blk-flush.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. /*
  2. * Functions to sequence PREFLUSH and FUA writes.
  3. *
  4. * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
  5. * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
  10. * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
  11. * properties and hardware capability.
  12. *
  13. * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
  14. * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
  15. * that the device cache should be flushed before the data is executed, and
  16. * REQ_FUA means that the data must be on non-volatile media on request
  17. * completion.
  18. *
  19. * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
  20. * difference. The requests are either completed immediately if there's no data
  21. * or executed as normal requests otherwise.
  22. *
  23. * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
  24. * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
  25. *
  26. * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
  27. * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
  28. *
  29. * The actual execution of flush is double buffered. Whenever a request
  30. * needs to execute PRE or POSTFLUSH, it queues at
  31. * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
  32. * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
  33. * completes, all the requests which were pending are proceeded to the next
  34. * step. This allows arbitrary merging of different types of PREFLUSH/FUA
  35. * requests.
  36. *
  37. * Currently, the following conditions are used to determine when to issue
  38. * flush.
  39. *
  40. * C1. At any given time, only one flush shall be in progress. This makes
  41. * double buffering sufficient.
  42. *
  43. * C2. Flush is deferred if any request is executing DATA of its sequence.
  44. * This avoids issuing separate POSTFLUSHes for requests which shared
  45. * PREFLUSH.
  46. *
  47. * C3. The second condition is ignored if there is a request which has
  48. * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
  49. * starvation in the unlikely case where there are continuous stream of
  50. * FUA (without PREFLUSH) requests.
  51. *
  52. * For devices which support FUA, it isn't clear whether C2 (and thus C3)
  53. * is beneficial.
  54. *
  55. * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
  56. * Once while executing DATA and again after the whole sequence is
  57. * complete. The first completion updates the contained bio but doesn't
  58. * finish it so that the bio submitter is notified only after the whole
  59. * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
  60. * req_bio_endio().
  61. *
  62. * The above peculiarity requires that each PREFLUSH/FUA request has only one
  63. * bio attached to it, which is guaranteed as they aren't allowed to be
  64. * merged in the usual way.
  65. */
  66. #include <linux/kernel.h>
  67. #include <linux/module.h>
  68. #include <linux/bio.h>
  69. #include <linux/blkdev.h>
  70. #include <linux/gfp.h>
  71. #include <linux/blk-mq.h>
  72. #include "blk.h"
  73. #include "blk-mq.h"
  74. #include "blk-mq-tag.h"
  75. #include "blk-mq-sched.h"
  76. /* PREFLUSH/FUA sequences */
  77. enum {
  78. REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
  79. REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
  80. REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
  81. REQ_FSEQ_DONE = (1 << 3),
  82. REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
  83. REQ_FSEQ_POSTFLUSH,
  84. /*
  85. * If flush has been pending longer than the following timeout,
  86. * it's issued even if flush_data requests are still in flight.
  87. */
  88. FLUSH_PENDING_TIMEOUT = 5 * HZ,
  89. };
  90. static bool blk_kick_flush(struct request_queue *q,
  91. struct blk_flush_queue *fq, unsigned int flags);
  92. static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
  93. {
  94. unsigned int policy = 0;
  95. if (blk_rq_sectors(rq))
  96. policy |= REQ_FSEQ_DATA;
  97. if (fflags & (1UL << QUEUE_FLAG_WC)) {
  98. if (rq->cmd_flags & REQ_PREFLUSH)
  99. policy |= REQ_FSEQ_PREFLUSH;
  100. if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
  101. (rq->cmd_flags & REQ_FUA))
  102. policy |= REQ_FSEQ_POSTFLUSH;
  103. }
  104. return policy;
  105. }
  106. static unsigned int blk_flush_cur_seq(struct request *rq)
  107. {
  108. return 1 << ffz(rq->flush.seq);
  109. }
  110. static void blk_flush_restore_request(struct request *rq)
  111. {
  112. /*
  113. * After flush data completion, @rq->bio is %NULL but we need to
  114. * complete the bio again. @rq->biotail is guaranteed to equal the
  115. * original @rq->bio. Restore it.
