123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- /*
- * Copyright (C) 2017 - Cambridge Greys Ltd
- * Copyright (C) 2011 - 2014 Cisco Systems Inc
- * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
- * Licensed under the GPL
- * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
- * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
- */
- #include <linux/cpumask.h>
- #include <linux/hardirq.h>
- #include <linux/interrupt.h>
- #include <linux/kernel_stat.h>
- #include <linux/module.h>
- #include <linux/sched.h>
- #include <linux/seq_file.h>
- #include <linux/slab.h>
- #include <as-layout.h>
- #include <kern_util.h>
- #include <os.h>
- #include <irq_user.h>
- extern void free_irqs(void);
- /* When epoll triggers we do not know why it did so
- * we can also have different IRQs for read and write.
- * This is why we keep a small irq_fd array for each fd -
- * one entry per IRQ type
- */
- struct irq_entry {
- struct irq_entry *next;
- int fd;
- struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
- };
- static struct irq_entry *active_fds;
- static DEFINE_SPINLOCK(irq_lock);
- static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
- {
- /*
- * irq->active guards against reentry
- * irq->pending accumulates pending requests
- * if pending is raised the irq_handler is re-run
- * until pending is cleared
- */
- if (irq->active) {
- irq->active = false;
- do {
- irq->pending = false;
- do_IRQ(irq->irq, regs);
- } while (irq->pending && (!irq->purge));
- if (!irq->purge)
- irq->active = true;
- } else {
- irq->pending = true;
- }
- }
- void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
- {
- struct irq_entry *irq_entry;
- struct irq_fd *irq;
- int n, i, j;
- while (1) {
- /* This is now lockless - epoll keeps back-referencesto the irqs
- * which have trigger it so there is no need to walk the irq
- * list and lock it every time. We avoid locking by turning off
- * IO for a specific fd by executing os_del_epoll_fd(fd) before
- * we do any changes to the actual data structures
- */
- n = os_waiting_for_events_epoll();
- if (n <= 0) {
- if (n == -EINTR)
- continue;
- else
- break;
- }
- for (i = 0; i < n ; i++) {
- /* Epoll back reference is the entry with 3 irq_fd
- * leaves - one for each irq type.
- */
- irq_entry = (struct irq_entry *)
- os_epoll_get_data_pointer(i);
- for (j = 0; j < MAX_IRQ_TYPE ; j++) {
- irq = irq_entry->irq_array[j];
- if (irq == NULL)
- continue;
- if (os_epoll_triggered(i, irq->events) > 0)
- irq_io_loop(irq, regs);
- if (irq->purge) {
- irq_entry->irq_array[j] = NULL;
- kfree(irq);
- }
- }
- }
- }
- free_irqs();
- }
- static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
- {
- int i;
- int events = 0;
- struct irq_fd *irq;
- for (i = 0; i < MAX_IRQ_TYPE ; i++) {
- irq = irq_entry->irq_array[i];
- if (irq != NULL)
- events = irq->events | events;
- }
- if (events > 0) {
- /* os_add_epoll will call os_mod_epoll if this already exists */
- return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
- }
- /* No events - delete */
- return os_del_epoll_fd(irq_entry->fd);
- }
- static int activate_fd(int irq, int fd, int type, void *dev_id)
- {
- struct irq_fd *new_fd;
- struct irq_entry *irq_entry;
- int i, err, events;
- unsigned long flags;
- err = os_set_fd_async(fd);
- if (err < 0)
- goto out;
- spin_lock_irqsave(&irq_lock, flags);
- /* Check if we have an entry for this fd */
- err = -EBUSY;
- for (irq_entry = active_fds;
- irq_entry != NULL; irq_entry = irq_entry->next) {
- if (irq_entry->fd == fd)
- break;
- }
- if (irq_entry == NULL) {
- /* This needs to be atomic as it may be called from an
- * IRQ context.
