123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819 |
- /*
- * linux/arch/arm/vfp/vfpmodule.c
- *
- * Copyright (C) 2004 ARM Limited.
- * Written by Deep Blue Solutions Limited.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/types.h>
- #include <linux/cpu.h>
- #include <linux/cpu_pm.h>
- #include <linux/hardirq.h>
- #include <linux/kernel.h>
- #include <linux/notifier.h>
- #include <linux/signal.h>
- #include <linux/sched/signal.h>
- #include <linux/smp.h>
- #include <linux/init.h>
- #include <linux/uaccess.h>
- #include <linux/user.h>
- #include <linux/export.h>
- #include <asm/cp15.h>
- #include <asm/cputype.h>
- #include <asm/system_info.h>
- #include <asm/thread_notify.h>
- #include <asm/vfp.h>
- #include "vfpinstr.h"
- #include "vfp.h"
- /*
- * Our undef handlers (in entry.S)
- */
- asmlinkage void vfp_testing_entry(void);
- asmlinkage void vfp_support_entry(void);
- asmlinkage void vfp_null_entry(void);
- asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
- /*
- * Dual-use variable.
- * Used in startup: set to non-zero if VFP checks fail
- * After startup, holds VFP architecture
- */
- unsigned int VFP_arch;
- /*
- * The pointer to the vfpstate structure of the thread which currently
- * owns the context held in the VFP hardware, or NULL if the hardware
- * context is invalid.
- *
- * For UP, this is sufficient to tell which thread owns the VFP context.
- * However, for SMP, we also need to check the CPU number stored in the
- * saved state too to catch migrations.
- */
- union vfp_state *vfp_current_hw_state[NR_CPUS];
- /*
- * Is 'thread's most up to date state stored in this CPUs hardware?
- * Must be called from non-preemptible context.
- */
- static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
- {
- #ifdef CONFIG_SMP
- if (thread->vfpstate.hard.cpu != cpu)
- return false;
- #endif
- return vfp_current_hw_state[cpu] == &thread->vfpstate;
- }
- /*
- * Force a reload of the VFP context from the thread structure. We do
- * this by ensuring that access to the VFP hardware is disabled, and
- * clear vfp_current_hw_state. Must be called from non-preemptible context.
- */
- static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
- {
- if (vfp_state_in_hw(cpu, thread)) {
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- vfp_current_hw_state[cpu] = NULL;
- }
- #ifdef CONFIG_SMP
- thread->vfpstate.hard.cpu = NR_CPUS;
- #endif
- }
- /*
- * Per-thread VFP initialization.
- */
- static void vfp_thread_flush(struct thread_info *thread)
- {
- union vfp_state *vfp = &thread->vfpstate;
- unsigned int cpu;
- /*
- * Disable VFP to ensure we initialize it first. We must ensure
- * that the modification of vfp_current_hw_state[] and hardware
- * disable are done for the same CPU and without preemption.
- *
- * Do this first to ensure that preemption won't overwrite our
- * state saving should access to the VFP be enabled at this point.
- */
- cpu = get_cpu();
- if (vfp_current_hw_state[cpu] == vfp)
- vfp_current_hw_state[cpu] = NULL;
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- put_cpu();
- memset(vfp, 0, sizeof(union vfp_state));
- vfp->hard.fpexc = FPEXC_EN;
- vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
- #ifdef CONFIG_SMP
- vfp->hard.cpu = NR_CPUS;
- #endif
- }
- static void vfp_thread_exit(struct thread_info *thread)
- {
- /* release case: Per-thread VFP cleanup. */
- union vfp_state *vfp = &thread->vfpstate;
- unsigned int cpu = get_cpu();
- if (vfp_current_hw_state[cpu] == vfp)
- vfp_current_hw_state[cpu] = NULL;
- put_cpu();
- }
- static void vfp_thread_copy(struct thread_info *thread)
- {
- struct thread_info *parent = current_thread_info();
- vfp_sync_hwstate(parent);
- thread->vfpstate = parent->vfpstate;
- #ifdef CONFIG_SMP
- thread->vfpstate.hard.cpu = NR_CPUS;
- #endif
- }
- /*
- * When this function is called with the following 'cmd's, the following
- * is true while this function is being run:
- * THREAD_NOFTIFY_SWTICH:
- * - the previously running thread will not be scheduled onto another CPU.
