tlb.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. * TLB Management (flush/create/diagnostics) for ARC700
  3. *
  4. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * vineetg: Aug 2011
  11. * -Reintroduce duplicate PD fixup - some customer chips still have the issue
  12. *
  13. * vineetg: May 2011
  14. * -No need to flush_cache_page( ) for each call to update_mmu_cache()
  15. * some of the LMBench tests improved amazingly
  16. * = page-fault thrice as fast (75 usec to 28 usec)
  17. * = mmap twice as fast (9.6 msec to 4.6 msec),
  18. * = fork (5.3 msec to 3.7 msec)
  19. *
  20. * vineetg: April 2011 :
  21. * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  22. * helps avoid a shift when preparing PD0 from PTE
  23. *
  24. * vineetg: April 2011 : Preparing for MMU V3
  25. * -MMU v2/v3 BCRs decoded differently
  26. * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  27. * -tlb_entry_erase( ) can be void
  28. * -local_flush_tlb_range( ):
  29. * = need not "ceil" @end
  30. * = walks MMU only if range spans < 32 entries, as opposed to 256
  31. *
  32. * Vineetg: Sept 10th 2008
  33. * -Changes related to MMU v2 (Rel 4.8)
  34. *
  35. * Vineetg: Aug 29th 2008
  36. * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  37. * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  38. * it fails. Thus need to load it with ANY valid value before invoking
  39. * TLBIVUTLB cmd
  40. *
  41. * Vineetg: Aug 21th 2008:
  42. * -Reduced the duration of IRQ lockouts in TLB Flush routines
  43. * -Multiple copies of TLB erase code seperated into a "single" function
  44. * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  45. * in interrupt-safe region.
  46. *
  47. * Vineetg: April 23rd Bug #93131
  48. * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
  49. * flush is more than the size of TLB itself.
  50. *
  51. * Rahul Trivedi : Codito Technologies 2004
  52. */
  53. #include <linux/module.h>
  54. #include <linux/bug.h>
  55. #include <linux/mm_types.h>
  56. #include <asm/arcregs.h>
  57. #include <asm/setup.h>
  58. #include <asm/mmu_context.h>
  59. #include <asm/mmu.h>
  60. /* Need for ARC MMU v2
  61. *
  62. * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  63. * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  64. * map into same set, there would be contention for the 2 ways causing severe
  65. * Thrashing.
  66. *
  67. * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  68. * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  69. * Given this, the thrasing problem should never happen because once the 3
  70. * J-TLB entries are created (even though 3rd will knock out one of the prev
  71. * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  72. *
  73. * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  74. * This is a simple design for keeping them in sync. So what do we do?
  75. * The solution which James came up was pretty neat. It utilised the assoc
  76. * of uTLBs by not invalidating always but only when absolutely necessary.
  77. *
  78. * - Existing TLB commands work as before
  79. * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  80. * - New command (TLBIVUTLB) to invalidate uTLBs.
  81. *
  82. * The uTLBs need only be invalidated when pages are being removed from the
  83. * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  84. * as a result of a miss, the removed entry is still allowed to exist in the
  85. * uTLBs as it is still valid and present in the OS page table. This allows the
  86. * full associativity of the uTLBs to hide the limited associativity of the main
  87. * TLB.
  88. *
  89. * During a miss handler, the new "TLBWriteNI" command is used to load
  90. * entries without clearing the uTLBs.
  91. *
  92. * When the OS page table is updated, TLB entries that may be associated with a
  93. * removed page are removed (flushed) from the TLB using TLBWrite. In this
  94. * circumstance, the uTLBs must also be cleared. This is done by using the
  95. * existing TLBWrite command. An explicit IVUTLB is also required for those
  96. * corner cases when TLBWrite was not executed at all because the corresp
  97. * J-TLB entry got evicted/replaced.
