk_set_parent(clks[SECONDARY_SEL].clk,
  125. clks[PLL2_PFD2_396M].clk);
  126. clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
  127. clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
  128. if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
  129. clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
  130. clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
  131. }
  132. } else {
  133. clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
  134. clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
  135. if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
  136. clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
  137. clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
  138. } else {
  139. /* pll1_sys needs to be enabled for divider rate change to work. */
  140. pll1_sys_temp_enabled = true;
  141. clk_prepare_enable(clks[PLL1_SYS].clk);
  142. }
  143. }
  144. /* Ensure the arm clock divider is what we expect */
  145. ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
  146. if (ret) {
  147. int ret1;
  148. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  149. ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
  150. if (ret1)
  151. dev_warn(cpu_dev,
  152. "failed to restore vddarm voltage: %d\n", ret1);
  153. return ret;
  154. }
  155. /* PLL1 is only needed until after ARM-PODF is set. */
  156. if (pll1_sys_temp_enabled)
  157. clk_disable_unprepare(clks[PLL1_SYS].clk);
  158. /* scaling down? scale voltage after frequency */
  159. if (new_freq < old_freq) {
  160. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  161. if (ret) {
  162. dev_warn(cpu_dev,
  163. "failed to scale vddarm down: %d\n", ret);
  164. ret = 0;
  165. }
  166. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  167. if (ret) {
  168. dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
  169. ret = 0;
  170. }
  171. if (!IS_ERR(pu_reg)) {
  172. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  173. if (ret) {
  174. dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
  175. ret = 0;
  176. }
  177. }
  178. }
  179. return 0;
  180. }
  181. static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
  182. {
  183. cdev = of_cpufreq_cooling_register(policy);
  184. if (!cdev)
  185. dev_err(cpu_dev,
  186. "running cpufreq without cooling device: %ld\n",
  187. PTR_ERR(cdev));
  188. }
  189. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  190. {
  191. int ret;
  192. policy->clk = clks[ARM].clk;
  193. ret = cpufreq_generic_init(policy, freq_table, transition_latency);
  194. policy->suspend_freq = max_freq;
  195. return ret;
  196. }
  197. static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
  198. {
  199. cpufreq_cooling_unregister(cdev);
  200. return 0;
  201. }
  202. static struct cpufreq_driver imx6q_cpufreq_driver = {
  203. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  204. .verify = cpufreq_generic_frequency_table_verify,
  205. .target_index = imx6q_set_target,
  206. .get = cpufreq_generic_get,
  207. .init = imx6q_cpufreq_init,
  208. .exit = imx6q_cpufreq_exit,
  209. .name = "imx6q-cpufreq",
  210. .ready = imx6q_cpufreq_ready,
  211. .attr = cpufreq_generic_attr,
  212. .suspend = cpufreq_generic_suspend,
  213. };
  214. #define OCOTP_CFG3 0x440
  215. #define OCOTP_CFG3_SPEED_SHIFT 16
  216. #define OCOTP_CFG3_SPEED_1P2GHZ 0x3
  217. #define OCOTP_CFG3_SPEED_996MHZ 0x2
  218. #define OCOTP_CFG3_SPEED_852MHZ 0x1
  219. static void imx6q_opp_check_speed_grading(struct device *dev)
  220. {
  221. struct device_node *np;
  222. void __iomem *base;
  223. u32 val;
  224. np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
  225. if (!np)
  226. return;
  227. base = of_iomap(np, 0);
  228. if (!base) {
  229. dev_err(dev, "failed to map ocotp\n");
  230. goto put_node;
  231. }
  232. /*
  233. * SPEED_GRADING[1:0] defines the max speed of ARM:
  234. * 2b'11: 1200000000Hz;
  235. * 2b'10: 996000000Hz;
  236. * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
  237. * 2b'00: 792000000Hz;
  238. * We need to set the max speed of ARM according to fuse map.
