aes-ce-ccm-glue.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /*
  2. * aes-ccm-glue.c - AES-CCM transform for ARMv8 with Crypto Extensions
  3. *
  4. * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/neon.h>
  11. #include <asm/simd.h>
  12. #include <asm/unaligned.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/scatterwalk.h>
  15. #include <crypto/internal/aead.h>
  16. #include <crypto/internal/skcipher.h>
  17. #include <linux/module.h>
  18. #include "aes-ce-setkey.h"
  19. static int num_rounds(struct crypto_aes_ctx *ctx)
  20. {
  21. /*
  22. * # of rounds specified by AES:
  23. * 128 bit key 10 rounds
  24. * 192 bit key 12 rounds
  25. * 256 bit key 14 rounds
  26. * => n byte key => 6 + (n/4) rounds
  27. */
  28. return 6 + ctx->key_length / 4;
  29. }
  30. asmlinkage void ce_aes_ccm_auth_data(u8 mac[], u8 const in[], u32 abytes,
  31. u32 *macp, u32 const rk[], u32 rounds);
  32. asmlinkage void ce_aes_ccm_encrypt(u8 out[], u8 const in[], u32 cbytes,
  33. u32 const rk[], u32 rounds, u8 mac[],
  34. u8 ctr[]);
  35. asmlinkage void ce_aes_ccm_decrypt(u8 out[], u8 const in[], u32 cbytes,
  36. u32 const rk[], u32 rounds, u8 mac[],
  37. u8 ctr[]);
  38. asmlinkage void ce_aes_ccm_final(u8 mac[], u8 const ctr[], u32 const rk[],
  39. u32 rounds);
  40. asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
  41. static int ccm_setkey(struct crypto_aead *tfm, const u8 *in_key,
  42. unsigned int key_len)
  43. {
  44. struct crypto_aes_ctx *ctx = crypto_aead_ctx(tfm);
  45. int ret;
  46. ret = ce_aes_expandkey(ctx, in_key, key_len);
  47. if (!ret)
  48. return 0;
  49. tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  50. return -EINVAL;
  51. }
  52. static int ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
  53. {
  54. if ((authsize & 1) || authsize < 4)
  55. return -EINVAL;
  56. return 0;
  57. }
  58. static int ccm_init_mac(struct aead_request *req, u8 maciv[], u32 msglen)
  59. {
  60. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  61. __be32 *n = (__be32 *)&maciv[AES_BLOCK_SIZE - 8];
  62. u32 l = req->iv[0] + 1;
  63. /* verify that CCM dimension 'L' is set correctly in the IV */
  64. if (l < 2 || l > 8)
  65. return -EINVAL;
  66. /* verify that msglen can in fact be represented in L bytes */
  67. if (l < 4 && msglen >> (8 * l))
  68. return -EOVERFLOW;
  69. /*
  70. * Even if the CCM spec allows L values of up to 8, the Linux cryptoapi
  71. * uses a u32 type to represent msglen so the top 4 bytes are always 0.
  72. */
  73. n[0] = 0;
  74. n[1] = cpu_to_be32(msglen);
  75. memcpy(maciv, req->iv, AES_BLOCK_SIZE - l);
  76. /*
  77. * Meaning of byte 0 according to CCM spec (RFC 3610/NIST 800-38C)
  78. * - bits 0..2 : max # of bytes required to represent msglen, minus 1
  79. * (already set by caller)
  80. * - bits 3..5 : size of auth tag (1 => 4 bytes, 2 => 6 bytes, etc)
  81. * - bit 6 : indicates presence of authenticate-only data
  82. */
  83. maciv[0] |= (crypto_aead_authsize(aead) - 2) << 2;
  84. if (req->assoclen)
  85. maciv[0] |= 0x40;
  86. memset(&req->iv[AES_BLOCK_SIZE - l], 0, l);
  87. return 0;
  88. }
  89. static void ccm_update_mac(struct crypto_aes_ctx *key, u8 mac[], u8 const in[],
  90. u32 abytes, u32 *macp)
  91. {
  92. if (may_use_simd()) {
  93. kernel_neon_begin();
  94. ce_aes_ccm_auth_data(mac, in, abytes, macp, key->key_enc,
  95. num_rounds(key));
  96. kernel_neon_end();
  97. } else {
  98. if (*macp > 0 && *macp < AES_BLOCK_SIZE) {
  99. int added = min(abytes, AES_BLOCK_SIZE - *macp);
  100. crypto_xor(&mac[*macp], in, added);
  101. *macp += added;
  102. in += added;