  98. */
  99. /* A copy of the ASID from the PID reg is kept in asid_cache */
  100. DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
  101. static int __read_mostly pae_exists;
  102. /*
  103. * Utility Routine to erase a J-TLB entry
  104. * Caller needs to setup Index Reg (manually or via getIndex)
  105. */
  106. static inline void __tlb_entry_erase(void)
  107. {
  108. write_aux_reg(ARC_REG_TLBPD1, 0);
  109. if (is_pae40_enabled())
  110. write_aux_reg(ARC_REG_TLBPD1HI, 0);
  111. write_aux_reg(ARC_REG_TLBPD0, 0);
  112. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  113. }
  114. #if (CONFIG_ARC_MMU_VER < 4)
  115. static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
  116. {
  117. unsigned int idx;
  118. write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
  119. write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
  120. idx = read_aux_reg(ARC_REG_TLBINDEX);
  121. return idx;
  122. }
  123. static void tlb_entry_erase(unsigned int vaddr_n_asid)
  124. {
  125. unsigned int idx;
  126. /* Locate the TLB entry for this vaddr + ASID */
  127. idx = tlb_entry_lkup(vaddr_n_asid);
  128. /* No error means entry found, zero it out */
  129. if (likely(!(idx & TLB_LKUP_ERR))) {
  130. __tlb_entry_erase();
  131. } else {
  132. /* Duplicate entry error */
  133. WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
  134. vaddr_n_asid);
  135. }
  136. }
  137. /****************************************************************************
  138. * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
  139. *
  140. * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
  141. *
  142. * utlb_invalidate ( )
  143. * -For v2 MMU calls Flush uTLB Cmd
  144. * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
  145. * This is because in v1 TLBWrite itself invalidate uTLBs
  146. ***************************************************************************/
  147. static void utlb_invalidate(void)
  148. {
  149. #if (CONFIG_ARC_MMU_VER >= 2)
  150. #if (CONFIG_ARC_MMU_VER == 2)
  151. /* MMU v2 introduced the uTLB Flush command.
  152. * There was however an obscure hardware bug, where uTLB flush would
  153. * fail when a prior probe for J-TLB (both totally unrelated) would
  154. * return lkup err - because the entry didn't exist in MMU.
  155. * The Workround was to set Index reg with some valid value, prior to
  156. * flush. This was fixed in MMU v3 hence not needed any more
  157. */
  158. unsigned int idx;
  159. /* make sure INDEX Reg is valid */
  160. idx = read_aux_reg(ARC_REG_TLBINDEX);
  161. /* If not write some dummy val */
  162. if (unlikely(idx & TLB_LKUP_ERR))
  163. write_aux_reg(ARC_REG_TLBINDEX, 0xa);
  164. #endif
  165. write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
  166. #endif
  167. }
  168. static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
  169. {
  170. unsigned int idx;
  171. /*
  172. * First verify if entry for this vaddr+ASID already exists
  173. * This also sets up PD0 (vaddr, ASID..) for final commit
  174. */
  175. idx = tlb_entry_lkup(pd0);
  176. /*
  177. * If Not already present get a free slot from MMU.
  178. * Otherwise, Probe would have located the entry and set INDEX Reg
  179. * with existing location. This will cause Write CMD to over-write
  180. * existing entry with new PD0 and PD1
  181. */
  182. if (likely(idx & TLB_LKUP_ERR))
  183. write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
  184. /* setup the other half of TLB entry (pfn, rwx..) */
  185. write_aux_reg(ARC_REG_TLBPD1, pd1);
  186. /*
  187. * Commit the Entry to MMU
  188. * It doesn't sound safe to use the TLBWriteNI cmd here
  189. * which doesn't flush uTLBs. I'd rather be safe than sorry.
  190. */
  191. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  192. }
  193. #else /* CONFIG_ARC_MMU_VER >= 4) */
  194. static void utlb_invalidate(void)
  195. {
  196. /* No need since uTLB is always in sync with JTLB */
  197. }
  198. static void tlb_entry_erase(unsigned int vaddr_n_asid)
  199. {
  200. write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
  201. write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
  202. }
  203. static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
  204. {
  205. write_aux_reg(ARC_REG_TLBPD0, pd0);
  206. write_aux_reg(ARC_REG_TLBPD1, pd1);
  207. if (is_pae40_enabled())
  208. write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
  209. write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
  210. }
  211. #endif
  212. /*
  213. * Un-conditionally (without lookup) erase the entire MMU contents
  214. */
  215. noinline void local_flush_tlb_all(void)
  216. {
  217. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  218. unsigned long flags;
  219. unsigned int entry;
  220. int num_tlb = mmu->sets * mmu->ways;
  221. local_irq_save(flags);
  222. /* Load PD0 and PD1 with template for a Blank Entry */
  223. write_aux_reg(ARC_REG_TLBPD1, 0);
  224. if (is_pae40_enabled())
  225. write_aux_reg(ARC_REG_TLBPD1HI, 0);
  226. write_aux_reg(ARC_REG_TLBPD0, 0);
  227. for (entry = 0; entry < num_tlb; entry++) {
  228. /* write this entry to the TLB */
  229. write_aux_reg(ARC_REG_TLBINDEX, entry);
  230. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  231. }
  232. if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
  233. const int stlb_idx = 0x800;
  234. /* Blank sTLB entry */
  235. write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
  236. for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
  237. write_aux_reg(ARC_REG_TLBINDEX, entry);
  238. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  239. }
  240. }
  241. utlb_invalidate();
  242. local_irq_restore(flags);
  243. }
  244. /*
  245. * Flush the entrie MM for userland. The fastest way is to move to Next ASID
  246. */
  247. noinline void local_flush_tlb_mm(struct mm_struct *mm)
  248. {
  249. /*
  250. * Small optimisation courtesy IA64
  251. * flush_mm called during fork,exit,munmap etc, multiple times as well.
