123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- /* SPDX-License-Identifier: GPL-2.0 */
- /* Optimized version of the standard memset() function.
- Copyright (c) 2002 Hewlett-Packard Co/CERN
- Sverre Jarp <Sverre.Jarp@cern.ch>
- Return: dest
- Inputs:
- in0: dest
- in1: value
- in2: count
- The algorithm is fairly straightforward: set byte by byte until we
- we get to a 16B-aligned address, then loop on 128 B chunks using an
- early store as prefetching, then loop on 32B chucks, then clear remaining
- words, finally clear remaining bytes.
- Since a stf.spill f0 can store 16B in one go, we use this instruction
- to get peak speed when value = 0. */
- #include <asm/asmmacro.h>
- #include <asm/export.h>
- #undef ret
- #define dest in0
- #define value in1
- #define cnt in2
- #define tmp r31
- #define save_lc r30
- #define ptr0 r29
- #define ptr1 r28
- #define ptr2 r27
- #define ptr3 r26
- #define ptr9 r24
- #define loopcnt r23
- #define linecnt r22
- #define bytecnt r21
- #define fvalue f6
- // This routine uses only scratch predicate registers (p6 - p15)
- #define p_scr p6 // default register for same-cycle branches
- #define p_nz p7
- #define p_zr p8
- #define p_unalgn p9
- #define p_y p11
- #define p_n p12
- #define p_yy p13
- #define p_nn p14
- #define MIN1 15
- #define MIN1P1HALF 8
- #define LINE_SIZE 128
- #define LSIZE_SH 7 // shift amount
- #define PREF_AHEAD 8
- GLOBAL_ENTRY(memset)
- { .mmi
- .prologue
- alloc tmp = ar.pfs, 3, 0, 0, 0
- lfetch.nt1 [dest] //
- .save ar.lc, save_lc
- mov.i save_lc = ar.lc
- .body
- } { .mmi
- mov ret0 = dest // return value
- cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero
- cmp.eq p_scr, p0 = cnt, r0
- ;; }
- { .mmi
- and ptr2 = -(MIN1+1), dest // aligned address
- and tmp = MIN1, dest // prepare to check for correct alignment
- tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
- } { .mib
- mov ptr1 = dest
- mux1 value = value, @brcst // create 8 identical bytes in word
- (p_scr) br.ret.dpnt.many rp // return immediately if count = 0
- ;; }
- { .mib
- cmp.ne p_unalgn, p0 = tmp, r0 //
- } { .mib
- sub bytecnt = (MIN1+1), tmp // NB: # of bytes to move is 1 higher than loopcnt
- cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
- (p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
- ;; }
- { .mmi
- (p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
- (p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
- (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
- ;; }
- { .mib
- (p_y) add cnt = -8, cnt //
- (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
- } { .mib
- (p_y) st8 [ptr2] = value,-4 //
- (p_n) add ptr2 = 4, ptr2 //
- ;; }
- { .mib
- (p_yy) add cnt = -4, cnt //
- (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
- } { .mib
- (p_yy) st4 [ptr2] = value,-2 //
- (p_nn) add ptr2 = 2, ptr2 //
- ;; }
- { .mmi
- mov tmp = LINE_SIZE+1 // for compare
- (p_y) add cnt = -2, cnt //
- (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
- } { .mmi
- setf.sig fvalue=value // transfer value to FLP side
- (p_y) st2 [ptr2] = value,-1 //
- (p_n) add ptr2 = 1, ptr2 //
- ;; }
- { .mmi
- (p_yy) st1 [ptr2] = value //
- cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
- } { .mbb
- (p_yy) add cnt = -1, cnt //
- (p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
- ;; }
- { .mib
- nop.m 0
- shr.u linecnt = cnt, LSIZE_SH
- (p_zr) br.cond.dptk.many .l1b // Jump to use stf.spill
- ;; }
- TEXT_ALIGN(32) // --------------------- // L1A: store ahead into cache lines; fill later
- { .mmi
- and tmp = -(LINE_SIZE), cnt // compute end of range
- mov ptr9 = ptr1 // used for prefetching
- and cnt = (LINE_SIZE-1), cnt // remainder
- } { .mmi
- mov loopcnt = PREF_AHEAD-1 // default prefetch loop
- cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
- ;; }
- { .mmi
- (p_scr) add loopcnt = -1, linecnt //
- add ptr2 = 8, ptr1 // start of stores (beyond prefetch stores)
- add ptr1 = tmp, ptr1 // first address beyond total range
- ;; }
- { .mmi
- add tmp = -1, linecnt // next loop count
- mov.i ar.lc = loopcnt //
- ;; }
- .pref_l1a:
- { .mib
- stf8 [ptr9] = fvalue, 128 // Do stores one cache line apart
- nop.i 0
- br.cloop.dptk.few .pref_l1a
- ;; }
- { .mmi
- add ptr0 = 16, ptr2 // Two stores in parallel
- mov.i ar.lc = tmp //
- ;; }
- .l1ax:
- { .mmi
- stf8 [ptr2] = fvalue, 8
- stf8 [ptr0] = fvalue, 8
- ;; }
- { .mmi
- stf8 [ptr2] = fvalue, 24
- stf8 [ptr0] = fvalue, 24
- ;; }
- { .mmi
- stf8 [ptr2] = fvalue, 8
- stf8 [ptr0] = fvalue, 8
- ;; }
- { .mmi
- stf8 [ptr2] = fvalue, 24
- stf8 [ptr0] = fvalue, 24
- ;; }
- { .mmi
- stf8 [ptr2] = fvalue, 8
- stf8 [ptr0] = fvalue, 8
- ;; }
- { .mmi
- stf8 [ptr2] = fvalue, 24
- stf8 [ptr0] = fvalue, 24
- ;; }
- { .mmi
- stf8 [ptr2] = fvalue, 8
- stf8 [ptr0] = fvalue, 32
- cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
- ;; }
- { .mmb
- stf8 [ptr2] = fvalue, 24
- (p_scr) stf8 [ptr9] = fvalue, 128
- br.cloop.dptk.few .l1ax
- ;; }
- { .mbb
- cmp.le p_scr, p0 = 8, cnt // just a few bytes left ?
- (p_scr) br.cond.dpnt.many .fraction_of_line // Branch no. 2
- br.cond.dpnt.many .move_bytes_from_alignment // Branch no. 3
- ;; }
- TEXT_ALIGN(32)
- .l1b: // ------------------------------------ // L1B: store ahead into cache lines; fill later
- { .mmi
- and tmp = -(LINE_SIZE), cnt // compute end of range
- mov ptr9 = ptr1 // used for prefetching
- and cnt = (LINE_SIZE-1), cnt // remainder
- } { .mmi
- mov loopcnt = PREF_AHEAD-1 // default prefetch loop
- cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
- ;; }
- { .mmi
- (p_scr) add loopcnt = -1, linecnt
- add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
- add ptr1 = tmp, ptr1 // first address beyond total range
- ;; }
- { .mmi
- add tmp = -1, linecnt // next loop count
- mov.i ar.lc = loopcnt
- ;; }
- .pref_l1b:
- { .mib
- stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
- nop.i 0
- br.cloop.dptk.few .pref_l1b
- ;; }
- { .mmi
- add ptr0 = 16, ptr2 // Two stores in parallel
- mov.i ar.lc = tmp
- ;; }
- .l1bx:
- { .mmi
- stf.spill [ptr2] = f0, 32
- stf.spill [ptr0] = f0, 32
- ;; }
- { .mmi
- stf.spill [ptr2] = f0, 32
- stf.spill [ptr0] = f0, 32
- ;; }
- { .mmi
- stf.spill [ptr2] = f0, 32
- stf.spill [ptr0] = f0, 64
- cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
- ;; }
- { .mmb
- stf.spill [ptr2] = f0, 32
- (p_scr) stf.spill [ptr9] = f0, 128