  116. */
  117. rq->bio = rq->biotail;
  118. /* make @rq a normal request */
  119. rq->rq_flags &= ~RQF_FLUSH_SEQ;
  120. rq->end_io = rq->flush.saved_end_io;
  121. }
  122. static bool blk_flush_queue_rq(struct request *rq, bool add_front)
  123. {
  124. if (rq->q->mq_ops) {
  125. blk_mq_add_to_requeue_list(rq, add_front, true);
  126. return false;
  127. } else {
  128. if (add_front)
  129. list_add(&rq->queuelist, &rq->q->queue_head);
  130. else
  131. list_add_tail(&rq->queuelist, &rq->q->queue_head);
  132. return true;
  133. }
  134. }
  135. /**
  136. * blk_flush_complete_seq - complete flush sequence
  137. * @rq: PREFLUSH/FUA request being sequenced
  138. * @fq: flush queue
  139. * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
  140. * @error: whether an error occurred
  141. *
  142. * @rq just completed @seq part of its flush sequence, record the
  143. * completion and trigger the next step.
  144. *
  145. * CONTEXT:
  146. * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
  147. *
  148. * RETURNS:
  149. * %true if requests were added to the dispatch queue, %false otherwise.
  150. */
  151. static bool blk_flush_complete_seq(struct request *rq,
  152. struct blk_flush_queue *fq,
  153. unsigned int seq, blk_status_t error)
  154. {
  155. struct request_queue *q = rq->q;
  156. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  157. bool queued = false, kicked;
  158. unsigned int cmd_flags;
  159. BUG_ON(rq->flush.seq & seq);
  160. rq->flush.seq |= seq;
  161. cmd_flags = rq->cmd_flags;
  162. if (likely(!error))
  163. seq = blk_flush_cur_seq(rq);
  164. else
  165. seq = REQ_FSEQ_DONE;
  166. switch (seq) {
  167. case REQ_FSEQ_PREFLUSH:
  168. case REQ_FSEQ_POSTFLUSH:
  169. /* queue for flush */
  170. if (list_empty(pending))
  171. fq->flush_pending_since = jiffies;
  172. list_move_tail(&rq->flush.list, pending);
  173. break;
  174. case REQ_FSEQ_DATA:
  175. list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
  176. queued = blk_flush_queue_rq(rq, true);
  177. break;
  178. case REQ_FSEQ_DONE:
  179. /*
  180. * @rq was previously adjusted by blk_flush_issue() for
  181. * flush sequencing and may already have gone through the
  182. * flush data request completion path. Restore @rq for
  183. * normal completion and end it.
  184. */
  185. BUG_ON(!list_empty(&rq->queuelist));
  186. list_del_init(&rq->flush.list);
  187. blk_flush_restore_request(rq);
  188. if (q->mq_ops)
  189. blk_mq_end_request(rq, error);
  190. else
  191. __blk_end_request_all(rq, error);
  192. break;
  193. default:
  194. BUG();
  195. }
  196. kicked = blk_kick_flush(q, fq, cmd_flags);
  197. return kicked | queued;
  198. }
  199. static void flush_end_io(struct request *flush_rq, blk_status_t error)
  200. {
  201. struct request_queue *q = flush_rq->q;
  202. struct list_head *running;
  203. bool queued = false;
  204. struct request *rq, *n;
  205. unsigned long flags = 0;
  206. struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
  207. if (q->mq_ops) {
  208. struct blk_mq_hw_ctx *hctx;
  209. /* release the tag's ownership to the req cloned from */
  210. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  211. if (!refcount_dec_and_test(&flush_rq->ref)) {
  212. fq->rq_status = error;
  213. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  214. return;
  215. }
  216. if (fq->rq_status != BLK_STS_OK)
  217. error = fq->rq_status;
  218. hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
  219. if (!q->elevator) {
  220. blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
  221. flush_rq->tag = -1;
  222. } else {
  223. blk_mq_put_driver_tag_hctx(hctx, flush_rq);
  224. flush_rq->internal_tag = -1;
  225. }
  226. }
  227. running = &fq->flush_queue[fq->flush_running_idx];
  228. BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
  229. /* account completion of the flush request */
  230. fq->flush_running_idx ^= 1;
  231. if (!q->mq_ops)
  232. elv_completed_request(q, flush_rq);
  233. /* and push the waiting requests to the next stage */
  234. list_for_each_entry_safe(rq, n, running, flush.list) {
  235. unsigned int seq = blk_flush_cur_seq(rq);
  236. BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
  237. queued |= blk_flush_complete_seq(rq, fq, seq, error);
  238. }
  239. /*
  240. * Kick the queue to avoid stall for two cases:
  241. * 1. Moving a request silently to empty queue_head may stall the
  242. * queue.
