123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- /*
- * linux/arch/arm/vfp/vfp.h
- *
- * Copyright (C) 2004 ARM Limited.
- * Written by Deep Blue Solutions Limited.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
- {
- if (shift) {
- if (shift < 32)
- val = val >> shift | ((val << (32 - shift)) != 0);
- else
- val = val != 0;
- }
- return val;
- }
- static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
- {
- if (shift) {
- if (shift < 64)
- val = val >> shift | ((val << (64 - shift)) != 0);
- else
- val = val != 0;
- }
- return val;
- }
- static inline u32 vfp_hi64to32jamming(u64 val)
- {
- u32 v;
- asm(
- "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
- "movcc %0, %R1\n\t"
- "orrcs %0, %R1, #1"
- : "=r" (v) : "r" (val) : "cc");
- return v;
- }
- static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
- {
- asm( "adds %Q0, %Q2, %Q4\n\t"
- "adcs %R0, %R2, %R4\n\t"
- "adcs %Q1, %Q3, %Q5\n\t"
- "adc %R1, %R3, %R5"
- : "=r" (nl), "=r" (nh)
- : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
- : "cc");
- *resh = nh;
- *resl = nl;
- }
- static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
- {
- asm( "subs %Q0, %Q2, %Q4\n\t"
- "sbcs %R0, %R2, %R4\n\t"
- "sbcs %Q1, %Q3, %Q5\n\t"
- "sbc %R1, %R3, %R5\n\t"
- : "=r" (nl), "=r" (nh)
- : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
- : "cc");
- *resh = nh;
- *resl = nl;
- }
- static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
- {
- u32 nh, nl, mh, ml;
- u64 rh, rma, rmb, rl;
- nl = n;
- ml = m;
- rl = (u64)nl * ml;
- nh = n >> 32;
- rma = (u64)nh * ml;
- mh = m >> 32;
- rmb = (u64)nl * mh;
- rma += rmb;
- rh = (u64)nh * mh;
- rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
- rma <<= 32;
- rl += rma;
- rh += (rl < rma);
- *resl = rl;
- *resh = rh;
- }
- static inline void shift64left(u64 *resh, u64 *resl, u64 n)
- {
- *resh = n >> 63;
- *resl = n << 1;
- }
- static inline u64 vfp_hi64multiply64(u64 n, u64 m)
- {
- u64 rh, rl;
- mul64to128(&rh, &rl, n, m);
- return rh | (rl != 0);
- }
- static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
- {
- u64 mh, ml, remh, reml, termh, terml, z;
- if (nh >= m)
- return ~0ULL;
- mh = m >> 32;
- if (mh << 32 <= nh) {
- z = 0xffffffff00000000ULL;
- } else {
- z = nh;
- do_div(z, mh);
- z <<= 32;
- }
- mul64to128(&termh, &terml, m, z);
- sub128(&remh, &reml, nh, nl, termh, terml);
- ml = m << 32;
- while ((s64)remh < 0) {
- z -= 0x100000000ULL;
- add128(&remh, &reml, remh, reml, mh, ml);
- }
- remh = (remh << 32) | (reml >> 32);
- if (mh << 32 <= remh) {
- z |= 0xffffffff;
- } else {
- do_div(remh, mh);
- z |= remh;
- }
- return z;
- }
- /*
- * Operations on unpacked elements
- */
- #define vfp_sign_negate(sign) (sign ^ 0x8000)
- /*
- * Single-precision
- */
- struct vfp_single {
- s16 exponent;
- u16 sign;
- u32 significand;
- };
- asmlinkage s32 vfp_get_float(unsigned int reg);
- asmlinkage void vfp_put_float(s32 val, unsigned int reg);
- /*
- * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
- * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
- * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
- * which are not propagated to the float upon packing.
- */
- #define VFP_SINGLE_MANTISSA_BITS (23)
- #define VFP_SINGLE_EXPONENT_BITS (8)
- #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
- #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
- /*
- * The bit in an unpacked float which indicates that it is a quiet NaN
- */
- #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
- /*
- * Operations on packed single-precision numbers
- */
- #define vfp_single_packed_sign(v) ((v) & 0x80000000)
- #define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
- #define vfp_single_packed_abs(v) ((v) & ~0x80000000)
- #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
- #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
- /*
- * Unpack a single-precision float. Note that this returns the magnitude
- * of the single-precision float mantissa with the 1. if necessary,
- * aligned to bit 30.
- */
- static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
- {
- u32 significand;
- s->sign = vfp_single_packed_sign(val) >> 16,
- s->exponent = vfp_single_packed_exponent(val);
- significand = (u32) val;
- significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
- if (s->exponent && s->exponent != 255)
- significand |= 0x40000000;
- s->significand = significand;
- }
- /*
- * Re-pack a single-precision float. This assumes that the float is
- * already normalised such that the MSB is bit 30, _not_ bit 31.