  103. abytes -= added;
  104. }
  105. while (abytes >= AES_BLOCK_SIZE) {
  106. __aes_arm64_encrypt(key->key_enc, mac, mac,
  107. num_rounds(key));
  108. crypto_xor(mac, in, AES_BLOCK_SIZE);
  109. in += AES_BLOCK_SIZE;
  110. abytes -= AES_BLOCK_SIZE;
  111. }
  112. if (abytes > 0) {
  113. __aes_arm64_encrypt(key->key_enc, mac, mac,
  114. num_rounds(key));
  115. crypto_xor(mac, in, abytes);
  116. *macp = abytes;
  117. }
  118. }
  119. }
  120. static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[])
  121. {
  122. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  123. struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
  124. struct __packed { __be16 l; __be32 h; u16 len; } ltag;
  125. struct scatter_walk walk;
  126. u32 len = req->assoclen;
  127. u32 macp = 0;
  128. /* prepend the AAD with a length tag */
  129. if (len < 0xff00) {
  130. ltag.l = cpu_to_be16(len);
  131. ltag.len = 2;
  132. } else {
  133. ltag.l = cpu_to_be16(0xfffe);
  134. put_unaligned_be32(len, &ltag.h);
  135. ltag.len = 6;
  136. }
  137. ccm_update_mac(ctx, mac, (u8 *)&ltag, ltag.len, &macp);
  138. scatterwalk_start(&walk, req->src);
  139. do {
  140. u32 n = scatterwalk_clamp(&walk, len);
  141. u8 *p;
  142. if (!n) {
  143. scatterwalk_start(&walk, sg_next(walk.sg));
  144. n = scatterwalk_clamp(&walk, len);
  145. }
  146. p = scatterwalk_map(&walk);
  147. ccm_update_mac(ctx, mac, p, n, &macp);
  148. len -= n;
  149. scatterwalk_unmap(p);
  150. scatterwalk_advance(&walk, n);
  151. scatterwalk_done(&walk, 0, len);
  152. } while (len);
  153. }
  154. static int ccm_crypt_fallback(struct skcipher_walk *walk, u8 mac[], u8 iv0[],
  155. struct crypto_aes_ctx *ctx, bool enc)
  156. {
  157. u8 buf[AES_BLOCK_SIZE];
  158. int err = 0;
  159. while (walk->nbytes) {
  160. int blocks = walk->nbytes / AES_BLOCK_SIZE;
  161. u32 tail = walk->nbytes % AES_BLOCK_SIZE;
  162. u8 *dst = walk->dst.virt.addr;
  163. u8 *src = walk->src.virt.addr;
  164. u32 nbytes = walk->nbytes;
  165. if (nbytes == walk->total && tail > 0) {
  166. blocks++;
  167. tail = 0;
  168. }
  169. do {
  170. u32 bsize = AES_BLOCK_SIZE;
  171. if (nbytes < AES_BLOCK_SIZE)
  172. bsize = nbytes;
  173. crypto_inc(walk->iv, AES_BLOCK_SIZE);
  174. __aes_arm64_encrypt(ctx->key_enc, buf, walk->iv,
  175. num_rounds(ctx));
  176. __aes_arm64_encrypt(ctx->key_enc, mac, mac,
  177. num_rounds(ctx));
  178. if (enc)
  179. crypto_xor(mac, src, bsize);
  180. crypto_xor_cpy(dst, src, buf, bsize);
  181. if (!enc)
  182. crypto_xor(mac, dst, bsize);
  183. dst += bsize;
  184. src += bsize;
  185. nbytes -= bsize;
  186. } while (--blocks);
  187. err = skcipher_walk_done(walk, tail);
  188. }
  189. if (!err) {
  190. __aes_arm64_encrypt(ctx->key_enc, buf, iv0, num_rounds(ctx));
  191. __aes_arm64_encrypt(ctx->key_enc, mac, mac, num_rounds(ctx));
  192. crypto_xor(mac, buf, AES_BLOCK_SIZE);
  193. }
  194. return err;
  195. }
  196. static int ccm_encrypt(struct aead_request *req)
  197. {
  198. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  199. struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
  200. struct skcipher_walk walk;
  201. u8 __aligned(8) mac[AES_BLOCK_SIZE];
  202. u8 buf[AES_BLOCK_SIZE];
  203. u32 len = req->cryptlen;
  204. int err;
  205. err = ccm_init_mac(req, mac, len);
  206. if (err)
  207. return err;
  208. if (req->assoclen)
  209. ccm_calculate_auth_mac(req, mac);
  210. /* preserve the original iv for the final round */
  211. memcpy(buf, req->iv, AES_BLOCK_SIZE);
  212. err = skcipher_walk_aead_encrypt(&walk, req, true);
  213. if (may_use_simd()) {