- * - the next thread to be run (v) will not be running on another CPU.
- * - thread->cpu is the local CPU number
- * - not preemptible as we're called in the middle of a thread switch
- * THREAD_NOTIFY_FLUSH:
- * - the thread (v) will be running on the local CPU, so
- * v === current_thread_info()
- * - thread->cpu is the local CPU number at the time it is accessed,
- * but may change at any time.
- * - we could be preempted if tree preempt rcu is enabled, so
- * it is unsafe to use thread->cpu.
- * THREAD_NOTIFY_EXIT
- * - we could be preempted if tree preempt rcu is enabled, so
- * it is unsafe to use thread->cpu.
- */
- static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
- {
- struct thread_info *thread = v;
- u32 fpexc;
- #ifdef CONFIG_SMP
- unsigned int cpu;
- #endif
- switch (cmd) {
- case THREAD_NOTIFY_SWITCH:
- fpexc = fmrx(FPEXC);
- #ifdef CONFIG_SMP
- cpu = thread->cpu;
- /*
- * On SMP, if VFP is enabled, save the old state in
- * case the thread migrates to a different CPU. The
- * restoring is done lazily.
- */
- if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
- vfp_save_state(vfp_current_hw_state[cpu], fpexc);
- #endif
- /*
- * Always disable VFP so we can lazily save/restore the
- * old state.
- */
- fmxr(FPEXC, fpexc & ~FPEXC_EN);
- break;
- case THREAD_NOTIFY_FLUSH:
- vfp_thread_flush(thread);
- break;
- case THREAD_NOTIFY_EXIT:
- vfp_thread_exit(thread);
- break;
- case THREAD_NOTIFY_COPY:
- vfp_thread_copy(thread);
- break;
- }
- return NOTIFY_DONE;
- }
- static struct notifier_block vfp_notifier_block = {
- .notifier_call = vfp_notifier,
- };
- /*
- * Raise a SIGFPE for the current process.
- * sicode describes the signal being raised.
- */
- static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
- {
- siginfo_t info;
- clear_siginfo(&info);
- info.si_signo = SIGFPE;
- info.si_code = sicode;
- info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
- /*
- * This is the same as NWFPE, because it's not clear what
- * this is used for
- */
- current->thread.error_code = 0;
- current->thread.trap_no = 6;
- send_sig_info(SIGFPE, &info, current);
- }
- static void vfp_panic(char *reason, u32 inst)
- {
- int i;
- pr_err("VFP: Error: %s\n", reason);
- pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
- fmrx(FPEXC), fmrx(FPSCR), inst);
- for (i = 0; i < 32; i += 2)
- pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
- i, vfp_get_float(i), i+1, vfp_get_float(i+1));
- }
- /*
- * Process bitmask of exception conditions.
- */
- static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
- {
- int si_code = 0;
- pr_debug("VFP: raising exceptions %08x\n", exceptions);
- if (exceptions == VFP_EXCEPTION_ERROR) {
- vfp_panic("unhandled bounce", inst);
- vfp_raise_sigfpe(FPE_FLTINV, regs);
- return;
- }
- /*
- * If any of the status flags are set, update the FPSCR.
- * Comparison instructions always return at least one of
- * these flags set.
- */
- if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
- fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
- fpscr |= exceptions;
- fmxr(FPSCR, fpscr);
- #define RAISE(stat,en,sig) \
- if (exceptions & stat && fpscr & en) \
- si_code = sig;
- /*
- * These are arranged in priority order, least to highest.
- */
- RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
- RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
- RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
- RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
- RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
- if (si_code)
- vfp_raise_sigfpe(si_code, regs);
- }
- /*
- * Emulate a VFP instruction.
- */
- static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
- {
- u32 exceptions = VFP_EXCEPTION_ERROR;
- pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
- if (INST_CPRTDO(inst)) {
- if (!INST_CPRT(inst)) {
- /*
- * CPDO
- */
- if (vfp_single(inst)) {
- exceptions = vfp_single_cpdo(inst, fpscr);
- } else {
- exceptions = vfp_double_cpdo(inst, fpscr);
- }
- } else {
- /*
- * A CPRT instruction can not appear in FPINST2, nor
- * can it cause an exception. Therefore, we do not
- * have to emulate it.