  252. * Only for fork( ) do we need to move parent to a new MMU ctxt,
  253. * all other cases are NOPs, hence this check.
  254. */
  255. if (atomic_read(&mm->mm_users) == 0)
  256. return;
  257. /*
  258. * - Move to a new ASID, but only if the mm is still wired in
  259. * (Android Binder ended up calling this for vma->mm != tsk->mm,
  260. * causing h/w - s/w ASID to get out of sync)
  261. * - Also get_new_mmu_context() new implementation allocates a new
  262. * ASID only if it is not allocated already - so unallocate first
  263. */
  264. destroy_context(mm);
  265. if (current->mm == mm)
  266. get_new_mmu_context(mm);
  267. }
  268. /*
  269. * Flush a Range of TLB entries for userland.
  270. * @start is inclusive, while @end is exclusive
  271. * Difference between this and Kernel Range Flush is
  272. * -Here the fastest way (if range is too large) is to move to next ASID
  273. * without doing any explicit Shootdown
  274. * -In case of kernel Flush, entry has to be shot down explictly
  275. */
  276. void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  277. unsigned long end)
  278. {
  279. const unsigned int cpu = smp_processor_id();
  280. unsigned long flags;
  281. /* If range @start to @end is more than 32 TLB entries deep,
  282. * its better to move to a new ASID rather than searching for
  283. * individual entries and then shooting them down
  284. *
  285. * The calc above is rough, doesn't account for unaligned parts,
  286. * since this is heuristics based anyways
  287. */
  288. if (unlikely((end - start) >= PAGE_SIZE * 32)) {
  289. local_flush_tlb_mm(vma->vm_mm);
  290. return;
  291. }
  292. /*
  293. * @start moved to page start: this alone suffices for checking
  294. * loop end condition below, w/o need for aligning @end to end
  295. * e.g. 2000 to 4001 will anyhow loop twice
  296. */
  297. start &= PAGE_MASK;
  298. local_irq_save(flags);
  299. if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
  300. while (start < end) {
  301. tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
  302. start += PAGE_SIZE;
  303. }
  304. }
  305. utlb_invalidate();
  306. local_irq_restore(flags);
  307. }
  308. /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
  309. * @start, @end interpreted as kvaddr
  310. * Interestingly, shared TLB entries can also be flushed using just
  311. * @start,@end alone (interpreted as user vaddr), although technically SASID
  312. * is also needed. However our smart TLbProbe lookup takes care of that.