  239. */
  240. val = readl_relaxed(base + OCOTP_CFG3);
  241. val >>= OCOTP_CFG3_SPEED_SHIFT;
  242. val &= 0x3;
  243. if (val < OCOTP_CFG3_SPEED_996MHZ)
  244. if (dev_pm_opp_disable(dev, 996000000))
  245. dev_warn(dev, "failed to disable 996MHz OPP\n");
  246. if (of_machine_is_compatible("fsl,imx6q") ||
  247. of_machine_is_compatible("fsl,imx6qp")) {
  248. if (val != OCOTP_CFG3_SPEED_852MHZ)
  249. if (dev_pm_opp_disable(dev, 852000000))
  250. dev_warn(dev, "failed to disable 852MHz OPP\n");
  251. if (val != OCOTP_CFG3_SPEED_1P2GHZ)
  252. if (dev_pm_opp_disable(dev, 1200000000))
  253. dev_warn(dev, "failed to disable 1.2GHz OPP\n");
  254. }
  255. iounmap(base);
  256. put_node:
  257. of_node_put(np);
  258. }
  259. #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
  260. #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
  261. #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
  262. static int imx6ul_opp_check_speed_grading(struct device *dev)
  263. {
  264. u32 val;
  265. int ret = 0;
  266. if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
  267. ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
  268. if (ret)
  269. return ret;
  270. } else {
  271. struct device_node *np;
  272. void __iomem *base;
  273. np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
  274. if (!np)
  275. return -ENOENT;
  276. base = of_iomap(np, 0);
  277. of_node_put(np);
  278. if (!base) {
  279. dev_err(dev, "failed to map ocotp\n");
  280. return -EFAULT;
  281. }
  282. val = readl_relaxed(base + OCOTP_CFG3);
  283. iounmap(base);
  284. }
  285. /*
  286. * Speed GRADING[1:0] defines the max speed of ARM:
  287. * 2b'00: Reserved;
  288. * 2b'01: 528000000Hz;
  289. * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
  290. * 2b'11: 900000000Hz on i.MX6ULL only;
  291. * We need to set the max speed of ARM according to fuse map.
  292. */
  293. val >>= OCOTP_CFG3_SPEED_SHIFT;
  294. val &= 0x3;
  295. if (of_machine_is_compatible("fsl,imx6ul")) {
  296. if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
  297. if (dev_pm_opp_disable(dev, 696000000))
  298. dev_warn(dev, "failed to disable 696MHz OPP\n");
  299. }
  300. if (of_machine_is_compatible("fsl,imx6ull")) {
  301. if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
  302. if (dev_pm_opp_disable(dev, 792000000))
  303. dev_warn(dev, "failed to disable 792MHz OPP\n");
  304. if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
  305. if (dev_pm_opp_disable(dev, 900000000))
  306. dev_warn(dev, "failed to disable 900MHz OPP\n");
  307. }
  308. return ret;
  309. }
  310. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  311. {
  312. struct device_node *np;
  313. struct dev_pm_opp *opp;
  314. unsigned long min_volt, max_volt;
  315. int num, ret;
  316. const struct property *prop;
  317. const __be32 *val;
  318. u32 nr, i, j;
  319. cpu_dev = get_cpu_device(0);
  320. if (!cpu_dev) {
  321. pr_err("failed to get cpu0 device\n");
  322. return -ENODEV;
  323. }
  324. np = of_node_get(cpu_dev->of_node);
  325. if (!np) {
  326. dev_err(cpu_dev, "failed to find cpu0 node\n");
  327. return -ENOENT;
  328. }
  329. if (of_machine_is_compatible("fsl,imx6ul") ||
  330. of_machine_is_compatible("fsl,imx6ull"))
  331. num_clks = IMX6UL_CPUFREQ_CLK_NUM;
  332. else
  333. num_clks = IMX6Q_CPUFREQ_CLK_NUM;
  334. ret = clk_bulk_get(cpu_dev, num_clks, clks);
  335. if (ret)
  336. goto put_node;
  337. arm_reg = regulator_get(cpu_dev, "arm");
  338. pu_reg = regulator_get_optional(cpu_dev, "pu");
  339. soc_reg = regulator_get(cpu_dev, "soc");
  340. if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
  341. PTR_ERR(soc_reg) == -EPROBE_DEFER ||
  342. PTR_ERR(pu_reg) == -EPROBE_DEFER) {
  343. ret = -EPROBE_DEFER;
  344. dev_dbg(cpu_dev, "regulators not ready, defer\n");
  345. goto put_reg;
  346. }
  347. if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
  348. dev_err(cpu_dev, "failed to get regulators\n");
  349. ret = -ENOENT;
  350. goto put_reg;
  351. }
  352. ret = dev_pm_opp_of_add_table(cpu_dev);
  353. if (ret < 0) {
  354. dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
  355. goto put_reg;
  356. }
  357. if (of_machine_is_compatible("fsl,imx6ul") ||
  358. of_machine_is_compatible("fsl,imx6ull")) {
  359. ret = imx6ul_opp_check_speed_grading(cpu_dev);
  360. if (ret == -EPROBE_DEFER)
  361. return ret;
  362. if (ret) {
  363. dev_err(cpu_dev, "failed to read ocotp: %d\n",
  364. ret);
  365. return ret;
  366. }
  367. } else {
  368. imx6q_opp_check_speed_grading(cpu_dev);
  369. }
  370. /* Because we have added the OPPs here, we must free them */
  371. free_opp = true;
  372. num = dev_pm_opp_get_opp_count(cpu_dev);
  373. if (num < 0) {
  374. ret = num;
  375. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  376. goto out_free_opp;
  377. }
  378. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  379. if (ret) {
  380. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  381. goto out_free_opp;
  382. }
  383. /* Make imx6_soc_volt array's size same as arm opp number */
  384. imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
  385. GFP_KERNEL);
  386. if (imx6_soc_volt == NULL) {
  387. ret = -ENOMEM;
  388. goto free_freq_table;
  389. }
  390. prop = of_find_property(np, "fsl,soc-operating-points", NULL);
  391. if (!prop || !prop->value)
  392. goto soc_opp_out;
  393. /*
  394. * Each OPP is a set of tuples consisting of frequency and
  395. * voltage like <freq-kHz vol-uV>.