  243. * 2. When flush request is running in non-queueable queue, the
  244. * queue is hold. Restart the queue after flush request is finished
  245. * to avoid stall.
  246. * This function is called from request completion path and calling
  247. * directly into request_fn may confuse the driver. Always use
  248. * kblockd.
  249. */
  250. if (queued || fq->flush_queue_delayed) {
  251. WARN_ON(q->mq_ops);
  252. blk_run_queue_async(q);
  253. }
  254. fq->flush_queue_delayed = 0;
  255. if (q->mq_ops)
  256. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  257. }
  258. /**
  259. * blk_kick_flush - consider issuing flush request
  260. * @q: request_queue being kicked
  261. * @fq: flush queue
  262. * @flags: cmd_flags of the original request
  263. *
  264. * Flush related states of @q have changed, consider issuing flush request.
  265. * Please read the comment at the top of this file for more info.
  266. *
  267. * CONTEXT:
  268. * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
  269. *
  270. * RETURNS:
  271. * %true if flush was issued, %false otherwise.
  272. */
  273. static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
  274. unsigned int flags)
  275. {
  276. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  277. struct request *first_rq =
  278. list_first_entry(pending, struct request, flush.list);
  279. struct request *flush_rq = fq->flush_rq;
  280. /* C1 described at the top of this file */
  281. if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
  282. return false;
  283. /* C2 and C3
  284. *
  285. * For blk-mq + scheduling, we can risk having all driver tags
  286. * assigned to empty flushes, and we deadlock if we are expecting
  287. * other requests to make progress. Don't defer for that case.
  288. */
  289. if (!list_empty(&fq->flush_data_in_flight) &&
  290. !(q->mq_ops && q->elevator) &&
  291. time_before(jiffies,
  292. fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
  293. return false;
  294. /*
  295. * Issue flush and toggle pending_idx. This makes pending_idx
  296. * different from running_idx, which means flush is in flight.
  297. */
  298. fq->flush_pending_idx ^= 1;
  299. blk_rq_init(q, flush_rq);
  300. /*
  301. * In case of none scheduler, borrow tag from the first request
  302. * since they can't be in flight at the same time. And acquire
  303. * the tag's ownership for flush req.
  304. *
  305. * In case of IO scheduler, flush rq need to borrow scheduler tag
  306. * just for cheating put/get driver tag.