  313. */
  314. void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  315. {
  316. unsigned long flags;
  317. /* exactly same as above, except for TLB entry not taking ASID */
  318. if (unlikely((end - start) >= PAGE_SIZE * 32)) {
  319. local_flush_tlb_all();
  320. return;
  321. }
  322. start &= PAGE_MASK;
  323. local_irq_save(flags);
  324. while (start < end) {
  325. tlb_entry_erase(start);
  326. start += PAGE_SIZE;
  327. }
  328. utlb_invalidate();
  329. local_irq_restore(flags);
  330. }
  331. /*
  332. * Delete TLB entry in MMU for a given page (??? address)
  333. * NOTE One TLB entry contains translation for single PAGE
  334. */
  335. void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  336. {
  337. const unsigned int cpu = smp_processor_id();
  338. unsigned long flags;
  339. /* Note that it is critical that interrupts are DISABLED between
  340. * checking the ASID and using it flush the TLB entry
  341. */
  342. local_irq_save(flags);
  343. if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
  344. tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
  345. utlb_invalidate();
  346. }
  347. local_irq_restore(flags);
  348. }
  349. #ifdef CONFIG_SMP
  350. struct tlb_args {
  351. struct vm_area_struct *ta_vma;
  352. unsigned long ta_start;
  353. unsigned long ta_end;
  354. };
  355. static inline void ipi_flush_tlb_page(void *arg)
  356. {
  357. struct tlb_args *ta = arg;
  358. local_flush_tlb_page(ta->ta_vma, ta->ta_start);
  359. }
  360. static inline void ipi_flush_tlb_range(void *arg)
  361. {
  362. struct tlb_args *ta = arg;
  363. local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
  364. }
  365. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  366. static inline void ipi_flush_pmd_tlb_range(void *arg)
  367. {
  368. struct tlb_args *ta = arg;
  369. local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
  370. }
  371. #endif
  372. static inline void ipi_flush_tlb_kernel_range(void *arg)
  373. {
  374. struct tlb_args *ta = (struct tlb_args *)arg;
  375. local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
  376. }
  377. void flush_tlb_all(void)
  378. {
  379. on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
  380. }
  381. void flush_tlb_mm(struct mm_struct *mm)
  382. {
  383. on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
  384. mm, 1);
  385. }
  386. void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
  387. {
  388. struct tlb_args ta = {
  389. .ta_vma = vma,
  390. .ta_start = uaddr
  391. };
  392. on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
  393. }
  394. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  395. unsigned long end)
  396. {
  397. struct tlb_args ta = {
  398. .ta_vma = vma,
  399. .ta_start = start,
  400. .ta_end = end
  401. };
  402. on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
  403. }
  404. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  405. void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
  406. unsigned long end)
  407. {
  408. struct tlb_args ta = {
  409. .ta_vma = vma,
  410. .ta_start = start,
  411. .ta_end = end
  412. };
  413. on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
  414. }
  415. #endif
  416. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  417. {
  418. struct tlb_args ta = {
  419. .ta_start = start,
  420. .ta_end = end
  421. };
  422. on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
  423. }
  424. #endif
  425. /*
  426. * Routine to create a TLB entry
  427. */
  428. void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
  429. {
  430. unsigned long flags;
  431. unsigned int asid_or_sasid, rwx;
  432. unsigned long pd0;
  433. pte_t pd1;
  434. /*
  435. * create_tlb() assumes that current->mm == vma->mm, since
  436. * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
  437. * -completes the lazy write to SASID reg (again valid for curr tsk)
  438. *
  439. * Removing the assumption involves
  440. * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
  441. * -Fix the TLB paranoid debug code to not trigger false negatives.
  442. * -More importantly it makes this handler inconsistent with fast-path
  443. * TLB Refill handler which always deals with "current"
  444. *
  445. * Lets see the use cases when current->mm != vma->mm and we land here
  446. * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
  447. * Here VM wants to pre-install a TLB entry for user stack while
  448. * current->mm still points to pre-execve mm (hence the condition).
  449. * However the stack vaddr is soon relocated (randomization) and
  450. * move_page_tables() tries to undo that TLB entry.
  451. * Thus not creating TLB entry is not any worse.
  452. *
  453. * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
  454. * breakpoint in debugged task. Not creating a TLB now is not
  455. * performance critical.
  456. *
  457. * Both the cases above are not good enough for code churn.