  396. */
  397. nr = prop->length / sizeof(u32);
  398. if (nr % 2 || (nr / 2) < num)
  399. goto soc_opp_out;
  400. for (j = 0; j < num; j++) {
  401. val = prop->value;
  402. for (i = 0; i < nr / 2; i++) {
  403. unsigned long freq = be32_to_cpup(val++);
  404. unsigned long volt = be32_to_cpup(val++);
  405. if (freq_table[j].frequency == freq) {
  406. imx6_soc_volt[soc_opp_count++] = volt;
  407. break;
  408. }
  409. }
  410. }
  411. soc_opp_out:
  412. /* use fixed soc opp volt if no valid soc opp info found in dtb */
  413. if (soc_opp_count != num) {
  414. dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
  415. for (j = 0; j < num; j++)
  416. imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
  417. if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
  418. imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
  419. }
  420. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  421. transition_latency = CPUFREQ_ETERNAL;
  422. /*
  423. * Calculate the ramp time for max voltage change in the
  424. * VDDSOC and VDDPU regulators.
  425. */
  426. ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  427. if (ret > 0)
  428. transition_latency += ret * 1000;
  429. if (!IS_ERR(pu_reg)) {
  430. ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  431. if (ret > 0)
  432. transition_latency += ret * 1000;
  433. }
  434. /*
  435. * OPP is maintained in order of increasing frequency, and
  436. * freq_table initialised from OPP is therefore sorted in the
  437. * same order.
  438. */
  439. max_freq = freq_table[--num].frequency;
  440. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  441. freq_table[0].frequency * 1000, true);
  442. min_volt = dev_pm_opp_get_voltage(opp);
  443. dev_pm_opp_put(opp);
  444. opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
  445. max_volt = dev_pm_opp_get_voltage(opp);
  446. dev_pm_opp_put(opp);
  447. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  448. if (ret > 0)
  449. transition_latency += ret * 1000;
  450. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  451. if (ret) {
  452. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  453. goto free_freq_table;
  454. }
  455. of_node_put(np);
  456. return 0;
  457. free_freq_table:
  458. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  459. out_free_opp:
  460. if (free_opp)
  461. dev_pm_opp_of_remove_table(cpu_dev);
  462. put_reg:
  463. if (!IS_ERR(arm_reg))
  464. regulator_put(arm_reg);
  465. if (!IS_ERR(pu_reg))
  466. regulator_put(pu_reg);
  467. if (!IS_ERR(soc_reg))
  468. regulator_put(soc_reg);
  469. clk_bulk_put(num_clks, clks);
  470. put_node:
  471. of_node_put(np);
  472. return ret;
  473. }
  474. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  475. {
  476. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  477. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  478. if (free_opp)
  479. dev_pm_opp_of_remove_table(cpu_dev);
  480. regulator_put(arm_reg);
  481. if (!IS_ERR(pu_reg))
  482. regulator_put(pu_reg);
  483. regulator_put(soc_reg);
  484. clk_bulk_put(num_clks, clks);
  485. return 0;
  486. }
  487. static struct platform_driver imx6q_cpufreq_platdrv = {
  488. .driver = {
  489. .name = "imx6q-cpufreq",
  490. },
  491. .probe = imx6q_cpufreq_probe,
  492. .remove = imx6q_cpufreq_remove,
  493. };
  494. module_platform_driver(imx6q_cpufreq_platdrv);
  495. MODULE_ALIAS("platform:imx6q-cpufreq");
  496. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  497. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  498. MODULE_LICENSE("GPL");