- */
- }
- } else {
- /*
- * A CPDT instruction can not appear in FPINST2, nor can
- * it cause an exception. Therefore, we do not have to
- * emulate it.
- */
- }
- return exceptions & ~VFP_NAN_FLAG;
- }
- /*
- * Package up a bounce condition.
- */
- void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
- {
- u32 fpscr, orig_fpscr, fpsid, exceptions;
- pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
- /*
- * At this point, FPEXC can have the following configuration:
- *
- * EX DEX IXE
- * 0 1 x - synchronous exception
- * 1 x 0 - asynchronous exception
- * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
- * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
- * implementation), undefined otherwise
- *
- * Clear various bits and enable access to the VFP so we can
- * handle the bounce.
- */
- fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
- fpsid = fmrx(FPSID);
- orig_fpscr = fpscr = fmrx(FPSCR);
- /*
- * Check for the special VFP subarch 1 and FPSCR.IXE bit case
- */
- if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
- && (fpscr & FPSCR_IXE)) {
- /*
- * Synchronous exception, emulate the trigger instruction
- */
- goto emulate;
- }
- if (fpexc & FPEXC_EX) {
- #ifndef CONFIG_CPU_FEROCEON
- /*
- * Asynchronous exception. The instruction is read from FPINST
- * and the interrupted instruction has to be restarted.
- */
- trigger = fmrx(FPINST);
- regs->ARM_pc -= 4;
- #endif
- } else if (!(fpexc & FPEXC_DEX)) {
- /*
- * Illegal combination of bits. It can be caused by an
- * unallocated VFP instruction but with FPSCR.IXE set and not
- * on VFP subarch 1.
- */
- vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
- goto exit;
- }
- /*
- * Modify fpscr to indicate the number of iterations remaining.
- * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
- * whether FPEXC.VECITR or FPSCR.LEN is used.
- */
- if (fpexc & (FPEXC_EX | FPEXC_VV)) {
- u32 len;
- len = fpexc + (1 << FPEXC_LENGTH_BIT);
- fpscr &= ~FPSCR_LENGTH_MASK;
- fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
- }
- /*
- * Handle the first FP instruction. We used to take note of the
- * FPEXC bounce reason, but this appears to be unreliable.
- * Emulate the bounced instruction instead.
- */
- exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
- if (exceptions)
- vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
- /*
- * If there isn't a second FP instruction, exit now. Note that
- * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
- */
- if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
- goto exit;
- /*
- * The barrier() here prevents fpinst2 being read
- * before the condition above.
- */
- barrier();
- trigger = fmrx(FPINST2);
- emulate:
- exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
- if (exceptions)
- vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
- exit:
- preempt_enable();
- }
- static void vfp_enable(void *unused)
- {
- u32 access;
- BUG_ON(preemptible());
- access = get_copro_access();
- /*
- * Enable full access to VFP (cp10 and cp11)
- */
- set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
- }
- /* Called by platforms on which we want to disable VFP because it may not be
- * present on all CPUs within a SMP complex. Needs to be called prior to
- * vfp_init().
- */
- void vfp_disable(void)
- {
- if (VFP_arch) {
- pr_debug("%s: should be called prior to vfp_init\n", __func__);
- return;
- }
- VFP_arch = 1;
- }
- #ifdef CONFIG_CPU_PM
- static int vfp_pm_suspend(void)
- {
- struct thread_info *ti = current_thread_info();
- u32 fpexc = fmrx(FPEXC);
- /* if vfp is on, then save state for resumption */
- if (fpexc & FPEXC_EN) {
- pr_debug("%s: saving vfp state\n", __func__);
- vfp_save_state(&ti->vfpstate, fpexc);
- /* disable, just in case */
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- } else if (vfp_current_hw_state[ti->cpu]) {
- #ifndef CONFIG_SMP
- fmxr(FPEXC, fpexc | FPEXC_EN);
- vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
- fmxr(FPEXC, fpexc);
- #endif
- }
- /* clear any information we had about last context state */
- vfp_current_hw_state[ti->cpu] = NULL;
- return 0;
- }
- static void vfp_pm_resume(void)
- {
- /* ensure we have access to the vfp */
- vfp_enable(NULL);
- /* and disable it to ensure the next usage restores the state */
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- }
- static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
- void *v)
- {
- switch (cmd) {
- case CPU_PM_ENTER:
- vfp_pm_suspend();
- break;
- case CPU_PM_ENTER_FAILED:
- case CPU_PM_EXIT:
- vfp_pm_resume();
- break;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block vfp_cpu_pm_notifier_block = {
- .notifier_call = vfp_cpu_pm_notifier,
- };
- static void vfp_pm_init(void)
- {
- cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
- }
- #else
- static inline void vfp_pm_init(void) { }
- #endif /* CONFIG_CPU_PM */
- /*
- * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
- * with the hardware state.