  307. */
  308. if (q->mq_ops) {
  309. struct blk_mq_hw_ctx *hctx;
  310. flush_rq->mq_ctx = first_rq->mq_ctx;
  311. if (!q->elevator) {
  312. fq->orig_rq = first_rq;
  313. flush_rq->tag = first_rq->tag;
  314. hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
  315. blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
  316. } else {
  317. flush_rq->internal_tag = first_rq->internal_tag;
  318. }
  319. }
  320. flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
  321. flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
  322. flush_rq->rq_flags |= RQF_FLUSH_SEQ;
  323. flush_rq->rq_disk = first_rq->rq_disk;
  324. flush_rq->end_io = flush_end_io;
  325. return blk_flush_queue_rq(flush_rq, false);
  326. }
  327. static void flush_data_end_io(struct request *rq, blk_status_t error)
  328. {
  329. struct request_queue *q = rq->q;
  330. struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
  331. lockdep_assert_held(q->queue_lock);
  332. /*
  333. * Updating q->in_flight[] here for making this tag usable
  334. * early. Because in blk_queue_start_tag(),
  335. * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
  336. * reserve tags for sync I/O.
  337. *
  338. * More importantly this way can avoid the following I/O
  339. * deadlock:
  340. *
  341. * - suppose there are 40 fua requests comming to flush queue
  342. * and queue depth is 31
  343. * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
  344. * tag for async I/O any more
  345. * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
  346. * and flush_data_end_io() is called
  347. * - the other rqs still can't go ahead if not updating
  348. * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
  349. * are held in flush data queue and make no progress of
  350. * handling post flush rq
  351. * - only after the post flush rq is handled, all these rqs
  352. * can be completed
  353. */
  354. elv_completed_request(q, rq);
  355. /* for avoiding double accounting */
  356. rq->rq_flags &= ~RQF_STARTED;
  357. /*
  358. * After populating an empty queue, kick it to avoid stall. Read
  359. * the comment in flush_end_io().
  360. */
  361. if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
  362. blk_run_queue_async(q);
  363. }
  364. static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
  365. {
  366. struct request_queue *q = rq->q;
  367. struct blk_mq_hw_ctx *hctx;
  368. struct blk_mq_ctx *ctx = rq->mq_ctx;
  369. unsigned long flags;
  370. struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
  371. hctx = blk_mq_map_queue(q, ctx->cpu);
  372. if (q->elevator) {
  373. WARN_ON(rq->tag < 0);
  374. blk_mq_put_driver_tag_hctx(hctx, rq);
  375. }
  376. /*
  377. * After populating an empty queue, kick it to avoid stall. Read
  378. * the comment in flush_end_io().
  379. */
  380. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  381. blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
  382. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  383. blk_mq_sched_restart(hctx);
  384. }
  385. /**
  386. * blk_insert_flush - insert a new PREFLUSH/FUA request
  387. * @rq: request to insert
  388. *
  389. * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
  390. * or __blk_mq_run_hw_queue() to dispatch request.
  391. * @rq is being submitted. Analyze what needs to be done and put it on the
  392. * right queue.
  393. */
  394. void blk_insert_flush(struct request *rq)
  395. {
  396. struct request_queue *q = rq->q;
  397. unsigned long fflags = q->queue_flags; /* may change, cache */
  398. unsigned int policy = blk_flush_policy(fflags, rq);
  399. struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
  400. if (!q->mq_ops)
  401. lockdep_assert_held(q->queue_lock);
  402. /*
  403. * @policy now records what operations need to be done. Adjust
  404. * REQ_PREFLUSH and FUA for the driver.
  405. */
  406. rq->cmd_flags &= ~REQ_PREFLUSH;
  407. if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
  408. rq->cmd_flags &= ~REQ_FUA;
  409. /*
  410. * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
  411. * of those flags, we have to set REQ_SYNC to avoid skewing
  412. * the request accounting.
  413. */
  414. rq->cmd_flags |= REQ_SYNC;
  415. /*
  416. * An empty flush handed down from a stacking driver may
  417. * translate into nothing if the underlying device does not
  418. * advertise a write-back cache. In this case, simply
  419. * complete the request.
  420. */
  421. if (!policy) {
  422. if (q->mq_ops)
  423. blk_mq_end_request(rq, 0);
  424. else
  425. __blk_end_request(rq, 0, 0);
  426. return;
  427. }
  428. BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
  429. /*
  430. * If there's data but flush is not necessary, the request can be
  431. * processed directly without going through flush machinery. Queue
  432. * for normal execution.