- */
- irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
- if (irq_entry == NULL) {
- printk(KERN_ERR
- "Failed to allocate new IRQ entry\n");
- goto out_unlock;
- }
- irq_entry->fd = fd;
- for (i = 0; i < MAX_IRQ_TYPE; i++)
- irq_entry->irq_array[i] = NULL;
- irq_entry->next = active_fds;
- active_fds = irq_entry;
- }
- /* Check if we are trying to re-register an interrupt for a
- * particular fd
- */
- if (irq_entry->irq_array[type] != NULL) {
- printk(KERN_ERR
- "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
- irq, fd, type, dev_id
- );
- goto out_unlock;
- } else {
- /* New entry for this fd */
- err = -ENOMEM;
- new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
- if (new_fd == NULL)
- goto out_unlock;
- events = os_event_mask(type);
- *new_fd = ((struct irq_fd) {
- .id = dev_id,
- .irq = irq,
- .type = type,
- .events = events,
- .active = true,
- .pending = false,
- .purge = false
- });
- /* Turn off any IO on this fd - allows us to
- * avoid locking the IRQ loop
- */
- os_del_epoll_fd(irq_entry->fd);
- irq_entry->irq_array[type] = new_fd;
- }
- /* Turn back IO on with the correct (new) IO event mask */
- assign_epoll_events_to_irq(irq_entry);
- spin_unlock_irqrestore(&irq_lock, flags);
- maybe_sigio_broken(fd, (type != IRQ_NONE));
- return 0;
- out_unlock:
- spin_unlock_irqrestore(&irq_lock, flags);
- out:
- return err;
- }
- /*
- * Walk the IRQ list and dispose of any unused entries.
- * Should be done under irq_lock.
- */
- static void garbage_collect_irq_entries(void)
- {
- int i;
- bool reap;
- struct irq_entry *walk;
- struct irq_entry *previous = NULL;
- struct irq_entry *to_free;
- if (active_fds == NULL)
- return;
- walk = active_fds;
- while (walk != NULL) {
- reap = true;
- for (i = 0; i < MAX_IRQ_TYPE ; i++) {
- if (walk->irq_array[i] != NULL) {
- reap = false;
- break;
- }
- }
- if (reap) {
- if (previous == NULL)
- active_fds = walk->next;
- else
- previous->next = walk->next;
- to_free = walk;
- } else {
- to_free = NULL;
- }
- walk = walk->next;
- if (to_free != NULL)
- kfree(to_free);
- }
- }
- /*
- * Walk the IRQ list and get the descriptor for our FD
- */
- static struct irq_entry *get_irq_entry_by_fd(int fd)
- {
- struct irq_entry *walk = active_fds;
- while (walk != NULL) {
- if (walk->fd == fd)
- return walk;
- walk = walk->next;
- }
- return NULL;
- }
- /*
- * Walk the IRQ list and dispose of an entry for a specific
- * device, fd and number. Note - if sharing an IRQ for read
- * and writefor the same FD it will be disposed in either case.
- * If this behaviour is undesirable use different IRQ ids.