  458. */
  459. if (current->active_mm != vma->vm_mm)
  460. return;
  461. local_irq_save(flags);
  462. tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
  463. vaddr &= PAGE_MASK;
  464. /* update this PTE credentials */
  465. pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
  466. /* Create HW TLB(PD0,PD1) from PTE */
  467. /* ASID for this task */
  468. asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
  469. pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
  470. /*
  471. * ARC MMU provides fully orthogonal access bits for K/U mode,
  472. * however Linux only saves 1 set to save PTE real-estate
  473. * Here we convert 3 PTE bits into 6 MMU bits:
  474. * -Kernel only entries have Kr Kw Kx 0 0 0
  475. * -User entries have mirrored K and U bits
  476. */
  477. rwx = pte_val(*ptep) & PTE_BITS_RWX;
  478. if (pte_val(*ptep) & _PAGE_GLOBAL)
  479. rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
  480. else
  481. rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
  482. pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
  483. tlb_entry_insert(pd0, pd1);
  484. local_irq_restore(flags);
  485. }
  486. /*
  487. * Called at the end of pagefault, for a userspace mapped page
  488. * -pre-install the corresponding TLB entry into MMU
  489. * -Finalize the delayed D-cache flush of kernel mapping of page due to
  490. * flush_dcache_page(), copy_user_page()
  491. *
  492. * Note that flush (when done) involves both WBACK - so physical page is
  493. * in sync as well as INV - so any non-congruent aliases don't remain
  494. */
  495. void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
  496. pte_t *ptep)
  497. {
  498. unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
  499. phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
  500. struct page *page = pfn_to_page(pte_pfn(*ptep));
  501. create_tlb(vma, vaddr, ptep);
  502. if (page == ZERO_PAGE(0)) {
  503. return;
  504. }
  505. /*
  506. * Exec page : Independent of aliasing/page-color considerations,
  507. * since icache doesn't snoop dcache on ARC, any dirty
  508. * K-mapping of a code page needs to be wback+inv so that
  509. * icache fetch by userspace sees code correctly.
  510. * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
  511. * so userspace sees the right data.
  512. * (Avoids the flush for Non-exec + congruent mapping case)
  513. */
  514. if ((vma->vm_flags & VM_EXEC) ||
  515. addr_not_cache_congruent(paddr, vaddr)) {
  516. int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
  517. if (dirty) {
  518. /* wback + inv dcache lines (K-mapping) */
  519. __flush_dcache_page(paddr, paddr);
  520. /* invalidate any existing icache lines (U-mapping) */
  521. if (vma->vm_flags & VM_EXEC)
  522. __inv_icache_page(paddr, vaddr);
  523. }
  524. }
  525. }
  526. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  527. /*
  528. * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
  529. * support.
  530. *
  531. * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
  532. * new bit "SZ" in TLB page descriptor to distinguish between them.
  533. * Super Page size is configurable in hardware (4K to 16M), but fixed once
  534. * RTL builds.
  535. *
  536. * The exact THP size a Linx configuration will support is a function of:
  537. * - MMU page size (typical 8K, RTL fixed)
  538. * - software page walker address split between PGD:PTE:PFN (typical
  539. * 11:8:13, but can be changed with 1 line)
  540. * So for above default, THP size supported is 8K * (2^8) = 2M
  541. *
  542. * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
  543. * reduces to 1 level (as PTE is folded into PGD and canonically referred
  544. * to as PMD).
  545. * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
  546. */
  547. void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
  548. pmd_t *pmd)
  549. {
  550. pte_t pte = __pte(pmd_val(*pmd));
  551. update_mmu_cache(vma, addr, &pte);
  552. }
  553. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  554. pgtable_t pgtable)
  555. {
  556. struct list_head *lh = (struct list_head *) pgtable;
  557. assert_spin_locked(&mm->page_table_lock);
  558. /* FIFO */
  559. if (!pmd_huge_pte(mm, pmdp))
  560. INIT_LIST_HEAD(lh);
  561. else
  562. list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
  563. pmd_huge_pte(mm, pmdp) = pgtable;
  564. }
  565. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
  566. {
  567. struct list_head *lh;
  568. pgtable_t pgtable;
  569. assert_spin_locked(&mm->page_table_lock);
  570. pgtable = pmd_huge_pte(mm, pmdp);
  571. lh = (struct list_head *) pgtable;
  572. if (list_empty(lh))
  573. pmd_huge_pte(mm, pmdp) = NULL;
  574. else {
  575. pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
  576. list_del(lh);
  577. }
  578. pte_val(pgtable[0]) = 0;
  579. pte_val(pgtable[1]) = 0;
  580. return pgtable;
  581. }
  582. void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
  583. unsigned long end)
  584. {
  585. unsigned int cpu;
  586. unsigned long flags;
  587. local_irq_save(flags);
  588. cpu = smp_processor_id();
  589. if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
  590. unsigned int asid = hw_pid(vma->vm_mm, cpu);
  591. /* No need to loop here: this will always be for 1 Huge Page */
  592. tlb_entry_erase(start | _PAGE_HW_SZ | asid);
  593. }
  594. local_irq_restore(flags);
  595. }
  596. #endif
  597. /* Read the Cache Build Confuration Registers, Decode them and save into
  598. * the cpuinfo structure for later use.
