nfnetlink_queue.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594
  1. /*
  2. * This is a module which is used for queueing packets and communicating with
  3. * userspace via nfnetlink.
  4. *
  5. * (C) 2005 by Harald Welte <laforge@netfilter.org>
  6. * (C) 2007 by Patrick McHardy <kaber@trash.net>
  7. *
  8. * Based on the old ipv4-only ip_queue.c:
  9. * (C) 2000-2002 James Morris <jmorris@intercode.com.au>
  10. * (C) 2003-2005 Netfilter Core Team <coreteam@netfilter.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/module.h>
  19. #include <linux/skbuff.h>
  20. #include <linux/init.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/slab.h>
  23. #include <linux/notifier.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/netfilter.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/netfilter_ipv4.h>
  28. #include <linux/netfilter_ipv6.h>
  29. #include <linux/netfilter_bridge.h>
  30. #include <linux/netfilter/nfnetlink.h>
  31. #include <linux/netfilter/nfnetlink_queue.h>
  32. #include <linux/netfilter/nf_conntrack_common.h>
  33. #include <linux/list.h>
  34. #include <net/sock.h>
  35. #include <net/tcp_states.h>
  36. #include <net/netfilter/nf_queue.h>
  37. #include <net/netns/generic.h>
  38. #include <linux/atomic.h>
  39. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  40. #include "../bridge/br_private.h"
  41. #endif
  42. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  43. #include <net/netfilter/nf_conntrack.h>
  44. #endif
  45. #define NFQNL_QMAX_DEFAULT 1024
  46. /* We're using struct nlattr which has 16bit nla_len. Note that nla_len
  47. * includes the header length. Thus, the maximum packet length that we
  48. * support is 65531 bytes. We send truncated packets if the specified length
  49. * is larger than that. Userspace can check for presence of NFQA_CAP_LEN
  50. * attribute to detect truncation.
  51. */
  52. #define NFQNL_MAX_COPY_RANGE (0xffff - NLA_HDRLEN)
  53. struct nfqnl_instance {
  54. struct hlist_node hlist; /* global list of queues */
  55. struct rcu_head rcu;
  56. u32 peer_portid;
  57. unsigned int queue_maxlen;
  58. unsigned int copy_range;
  59. unsigned int queue_dropped;
  60. unsigned int queue_user_dropped;
  61. u_int16_t queue_num; /* number of this queue */
  62. u_int8_t copy_mode;
  63. u_int32_t flags; /* Set using NFQA_CFG_FLAGS */
  64. /*
  65. * Following fields are dirtied for each queued packet,
  66. * keep them in same cache line if possible.
  67. */
  68. spinlock_t lock ____cacheline_aligned_in_smp;
  69. unsigned int queue_total;
  70. unsigned int id_sequence; /* 'sequence' of pkt ids */
  71. struct list_head queue_list; /* packets in queue */
  72. };
  73. typedef int (*nfqnl_cmpfn)(struct nf_queue_entry *, unsigned long);
  74. static unsigned int nfnl_queue_net_id __read_mostly;
  75. #define INSTANCE_BUCKETS 16
  76. struct nfnl_queue_net {
  77. spinlock_t instances_lock;
  78. struct hlist_head instance_table[INSTANCE_BUCKETS];
  79. };
  80. static struct nfnl_queue_net *nfnl_queue_pernet(struct net *net)
  81. {
  82. return net_generic(net, nfnl_queue_net_id);
  83. }
  84. static inline u_int8_t instance_hashfn(u_int16_t queue_num)
  85. {
  86. return ((queue_num >> 8) ^ queue_num) % INSTANCE_BUCKETS;
  87. }
  88. static struct nfqnl_instance *
  89. instance_lookup(struct nfnl_queue_net *q, u_int16_t queue_num)
  90. {
  91. struct hlist_head *head;
  92. struct nfqnl_instance *inst;
  93. head = &q->instance_table[instance_hashfn(queue_num)];
  94. hlist_for_each_entry_rcu(inst, head, hlist) {
  95. if (inst->queue_num == queue_num)
  96. return inst;
  97. }
  98. return NULL;
  99. }
  100. static struct nfqnl_instance *
  101. instance_create(struct nfnl_queue_net *q, u_int16_t queue_num, u32 portid)
  102. {
  103. struct nfqnl_instance *inst;
  104. unsigned int h;
  105. int err;
  106. spin_lock(&q->instances_lock);
  107. if (instance_lookup(q, queue_num)) {
  108. err = -EEXIST;
  109. goto out_unlock;
  110. }
  111. inst = kzalloc(sizeof(*inst), GFP_ATOMIC);
  112. if (!inst) {
  113. err = -ENOMEM;
  114. goto out_unlock;
  115. }
  116. inst->queue_num = queue_num;
  117. inst->peer_portid = portid;
  118. inst->queue_maxlen = NFQNL_QMAX_DEFAULT;
  119. inst->copy_range = NFQNL_MAX_COPY_RANGE;
  120. inst->copy_mode = NFQNL_COPY_NONE;
  121. spin_lock_init(&inst->lock);
  122. INIT_LIST_HEAD(&inst->queue_list);
  123. if (!try_module_get(THIS_MODULE)) {
  124. err = -EAGAIN;
  125. goto out_free;
  126. }
  127. h = instance_hashfn(queue_num);
  128. hlist_add_head_rcu(&inst->hlist, &q->instance_table[h]);
  129. spin_unlock(&q->instances_lock);
  130. return inst;
  131. out_free:
  132. kfree(inst);