- */
- #define IGNORE_IRQ 1
- #define IGNORE_DEV (1<<1)
- static void do_free_by_irq_and_dev(
- struct irq_entry *irq_entry,
- unsigned int irq,
- void *dev,
- int flags
- )
- {
- int i;
- struct irq_fd *to_free;
- for (i = 0; i < MAX_IRQ_TYPE ; i++) {
- if (irq_entry->irq_array[i] != NULL) {
- if (
- ((flags & IGNORE_IRQ) ||
- (irq_entry->irq_array[i]->irq == irq)) &&
- ((flags & IGNORE_DEV) ||
- (irq_entry->irq_array[i]->id == dev))
- ) {
- /* Turn off any IO on this fd - allows us to
- * avoid locking the IRQ loop
- */
- os_del_epoll_fd(irq_entry->fd);
- to_free = irq_entry->irq_array[i];
- irq_entry->irq_array[i] = NULL;
- assign_epoll_events_to_irq(irq_entry);
- if (to_free->active)
- to_free->purge = true;
- else
- kfree(to_free);
- }
- }
- }
- }
- void free_irq_by_fd(int fd)
- {
- struct irq_entry *to_free;
- unsigned long flags;
- spin_lock_irqsave(&irq_lock, flags);
- to_free = get_irq_entry_by_fd(fd);
- if (to_free != NULL) {
- do_free_by_irq_and_dev(
- to_free,
- -1,
- NULL,
- IGNORE_IRQ | IGNORE_DEV
- );
- }
- garbage_collect_irq_entries();
- spin_unlock_irqrestore(&irq_lock, flags);
- }
- EXPORT_SYMBOL(free_irq_by_fd);
- static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
- {
- struct irq_entry *to_free;
- unsigned long flags;
- spin_lock_irqsave(&irq_lock, flags);
- to_free = active_fds;
- while (to_free != NULL) {
- do_free_by_irq_and_dev(
- to_free,
- irq,
- dev,
- 0
- );
- to_free = to_free->next;
- }
- garbage_collect_irq_entries();
- spin_unlock_irqrestore(&irq_lock, flags);
- }
- void reactivate_fd(int fd, int irqnum)
- {
- /** NOP - we do auto-EOI now **/
- }
- void deactivate_fd(int fd, int irqnum)
- {
- struct irq_entry *to_free;
- unsigned long flags;
- os_del_epoll_fd(fd);
- spin_lock_irqsave(&irq_lock, flags);
- to_free = get_irq_entry_by_fd(fd);
- if (to_free != NULL) {
- do_free_by_irq_and_dev(
- to_free,
- irqnum,
- NULL,
- IGNORE_DEV
- );
- }
- garbage_collect_irq_entries();
- spin_unlock_irqrestore(&irq_lock, flags);
- ignore_sigio_fd(fd);
- }
- EXPORT_SYMBOL(deactivate_fd);
- /*
- * Called just before shutdown in order to provide a clean exec
- * environment in case the system is rebooting. No locking because
- * that would cause a pointless shutdown hang if something hadn't
- * released the lock.
- */
- int deactivate_all_fds(void)
- {
- unsigned long flags;
- struct irq_entry *to_free;
- spin_lock_irqsave(&irq_lock, flags);
- /* Stop IO. The IRQ loop has no lock so this is our
- * only way of making sure we are safe to dispose
- * of all IRQ handlers
- */
- os_set_ioignore();
- to_free = active_fds;
- while (to_free != NULL) {
- do_free_by_irq_and_dev(
- to_free,
- -1,
- NULL,
- IGNORE_IRQ | IGNORE_DEV
- );
- to_free = to_free->next;
- }
- garbage_collect_irq_entries();
- spin_unlock_irqrestore(&irq_lock, flags);
- os_close_epoll_fd();
- return 0;
- }
- /*
- * do_IRQ handles all normal device IRQs (the special
- * SMP cross-CPU interrupts have their own specific
- * handlers).
- */
- unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
- {
- struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
- irq_enter();
- generic_handle_irq(irq);
- irq_exit();
- set_irq_regs(old_regs);
- return 1;
- }
- void um_free_irq(unsigned int irq, void *dev)
- {
- free_irq_by_irq_and_dev(irq, dev);
- free_irq(irq, dev);
- }
- EXPORT_SYMBOL(um_free_irq);
- int um_request_irq(unsigned int irq, int fd, int type,
- irq_handler_t handler,
- unsigned long irqflags, const char * devname,
- void *dev_id)
- {
- int err;
- if (fd != -1) {
- err = activate_fd(irq, fd, type, dev_id);
- if (err)
- return err;
- }
- return request_irq(irq, handler, irqflags, devname, dev_id);
- }
- EXPORT_SYMBOL(um_request_irq);
- EXPORT_SYMBOL(reactivate_fd);
- /*
- * irq_chip must define at least enable/disable and ack when
- * the edge handler is used.