- */
- void vfp_sync_hwstate(struct thread_info *thread)
- {
- unsigned int cpu = get_cpu();
- if (vfp_state_in_hw(cpu, thread)) {
- u32 fpexc = fmrx(FPEXC);
- /*
- * Save the last VFP state on this CPU.
- */
- fmxr(FPEXC, fpexc | FPEXC_EN);
- vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
- fmxr(FPEXC, fpexc);
- }
- put_cpu();
- }
- /* Ensure that the thread reloads the hardware VFP state on the next use. */
- void vfp_flush_hwstate(struct thread_info *thread)
- {
- unsigned int cpu = get_cpu();
- vfp_force_reload(cpu, thread);
- put_cpu();
- }
- /*
- * Save the current VFP state into the provided structures and prepare
- * for entry into a new function (signal handler).
- */
- int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
- struct user_vfp_exc *ufp_exc)
- {
- struct thread_info *thread = current_thread_info();
- struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
- /* Ensure that the saved hwstate is up-to-date. */
- vfp_sync_hwstate(thread);
- /*
- * Copy the floating point registers. There can be unused
- * registers see asm/hwcap.h for details.
- */
- memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
- /*
- * Copy the status and control register.
- */
- ufp->fpscr = hwstate->fpscr;
- /*
- * Copy the exception registers.
- */
- ufp_exc->fpexc = hwstate->fpexc;
- ufp_exc->fpinst = hwstate->fpinst;
- ufp_exc->fpinst2 = hwstate->fpinst2;
- /* Ensure that VFP is disabled. */
- vfp_flush_hwstate(thread);
- /*
- * As per the PCS, clear the length and stride bits for function
- * entry.
- */
- hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
- return 0;
- }
- /* Sanitise and restore the current VFP state from the provided structures. */
- int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
- {
- struct thread_info *thread = current_thread_info();
- struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
- unsigned long fpexc;
- /* Disable VFP to avoid corrupting the new thread state. */
- vfp_flush_hwstate(thread);
- /*
- * Copy the floating point registers. There can be unused
- * registers see asm/hwcap.h for details.
- */
- memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
- /*
- * Copy the status and control register.
- */
- hwstate->fpscr = ufp->fpscr;
- /*
- * Sanitise and restore the exception registers.
- */
- fpexc = ufp_exc->fpexc;
- /* Ensure the VFP is enabled. */
- fpexc |= FPEXC_EN;
- /* Ensure FPINST2 is invalid and the exception flag is cleared. */
- fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
- hwstate->fpexc = fpexc;
- hwstate->fpinst = ufp_exc->fpinst;
- hwstate->fpinst2 = ufp_exc->fpinst2;
- return 0;
- }
- /*
- * VFP hardware can lose all context when a CPU goes offline.
- * As we will be running in SMP mode with CPU hotplug, we will save the
- * hardware state at every thread switch. We clear our held state when
- * a CPU has been killed, indicating that the VFP hardware doesn't contain
- * a threads VFP state. When a CPU starts up, we re-enable access to the
- * VFP hardware. The callbacks below are called on the CPU which
- * is being offlined/onlined.
- */
- static int vfp_dying_cpu(unsigned int cpu)
- {
- vfp_current_hw_state[cpu] = NULL;
- return 0;
- }
- static int vfp_starting_cpu(unsigned int unused)
- {
- vfp_enable(NULL);
- return 0;
- }
- void vfp_kmode_exception(void)
- {
- /*
- * If we reach this point, a floating point exception has been raised
- * while running in kernel mode. If the NEON/VFP unit was enabled at the
- * time, it means a VFP instruction has been issued that requires
- * software assistance to complete, something which is not currently
- * supported in kernel mode.
- * If the NEON/VFP unit was disabled, and the location pointed to below
- * is properly preceded by a call to kernel_neon_begin(), something has
- * caused the task to be scheduled out and back in again. In this case,
- * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
- * be helpful in localizing the problem.