  599. * No Validation is done here, simply read/convert the BCRs
  600. */
  601. void read_decode_mmu_bcr(void)
  602. {
  603. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  604. unsigned int tmp;
  605. struct bcr_mmu_1_2 {
  606. #ifdef CONFIG_CPU_BIG_ENDIAN
  607. unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
  608. #else
  609. unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
  610. #endif
  611. } *mmu2;
  612. struct bcr_mmu_3 {
  613. #ifdef CONFIG_CPU_BIG_ENDIAN
  614. unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
  615. u_itlb:4, u_dtlb:4;
  616. #else
  617. unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
  618. ways:4, ver:8;
  619. #endif
  620. } *mmu3;
  621. struct bcr_mmu_4 {
  622. #ifdef CONFIG_CPU_BIG_ENDIAN
  623. unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
  624. n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
  625. #else
  626. /* DTLB ITLB JES JE JA */
  627. unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
  628. pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
  629. #endif
  630. } *mmu4;
  631. tmp = read_aux_reg(ARC_REG_MMU_BCR);
  632. mmu->ver = (tmp >> 24);
  633. if (is_isa_arcompact()) {
  634. if (mmu->ver <= 2) {
  635. mmu2 = (struct bcr_mmu_1_2 *)&tmp;
  636. mmu->pg_sz_k = TO_KB(0x2000);
  637. mmu->sets = 1 << mmu2->sets;
  638. mmu->ways = 1 << mmu2->ways;
  639. mmu->u_dtlb = mmu2->u_dtlb;
  640. mmu->u_itlb = mmu2->u_itlb;
  641. } else {
  642. mmu3 = (struct bcr_mmu_3 *)&tmp;
  643. mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
  644. mmu->sets = 1 << mmu3->sets;
  645. mmu->ways = 1 << mmu3->ways;
  646. mmu->u_dtlb = mmu3->u_dtlb;
  647. mmu->u_itlb = mmu3->u_itlb;
  648. mmu->sasid = mmu3->sasid;
  649. }
  650. } else {
  651. mmu4 = (struct bcr_mmu_4 *)&tmp;
  652. mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
  653. mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
  654. mmu->sets = 64 << mmu4->n_entry;
  655. mmu->ways = mmu4->n_ways * 2;
  656. mmu->u_dtlb = mmu4->u_dtlb * 4;
  657. mmu->u_itlb = mmu4->u_itlb * 4;
  658. mmu->sasid = mmu4->sasid;
  659. pae_exists = mmu->pae = mmu4->pae;
  660. }
  661. }
  662. char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
  663. {
  664. int n = 0;
  665. struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
  666. char super_pg[64] = "";
  667. if (p_mmu->s_pg_sz_m)
  668. scnprintf(super_pg, 64, "%dM Super Page %s",
  669. p_mmu->s_pg_sz_m,
  670. IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
  671. n += scnprintf(buf + n, len - n,
  672. "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
  673. p_mmu->ver, p_mmu->pg_sz_k, super_pg,
  674. p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
  675. p_mmu->u_dtlb, p_mmu->u_itlb,
  676. IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
  677. return buf;
  678. }
  679. int pae40_exist_but_not_enab(void)
  680. {
  681. return pae_exists && !is_pae40_enabled();
  682. }
  683. void arc_mmu_init(void)
  684. {
  685. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  686. char str[256];
  687. int compat = 0;
  688. pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
  689. /*
  690. * Can't be done in processor.h due to header include depenedencies
  691. */
  692. BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
  693. /*
  694. * stack top size sanity check,
  695. * Can't be done in processor.h due to header include depenedencies
  696. */
  697. BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
  698. /*
  699. * Ensure that MMU features assumed by kernel exist in hardware.
  700. * For older ARC700 cpus, it has to be exact match, since the MMU
  701. * revisions were not backwards compatible (MMUv3 TLB layout changed
  702. * so even if kernel for v2 didn't use any new cmds of v3, it would
  703. * still not work.
  704. * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
  705. * (will run older software).