- br.cloop.dptk.few .l1bx
- ;; }
- { .mib
- cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
- (p_scr) br.cond.dpnt.many .move_bytes_from_alignment //
- ;; }
- .fraction_of_line:
- { .mib
- add ptr2 = 16, ptr1
- shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
- ;; }
- { .mib
- cmp.eq p_scr, p0 = loopcnt, r0
- add loopcnt = -1, loopcnt
- (p_scr) br.cond.dpnt.many .store_words
- ;; }
- { .mib
- and cnt = 0x1f, cnt // compute the remaining cnt
- mov.i ar.lc = loopcnt
- ;; }
- TEXT_ALIGN(32)
- .l2: // ------------------------------------ // L2A: store 32B in 2 cycles
- { .mmb
- stf8 [ptr1] = fvalue, 8
- stf8 [ptr2] = fvalue, 8
- ;; } { .mmb
- stf8 [ptr1] = fvalue, 24
- stf8 [ptr2] = fvalue, 24
- br.cloop.dptk.many .l2
- ;; }
- .store_words:
- { .mib
- cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
- (p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
- ;; }
- { .mmi
- stf8 [ptr1] = fvalue, 8 // store
- cmp.le p_y, p_n = 16, cnt
- add cnt = -8, cnt // subtract
- ;; }
- { .mmi
- (p_y) stf8 [ptr1] = fvalue, 8 // store
- (p_y) cmp.le.unc p_yy, p_nn = 16, cnt
- (p_y) add cnt = -8, cnt // subtract
- ;; }
- { .mmi // store
- (p_yy) stf8 [ptr1] = fvalue, 8
- (p_yy) add cnt = -8, cnt // subtract
- ;; }
- .move_bytes_from_alignment:
- { .mib
- cmp.eq p_scr, p0 = cnt, r0
- tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
- (p_scr) br.cond.dpnt.few .restore_and_exit
- ;; }
- { .mib
- (p_y) st4 [ptr1] = value,4
- tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
- ;; }
- { .mib
- (p_yy) st2 [ptr1] = value,2
- tbit.nz.unc p_y, p0 = cnt, 0 // should we terminate with a st1 ?
- ;; }
- { .mib
- (p_y) st1 [ptr1] = value
- ;; }
- .restore_and_exit:
- { .mib
- nop.m 0
- mov.i ar.lc = save_lc
- br.ret.sptk.many rp
- ;; }
- .move_bytes_unaligned:
- { .mmi
- .pred.rel "mutex",p_y, p_n
- .pred.rel "mutex",p_yy, p_nn
- (p_n) cmp.le p_yy, p_nn = 4, cnt
- (p_y) cmp.le p_yy, p_nn = 5, cnt
- (p_n) add ptr2 = 2, ptr1
- } { .mmi
- (p_y) add ptr2 = 3, ptr1
- (p_y) st1 [ptr1] = value, 1 // fill 1 (odd-aligned) byte [15, 14 (or less) left]
- (p_y) add cnt = -1, cnt
- ;; }
- { .mmi
- (p_yy) cmp.le.unc p_y, p0 = 8, cnt
- add ptr3 = ptr1, cnt // prepare last store
- mov.i ar.lc = save_lc
- } { .mmi
- (p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
- (p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [11, 10 (o less) left]
- (p_yy) add cnt = -4, cnt
- ;; }
- { .mmi
- (p_y) cmp.le.unc p_yy, p0 = 8, cnt
- add ptr3 = -1, ptr3 // last store
- tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
- } { .mmi
- (p_y) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
- (p_y) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [7, 6 (or less) left]
- (p_y) add cnt = -4, cnt
- ;; }
- { .mmi
- (p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
- (p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [3, 2 (or less) left]
- tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
- } { .mmi
- (p_yy) add cnt = -4, cnt
- ;; }
- { .mmb
- (p_scr) st2 [ptr1] = value // fill 2 (aligned) bytes
- (p_y) st1 [ptr3] = value // fill last byte (using ptr3)
- br.ret.sptk.many rp
- }
- END(memset)
- EXPORT_SYMBOL(memset)
|