- */
- static void dummy(struct irq_data *d)
- {
- }
- /* This is used for everything else than the timer. */
- static struct irq_chip normal_irq_type = {
- .name = "SIGIO",
- .irq_disable = dummy,
- .irq_enable = dummy,
- .irq_ack = dummy,
- .irq_mask = dummy,
- .irq_unmask = dummy,
- };
- static struct irq_chip SIGVTALRM_irq_type = {
- .name = "SIGVTALRM",
- .irq_disable = dummy,
- .irq_enable = dummy,
- .irq_ack = dummy,
- .irq_mask = dummy,
- .irq_unmask = dummy,
- };
- void __init init_IRQ(void)
- {
- int i;
- irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
- for (i = 1; i < NR_IRQS; i++)
- irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
- /* Initialize EPOLL Loop */
- os_setup_epoll();
- }
- /*
- * IRQ stack entry and exit:
- *
- * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
- * and switch over to the IRQ stack after some preparation. We use
- * sigaltstack to receive signals on a separate stack from the start.
- * These two functions make sure the rest of the kernel won't be too
- * upset by being on a different stack. The IRQ stack has a
- * thread_info structure at the bottom so that current et al continue
- * to work.
- *
- * to_irq_stack copies the current task's thread_info to the IRQ stack
- * thread_info and sets the tasks's stack to point to the IRQ stack.
- *
- * from_irq_stack copies the thread_info struct back (flags may have
- * been modified) and resets the task's stack pointer.
- *
- * Tricky bits -
- *
- * What happens when two signals race each other? UML doesn't block
- * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
- * could arrive while a previous one is still setting up the
- * thread_info.
- *
- * There are three cases -
- * The first interrupt on the stack - sets up the thread_info and
- * handles the interrupt
- * A nested interrupt interrupting the copying of the thread_info -
- * can't handle the interrupt, as the stack is in an unknown state
- * A nested interrupt not interrupting the copying of the
- * thread_info - doesn't do any setup, just handles the interrupt
- *
- * The first job is to figure out whether we interrupted stack setup.
- * This is done by xchging the signal mask with thread_info->pending.
- * If the value that comes back is zero, then there is no setup in
- * progress, and the interrupt can be handled. If the value is
- * non-zero, then there is stack setup in progress. In order to have
- * the interrupt handled, we leave our signal in the mask, and it will
- * be handled by the upper handler after it has set up the stack.
- *
- * Next is to figure out whether we are the outer handler or a nested
- * one. As part of setting up the stack, thread_info->real_thread is
- * set to non-NULL (and is reset to NULL on exit). This is the
- * nesting indicator. If it is non-NULL, then the stack is already
- * set up and the handler can run.
- */
- static unsigned long pending_mask;
- unsigned long to_irq_stack(unsigned long *mask_out)
- {
- struct thread_info *ti;
- unsigned long mask, old;
- int nested;
- mask = xchg(&pending_mask, *mask_out);
- if (mask != 0) {
- /*
- * If any interrupts come in at this point, we want to
- * make sure that their bits aren't lost by our
- * putting our bit in. So, this loop accumulates bits
- * until xchg returns the same value that we put in.
- * When that happens, there were no new interrupts,
- * and pending_mask contains a bit for each interrupt
- * that came in.
- */
- old = *mask_out;
- do {
- old |= mask;
- mask = xchg(&pending_mask, old);
- } while (mask != old);
- return 1;
- }
- ti = current_thread_info();
- nested = (ti->real_thread != NULL);
- if (!nested) {
- struct task_struct *task;
- struct thread_info *tti;
- task = cpu_tasks[ti->cpu].task;
- tti = task_thread_info(task);
- *ti = *tti;
- ti->real_thread = tti;
- task->stack = ti;
- }
- mask = xchg(&pending_mask, 0);
- *mask_out |= mask | nested;
- return 0;
- }
- unsigned long from_irq_stack(int nested)
- {
- struct thread_info *ti, *to;
- unsigned long mask;
- ti = current_thread_info();
- pending_mask = 1;
- to = ti->real_thread;
- current->stack = to;
- ti->real_thread = NULL;
- *to = *ti;
- mask = xchg(&pending_mask, 0);
- return mask & ~1;
- }
|