- */
- static inline s32 vfp_single_pack(struct vfp_single *s)
- {
- u32 val;
- val = (s->sign << 16) +
- (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
- (s->significand >> VFP_SINGLE_LOW_BITS);
- return (s32)val;
- }
- #define VFP_NUMBER (1<<0)
- #define VFP_ZERO (1<<1)
- #define VFP_DENORMAL (1<<2)
- #define VFP_INFINITY (1<<3)
- #define VFP_NAN (1<<4)
- #define VFP_NAN_SIGNAL (1<<5)
- #define VFP_QNAN (VFP_NAN)
- #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
- static inline int vfp_single_type(struct vfp_single *s)
- {
- int type = VFP_NUMBER;
- if (s->exponent == 255) {
- if (s->significand == 0)
- type = VFP_INFINITY;
- else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
- type = VFP_QNAN;
- else
- type = VFP_SNAN;
- } else if (s->exponent == 0) {
- if (s->significand == 0)
- type |= VFP_ZERO;
- else
- type |= VFP_DENORMAL;
- }
- return type;
- }
- #ifndef DEBUG
- #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
- u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
- #else
- u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
- #endif
- /*
- * Double-precision
- */
- struct vfp_double {
- s16 exponent;
- u16 sign;
- u64 significand;
- };
- /*
- * VFP_REG_ZERO is a special register number for vfp_get_double
- * which returns (double)0.0. This is useful for the compare with
- * zero instructions.
- */
- #ifdef CONFIG_VFPv3
- #define VFP_REG_ZERO 32
- #else
- #define VFP_REG_ZERO 16
- #endif
- asmlinkage u64 vfp_get_double(unsigned int reg);
- asmlinkage void vfp_put_double(u64 val, unsigned int reg);
- #define VFP_DOUBLE_MANTISSA_BITS (52)
- #define VFP_DOUBLE_EXPONENT_BITS (11)
- #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
- #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
- /*
- * The bit in an unpacked double which indicates that it is a quiet NaN
- */
- #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
- /*
- * Operations on packed single-precision numbers
- */
- #define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
- #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
- #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
- #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
- #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
- /*
- * Unpack a double-precision float. Note that this returns the magnitude
- * of the double-precision float mantissa with the 1. if necessary,
- * aligned to bit 62.
- */
- static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
- {
- u64 significand;
- s->sign = vfp_double_packed_sign(val) >> 48;
- s->exponent = vfp_double_packed_exponent(val);
- significand = (u64) val;
- significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
- if (s->exponent && s->exponent != 2047)
- significand |= (1ULL << 62);
- s->significand = significand;
- }
- /*
- * Re-pack a double-precision float. This assumes that the float is
- * already normalised such that the MSB is bit 30, _not_ bit 31.
- */
- static inline s64 vfp_double_pack(struct vfp_double *s)
- {
- u64 val;
- val = ((u64)s->sign << 48) +
- ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
- (s->significand >> VFP_DOUBLE_LOW_BITS);
- return (s64)val;
- }
- static inline int vfp_double_type(struct vfp_double *s)
- {
- int type = VFP_NUMBER;
- if (s->exponent == 2047) {
- if (s->significand == 0)
- type = VFP_INFINITY;
- else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
- type = VFP_QNAN;
- else
- type = VFP_SNAN;
- } else if (s->exponent == 0) {
- if (s->significand == 0)
- type |= VFP_ZERO;
- else
- type |= VFP_DENORMAL;
- }
- return type;
- }
- u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
- u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
- /*
- * A special flag to tell the normalisation code not to normalise.
- */
- #define VFP_NAN_FLAG 0x100
- /*
- * A bit pattern used to indicate the initial (unset) value of the
- * exception mask, in case nothing handles an instruction. This
- * doesn't include the NAN flag, which get masked out before
- * we check for an error.
- */
- #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
- /*
- * A flag to tell vfp instruction type.
- * OP_SCALAR - this operation always operates in scalar mode
- * OP_SD - the instruction exceptionally writes to a single precision result.
- * OP_DD - the instruction exceptionally writes to a double precision result.
- * OP_SM - the instruction exceptionally reads from a single precision operand.
- */
- #define OP_SCALAR (1 << 0)
- #define OP_SD (1 << 1)
- #define OP_DD (1 << 1)
- #define OP_SM (1 << 2)
- struct op {
- u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
- u32 flags;
- };
- asmlinkage void vfp_save_state(void *location, u32 fpexc);
|