- */
- if (fmrx(FPEXC) & FPEXC_EN)
- pr_crit("BUG: unsupported FP instruction in kernel mode\n");
- else
- pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
- }
- #ifdef CONFIG_KERNEL_MODE_NEON
- /*
- * Kernel-side NEON support functions
- */
- void kernel_neon_begin(void)
- {
- struct thread_info *thread = current_thread_info();
- unsigned int cpu;
- u32 fpexc;
- /*
- * Kernel mode NEON is only allowed outside of interrupt context
- * with preemption disabled. This will make sure that the kernel
- * mode NEON register contents never need to be preserved.
- */
- BUG_ON(in_interrupt());
- cpu = get_cpu();
- fpexc = fmrx(FPEXC) | FPEXC_EN;
- fmxr(FPEXC, fpexc);
- /*
- * Save the userland NEON/VFP state. Under UP,
- * the owner could be a task other than 'current'
- */
- if (vfp_state_in_hw(cpu, thread))
- vfp_save_state(&thread->vfpstate, fpexc);
- #ifndef CONFIG_SMP
- else if (vfp_current_hw_state[cpu] != NULL)
- vfp_save_state(vfp_current_hw_state[cpu], fpexc);
- #endif
- vfp_current_hw_state[cpu] = NULL;
- }
- EXPORT_SYMBOL(kernel_neon_begin);
- void kernel_neon_end(void)
- {
- /* Disable the NEON/VFP unit. */
- fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
- put_cpu();
- }
- EXPORT_SYMBOL(kernel_neon_end);
- #endif /* CONFIG_KERNEL_MODE_NEON */
- /*
- * VFP support code initialisation.
- */
- static int __init vfp_init(void)
- {
- unsigned int vfpsid;
- unsigned int cpu_arch = cpu_architecture();
- /*
- * Enable the access to the VFP on all online CPUs so the
- * following test on FPSID will succeed.
- */
- if (cpu_arch >= CPU_ARCH_ARMv6)
- on_each_cpu(vfp_enable, NULL, 1);
- /*
- * First check that there is a VFP that we can use.
- * The handler is already setup to just log calls, so
- * we just need to read the VFPSID register.
- */
- vfp_vector = vfp_testing_entry;
- barrier();
- vfpsid = fmrx(FPSID);
- barrier();
- vfp_vector = vfp_null_entry;
- pr_info("VFP support v0.3: ");
- if (VFP_arch) {
- pr_cont("not present\n");
- return 0;
- /* Extract the architecture on CPUID scheme */
- } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
- VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
- VFP_arch >>= FPSID_ARCH_BIT;
- /*
- * Check for the presence of the Advanced SIMD
- * load/store instructions, integer and single
- * precision floating point operations. Only check
- * for NEON if the hardware has the MVFR registers.
- */
- if (IS_ENABLED(CONFIG_NEON) &&
- (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
- elf_hwcap |= HWCAP_NEON;
- if (IS_ENABLED(CONFIG_VFPv3)) {
- u32 mvfr0 = fmrx(MVFR0);
- if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
- ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
- elf_hwcap |= HWCAP_VFPv3;
- /*
- * Check for VFPv3 D16 and VFPv4 D16. CPUs in
- * this configuration only have 16 x 64bit
- * registers.
- */
- if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
- /* also v4-D16 */
- elf_hwcap |= HWCAP_VFPv3D16;
- else
- elf_hwcap |= HWCAP_VFPD32;
- }
- if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
- elf_hwcap |= HWCAP_VFPv4;
- }
- /* Extract the architecture version on pre-cpuid scheme */
- } else {
- if (vfpsid & FPSID_NODOUBLE) {
- pr_cont("no double precision support\n");
- return 0;
- }
- VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
- }
- cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
- "arm/vfp:starting", vfp_starting_cpu,
- vfp_dying_cpu);
- vfp_vector = vfp_support_entry;
- thread_register_notifier(&vfp_notifier_block);
- vfp_pm_init();
- /*
- * We detected VFP, and the support code is
- * in place; report VFP support to userspace.
- */
- elf_hwcap |= HWCAP_VFP;
- pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
- (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
- VFP_arch,
- (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
- (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
- (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
- return 0;
- }
- core_initcall(vfp_init);
|