mmu_context.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. /*
  2. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * vineetg: May 2011
  9. * -Refactored get_new_mmu_context( ) to only handle live-mm.
  10. * retiring-mm handled in other hooks
  11. *
  12. * Vineetg: March 25th, 2008: Bug #92690
  13. * -Major rewrite of Core ASID allocation routine get_new_mmu_context
  14. *
  15. * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
  16. */
  17. #ifndef _ASM_ARC_MMU_CONTEXT_H
  18. #define _ASM_ARC_MMU_CONTEXT_H
  19. #include <asm/arcregs.h>
  20. #include <asm/tlb.h>
  21. #include <linux/sched/mm.h>
  22. #include <asm-generic/mm_hooks.h>
  23. /* ARC700 ASID Management
  24. *
  25. * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
  26. * with same vaddr (different tasks) to co-exit. This provides for
  27. * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
  28. *
  29. * Linux assigns each task a unique ASID. A simple round-robin allocation
  30. * of H/w ASID is done using software tracker @asid_cpu.
  31. * When it reaches max 255, the allocation cycle starts afresh by flushing
  32. * the entire TLB and wrapping ASID back to zero.
  33. *
  34. * A new allocation cycle, post rollover, could potentially reassign an ASID
  35. * to a different task. Thus the rule is to refresh the ASID in a new cycle.
  36. * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
  37. * serve as cycle/generation indicator and natural 32 bit unsigned math
  38. * automagically increments the generation when lower 8 bits rollover.
  39. */
  40. #define MM_CTXT_ASID_MASK 0x000000ff /* MMU PID reg :8 bit PID */
  41. #define MM_CTXT_CYCLE_MASK (~MM_CTXT_ASID_MASK)
  42. #define MM_CTXT_FIRST_CYCLE (MM_CTXT_ASID_MASK + 1)
  43. #define MM_CTXT_NO_ASID 0UL
  44. #define asid_mm(mm, cpu) mm->context.asid[cpu]
  45. #define hw_pid(mm, cpu) (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
  46. DECLARE_PER_CPU(unsigned int, asid_cache);
  47. #define asid_cpu(cpu) per_cpu(asid_cache, cpu)
  48. /*
  49. * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
  50. * Also set the MMU PID register to existing/updated ASID
  51. */
  52. static inline void get_new_mmu_context(struct mm_struct *mm)
  53. {
  54. const unsigned int cpu = smp_processor_id();
  55. unsigned long flags;
  56. local_irq_save(flags);
  57. /*
  58. * Move to new ASID if it was not from current alloc-cycle/generation.
  59. * This is done by ensuring that the generation bits in both mm->ASID
  60. * and cpu's ASID counter are exactly same.
  61. *
  62. * Note: Callers needing new ASID unconditionally, independent of
  63. * generation, e.g. local_flush_tlb_mm() for forking parent,
  64. * first need to destroy the context, setting it to invalid
  65. * value.
  66. */
  67. if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
  68. goto set_hw;
  69. /* move to new ASID and handle rollover */
  70. if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
  71. local_flush_tlb_all();
  72. /*
  73. * Above check for rollover of 8 bit ASID in 32 bit container.
  74. * If the container itself wrapped around, set it to a non zero
  75. * "generation" to distinguish from no context
  76. */
  77. if (!asid_cpu(cpu))
  78. asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
  79. }
  80. /* Assign new ASID to tsk */
  81. asid_mm(mm, cpu) = asid_cpu(cpu);
  82. set_hw:
  83. write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
  84. local_irq_restore(flags);
  85. }
  86. /*
  87. * Initialize the context related info for a new mm_struct
  88. * instance.
  89. */
  90. static inline int
  91. init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  92. {
  93. int i;
  94. for_each_possible_cpu(i)
  95. asid_mm(mm, i) = MM_CTXT_NO_ASID;
  96. return 0;
  97. }
  98. static inline void destroy_context(struct mm_struct *mm)
  99. {
  100. unsigned long flags;
  101. /* Needed to elide CONFIG_DEBUG_PREEMPT warning */
  102. local_irq_save(flags);
  103. asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
  104. local_irq_restore(flags);
  105. }
  106. /* Prepare the MMU for task: setup PID reg with allocated ASID
  107. If task doesn't have an ASID (never alloc or stolen, get a new ASID)
  108. */
  109. static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
  110. struct task_struct *tsk)
  111. {
  112. const int cpu = smp_processor_id();
  113. /*
  114. * Note that the mm_cpumask is "aggregating" only, we don't clear it
  115. * for the switched-out task, unlike some other arches.
  116. * It is used to enlist cpus for sending TLB flush IPIs and not sending
  117. * it to CPUs where a task once ran-on, could cause stale TLB entry
  118. * re-use, specially for a multi-threaded task.
  119. * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
  120. * For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
  121. * were to re-migrate to C1, it could access the unmapped region
  122. * via any existing stale TLB entries.
  123. */
  124. cpumask_set_cpu(cpu, mm_cpumask(next));
  125. #ifndef CONFIG_SMP
  126. /* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
  127. write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
  128. #endif
  129. get_new_mmu_context(next);
  130. }
  131. /*
  132. * Called at the time of execve() to get a new ASID
  133. * Note the subtlety here: get_new_mmu_context() behaves differently here
  134. * vs. in switch_mm(). Here it always returns a new ASID, because mm has
  135. * an unallocated "initial" value, while in latter, it moves to a new ASID,
  136. * only if it was unallocated
  137. */
  138. #define activate_mm(prev, next) switch_mm(prev, next, NULL)
  139. /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
  140. * for retiring-mm. However destroy_context( ) still needs to do that because
  141. * between mm_release( ) = >deactive_mm( ) and
  142. * mmput => .. => __mmdrop( ) => destroy_context( )
  143. * there is a good chance that task gets sched-out/in, making it's ASID valid
  144. * again (this teased me for a whole day).
  145. */
  146. #define deactivate_mm(tsk, mm) do { } while (0)
  147. #define enter_lazy_tlb(mm, tsk)
  148. #endif /* __ASM_ARC_MMU_CONTEXT_H */