  433. */
  434. if ((policy & REQ_FSEQ_DATA) &&
  435. !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
  436. if (q->mq_ops)
  437. blk_mq_request_bypass_insert(rq, false);
  438. else
  439. list_add_tail(&rq->queuelist, &q->queue_head);
  440. return;
  441. }
  442. /*
  443. * @rq should go through flush machinery. Mark it part of flush
  444. * sequence and submit for further processing.
  445. */
  446. memset(&rq->flush, 0, sizeof(rq->flush));
  447. INIT_LIST_HEAD(&rq->flush.list);
  448. rq->rq_flags |= RQF_FLUSH_SEQ;
  449. rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
  450. if (q->mq_ops) {
  451. rq->end_io = mq_flush_data_end_io;
  452. spin_lock_irq(&fq->mq_flush_lock);
  453. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  454. spin_unlock_irq(&fq->mq_flush_lock);
  455. return;
  456. }
  457. rq->end_io = flush_data_end_io;
  458. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  459. }
  460. /**
  461. * blkdev_issue_flush - queue a flush
  462. * @bdev: blockdev to issue flush for
  463. * @gfp_mask: memory allocation flags (for bio_alloc)
  464. * @error_sector: error sector
  465. *
  466. * Description:
  467. * Issue a flush for the block device in question. Caller can supply
  468. * room for storing the error offset in case of a flush error, if they
  469. * wish to.
  470. */
  471. int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
  472. sector_t *error_sector)
  473. {
  474. struct request_queue *q;
  475. struct bio *bio;
  476. int ret = 0;
  477. if (bdev->bd_disk == NULL)
  478. return -ENXIO;
  479. q = bdev_get_queue(bdev);
  480. if (!q)
  481. return -ENXIO;
  482. /*
  483. * some block devices may not have their queue correctly set up here
  484. * (e.g. loop device without a backing file) and so issuing a flush
  485. * here will panic. Ensure there is a request function before issuing
  486. * the flush.
  487. */
  488. if (!q->make_request_fn)
  489. return -ENXIO;
  490. bio = bio_alloc(gfp_mask, 0);
  491. bio_set_dev(bio, bdev);
  492. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  493. ret = submit_bio_wait(bio);
  494. /*
  495. * The driver must store the error location in ->bi_sector, if
  496. * it supports it. For non-stacked drivers, this should be
  497. * copied from blk_rq_pos(rq).
  498. */
  499. if (error_sector)
  500. *error_sector = bio->bi_iter.bi_sector;
  501. bio_put(bio);
  502. return ret;
  503. }
  504. EXPORT_SYMBOL(blkdev_issue_flush);
  505. struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
  506. int node, int cmd_size, gfp_t flags)
  507. {
  508. struct blk_flush_queue *fq;
  509. int rq_sz = sizeof(struct request);
  510. fq = kzalloc_node(sizeof(*fq), flags, node);
  511. if (!fq)
  512. goto fail;
  513. if (q->mq_ops)
  514. spin_lock_init(&fq->mq_flush_lock);
  515. rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
  516. fq->flush_rq = kzalloc_node(rq_sz, flags, node);
  517. if (!fq->flush_rq)
  518. goto fail_rq;
  519. INIT_LIST_HEAD(&fq->flush_queue[0]);
  520. INIT_LIST_HEAD(&fq->flush_queue[1]);
  521. INIT_LIST_HEAD(&fq->flush_data_in_flight);
  522. return fq;
  523. fail_rq:
  524. kfree(fq);
  525. fail:
  526. return NULL;
  527. }
  528. void blk_free_flush_queue(struct blk_flush_queue *fq)
  529. {
  530. /* bio based request queue hasn't flush queue */
  531. if (!fq)
  532. return;
  533. kfree(fq->flush_rq);
  534. kfree(fq);
  535. }