  214. while (walk.nbytes) {
  215. u32 tail = walk.nbytes % AES_BLOCK_SIZE;
  216. if (walk.nbytes == walk.total)
  217. tail = 0;
  218. kernel_neon_begin();
  219. ce_aes_ccm_encrypt(walk.dst.virt.addr,
  220. walk.src.virt.addr,
  221. walk.nbytes - tail, ctx->key_enc,
  222. num_rounds(ctx), mac, walk.iv);
  223. kernel_neon_end();
  224. err = skcipher_walk_done(&walk, tail);
  225. }
  226. if (!err) {
  227. kernel_neon_begin();
  228. ce_aes_ccm_final(mac, buf, ctx->key_enc,
  229. num_rounds(ctx));
  230. kernel_neon_end();
  231. }
  232. } else {
  233. err = ccm_crypt_fallback(&walk, mac, buf, ctx, true);
  234. }
  235. if (err)
  236. return err;
  237. /* copy authtag to end of dst */
  238. scatterwalk_map_and_copy(mac, req->dst, req->assoclen + req->cryptlen,
  239. crypto_aead_authsize(aead), 1);
  240. return 0;
  241. }
  242. static int ccm_decrypt(struct aead_request *req)
  243. {
  244. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  245. struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
  246. unsigned int authsize = crypto_aead_authsize(aead);
  247. struct skcipher_walk walk;
  248. u8 __aligned(8) mac[AES_BLOCK_SIZE];
  249. u8 buf[AES_BLOCK_SIZE];
  250. u32 len = req->cryptlen - authsize;
  251. int err;
  252. err = ccm_init_mac(req, mac, len);
  253. if (err)
  254. return err;
  255. if (req->assoclen)
  256. ccm_calculate_auth_mac(req, mac);
  257. /* preserve the original iv for the final round */
  258. memcpy(buf, req->iv, AES_BLOCK_SIZE);
  259. err = skcipher_walk_aead_decrypt(&walk, req, true);
  260. if (may_use_simd()) {
  261. while (walk.nbytes) {
  262. u32 tail = walk.nbytes % AES_BLOCK_SIZE;
  263. if (walk.nbytes == walk.total)
  264. tail = 0;
  265. kernel_neon_begin();
  266. ce_aes_ccm_decrypt(walk.dst.virt.addr,
  267. walk.src.virt.addr,
  268. walk.nbytes - tail, ctx->key_enc,
  269. num_rounds(ctx), mac, walk.iv);
  270. kernel_neon_end();
  271. err = skcipher_walk_done(&walk, tail);
  272. }
  273. if (!err) {
  274. kernel_neon_begin();
  275. ce_aes_ccm_final(mac, buf, ctx->key_enc,
  276. num_rounds(ctx));
  277. kernel_neon_end();
  278. }
  279. } else {
  280. err = ccm_crypt_fallback(&walk, mac, buf, ctx, false);
  281. }
  282. if (err)
  283. return err;
  284. /* compare calculated auth tag with the stored one */
  285. scatterwalk_map_and_copy(buf, req->src,
  286. req->assoclen + req->cryptlen - authsize,
  287. authsize, 0);
  288. if (crypto_memneq(mac, buf, authsize))
  289. return -EBADMSG;
  290. return 0;
  291. }
  292. static struct aead_alg ccm_aes_alg = {
  293. .base = {
  294. .cra_name = "ccm(aes)",
  295. .cra_driver_name = "ccm-aes-ce",
  296. .cra_priority = 300,
  297. .cra_blocksize = 1,
  298. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  299. .cra_module = THIS_MODULE,
  300. },
  301. .ivsize = AES_BLOCK_SIZE,
  302. .chunksize = AES_BLOCK_SIZE,
  303. .maxauthsize = AES_BLOCK_SIZE,
  304. .setkey = ccm_setkey,
  305. .setauthsize = ccm_setauthsize,
  306. .encrypt = ccm_encrypt,
  307. .decrypt = ccm_decrypt,
  308. };
  309. static int __init aes_mod_init(void)
  310. {
  311. if (!(elf_hwcap & HWCAP_AES))
  312. return -ENODEV;
  313. return crypto_register_aead(&ccm_aes_alg);
  314. }
  315. static void __exit aes_mod_exit(void)
  316. {
  317. crypto_unregister_aead(&ccm_aes_alg);
  318. }
  319. module_init(aes_mod_init);
  320. module_exit(aes_mod_exit);
  321. MODULE_DESCRIPTION("Synchronous AES in CCM mode using ARMv8 Crypto Extensions");
  322. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  323. MODULE_LICENSE("GPL v2");
  324. MODULE_ALIAS_CRYPTO("ccm(aes)");