  706. */
  707. if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
  708. compat = 1;
  709. else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
  710. compat = 1;
  711. if (!compat) {
  712. panic("MMU ver %d doesn't match kernel built for %d...\n",
  713. mmu->ver, CONFIG_ARC_MMU_VER);
  714. }
  715. if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
  716. panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
  717. if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
  718. mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
  719. panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
  720. (unsigned long)TO_MB(HPAGE_PMD_SIZE));
  721. if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
  722. panic("Hardware doesn't support PAE40\n");
  723. /* Enable the MMU */
  724. write_aux_reg(ARC_REG_PID, MMU_ENABLE);
  725. /* In smp we use this reg for interrupt 1 scratch */
  726. #ifndef CONFIG_SMP
  727. /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
  728. write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
  729. #endif
  730. if (pae40_exist_but_not_enab())
  731. write_aux_reg(ARC_REG_TLBPD1HI, 0);
  732. }
  733. /*
  734. * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
  735. * The mapping is Column-first.
  736. * --------------------- -----------
  737. * |way0|way1|way2|way3| |way0|way1|
  738. * --------------------- -----------
  739. * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
  740. * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
  741. * ~ ~ ~ ~
  742. * [set127] | 508| 509| 510| 511| | 254| 255|
  743. * --------------------- -----------
  744. * For normal operations we don't(must not) care how above works since
  745. * MMU cmd getIndex(vaddr) abstracts that out.
  746. * However for walking WAYS of a SET, we need to know this
  747. */
  748. #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
  749. /* Handling of Duplicate PD (TLB entry) in MMU.
  750. * -Could be due to buggy customer tapeouts or obscure kernel bugs
  751. * -MMU complaints not at the time of duplicate PD installation, but at the
  752. * time of lookup matching multiple ways.
  753. * -Ideally these should never happen - but if they do - workaround by deleting
  754. * the duplicate one.
  755. * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
  756. */
  757. volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
  758. void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
  759. struct pt_regs *regs)
  760. {
  761. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  762. unsigned long flags;
  763. int set, n_ways = mmu->ways;
  764. n_ways = min(n_ways, 4);
  765. BUG_ON(mmu->ways > 4);
  766. local_irq_save(flags);
  767. /* loop thru all sets of TLB */
  768. for (set = 0; set < mmu->sets; set++) {
  769. int is_valid, way;
  770. unsigned int pd0[4];
  771. /* read out all the ways of current set */
  772. for (way = 0, is_valid = 0; way < n_ways; way++) {
  773. write_aux_reg(ARC_REG_TLBINDEX,
  774. SET_WAY_TO_IDX(mmu, set, way));
  775. write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
  776. pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
  777. is_valid |= pd0[way] & _PAGE_PRESENT;
  778. pd0[way] &= PAGE_MASK;
  779. }
  780. /* If all the WAYS in SET are empty, skip to next SET */
  781. if (!is_valid)
  782. continue;
  783. /* Scan the set for duplicate ways: needs a nested loop */
  784. for (way = 0; way < n_ways - 1; way++) {
  785. int n;
  786. if (!pd0[way])
  787. continue;
  788. for (n = way + 1; n < n_ways; n++) {
  789. if (pd0[way] != pd0[n])
  790. continue;
  791. if (!dup_pd_silent)
  792. pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
  793. pd0[way], set, way, n);
  794. /*
  795. * clear entry @way and not @n.
  796. * This is critical to our optimised loop
  797. */
  798. pd0[way] = 0;
  799. write_aux_reg(ARC_REG_TLBINDEX,
  800. SET_WAY_TO_IDX(mmu, set, way));
  801. __tlb_entry_erase();
  802. }
  803. }
  804. }
  805. local_irq_restore(flags);
  806. }
  807. /***********************************************************************
  808. * Diagnostic Routines
  809. * -Called from Low Level TLB Hanlders if things don;t look good
  810. **********************************************************************/
  811. #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
  812. /*
  813. * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
  814. * don't match
  815. */
  816. void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
  817. {
  818. pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
  819. is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
  820. __asm__ __volatile__("flag 1");
  821. }
  822. void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
  823. {
  824. unsigned int mmu_asid;
  825. mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
  826. /*
  827. * At the time of a TLB miss/installation
  828. * - HW version needs to match SW version
  829. * - SW needs to have a valid ASID
  830. */
  831. if (addr < 0x70000000 &&
  832. ((mm_asid == MM_CTXT_NO_ASID) ||
  833. (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
  834. print_asid_mismatch(mm_asid, mmu_asid, 0);
  835. }
  836. #endif