  133. out_unlock:
  134. spin_unlock(&q->instances_lock);
  135. return ERR_PTR(err);
  136. }
  137. static void nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn,
  138. unsigned long data);
  139. static void
  140. instance_destroy_rcu(struct rcu_head *head)
  141. {
  142. struct nfqnl_instance *inst = container_of(head, struct nfqnl_instance,
  143. rcu);
  144. nfqnl_flush(inst, NULL, 0);
  145. kfree(inst);
  146. module_put(THIS_MODULE);
  147. }
  148. static void
  149. __instance_destroy(struct nfqnl_instance *inst)
  150. {
  151. hlist_del_rcu(&inst->hlist);
  152. call_rcu(&inst->rcu, instance_destroy_rcu);
  153. }
  154. static void
  155. instance_destroy(struct nfnl_queue_net *q, struct nfqnl_instance *inst)
  156. {
  157. spin_lock(&q->instances_lock);
  158. __instance_destroy(inst);
  159. spin_unlock(&q->instances_lock);
  160. }
  161. static inline void
  162. __enqueue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry)
  163. {
  164. list_add_tail(&entry->list, &queue->queue_list);
  165. queue->queue_total++;
  166. }
  167. static void
  168. __dequeue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry)
  169. {
  170. list_del(&entry->list);
  171. queue->queue_total--;
  172. }
  173. static struct nf_queue_entry *
  174. find_dequeue_entry(struct nfqnl_instance *queue, unsigned int id)
  175. {
  176. struct nf_queue_entry *entry = NULL, *i;
  177. spin_lock_bh(&queue->lock);
  178. list_for_each_entry(i, &queue->queue_list, list) {
  179. if (i->id == id) {
  180. entry = i;
  181. break;
  182. }
  183. }
  184. if (entry)
  185. __dequeue_entry(queue, entry);
  186. spin_unlock_bh(&queue->lock);
  187. return entry;
  188. }
  189. static void nfqnl_reinject(struct nf_queue_entry *entry, unsigned int verdict)
  190. {
  191. struct nf_ct_hook *ct_hook;
  192. int err;
  193. if (verdict == NF_ACCEPT ||
  194. verdict == NF_REPEAT ||
  195. verdict == NF_STOP) {
  196. rcu_read_lock();
  197. ct_hook = rcu_dereference(nf_ct_hook);
  198. if (ct_hook) {
  199. err = ct_hook->update(entry->state.net, entry->skb);
  200. if (err < 0)
  201. verdict = NF_DROP;
  202. }
  203. rcu_read_unlock();
  204. }
  205. nf_reinject(entry, verdict);
  206. }
  207. static void
  208. nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn, unsigned long data)
  209. {
  210. struct nf_queue_entry *entry, *next;
  211. spin_lock_bh(&queue->lock);
  212. list_for_each_entry_safe(entry, next, &queue->queue_list, list) {
  213. if (!cmpfn || cmpfn(entry, data)) {
  214. list_del(&entry->list);
  215. queue->queue_total--;
  216. nfqnl_reinject(entry, NF_DROP);
  217. }
  218. }
  219. spin_unlock_bh(&queue->lock);
  220. }
  221. static int
  222. nfqnl_put_packet_info(struct sk_buff *nlskb, struct sk_buff *packet,
  223. bool csum_verify)
  224. {
  225. __u32 flags = 0;
  226. if (packet->ip_summed == CHECKSUM_PARTIAL)
  227. flags = NFQA_SKB_CSUMNOTREADY;
  228. else if (csum_verify)
  229. flags = NFQA_SKB_CSUM_NOTVERIFIED;
  230. if (skb_is_gso(packet))
  231. flags |= NFQA_SKB_GSO;
  232. return flags ? nla_put_be32(nlskb, NFQA_SKB_INFO, htonl(flags)) : 0;
  233. }
  234. static int nfqnl_put_sk_uidgid(struct sk_buff *skb, struct sock *sk)
  235. {
  236. const struct cred *cred;
  237. if (!sk_fullsock(sk))
  238. return 0;
  239. read_lock_bh(&sk->sk_callback_lock);
  240. if (sk->sk_socket && sk->sk_socket->file) {
  241. cred = sk->sk_socket->file->f_cred;
  242. if (nla_put_be32(skb, NFQA_UID,
  243. htonl(from_kuid_munged(&init_user_ns, cred->fsuid))))
  244. goto nla_put_failure;
  245. if (nla_put_be32(skb, NFQA_GID,
  246. htonl(from_kgid_munged(&init_user_ns, cred->fsgid))))
  247. goto nla_put_failure;
  248. }
  249. read_unlock_bh(&sk->sk_callback_lock);
  250. return 0;
  251. nla_put_failure:
  252. read_unlock_bh(&sk->sk_callback_lock);
  253. return -1;
  254. }
  255. static u32 nfqnl_get_sk_secctx(struct sk_buff *skb, char **secdata)
  256. {
  257. u32 seclen = 0;
  258. #if IS_ENABLED(CONFIG_NETWORK_SECMARK)
  259. if (!skb || !sk_fullsock(skb->sk))
  260. return 0;
  261. read_lock_bh(&skb->sk->sk_callback_lock);
  262. if (skb->secmark)
  263. security_secid_to_secctx(skb->secmark, secdata, &seclen);
  264. read_unlock_bh(&skb->sk->sk_callback_lock);
  265. #endif
  266. return seclen;
  267. }
  268. static u32 nfqnl_get_bridge_size(struct nf_queue_entry *entry)
  269. {
  270. struct sk_buff *entskb = entry->skb;
  271. u32 nlalen = 0;
  272. if (entry->state.pf != PF_BRIDGE || !skb_mac_header_was_set(entskb))
  273. return 0;
  274. if (skb_vlan_tag_present(entskb))
  275. nlalen += nla_total_size(nla_total_size(sizeof(__be16)) +
  276. nla_total_size(sizeof(__be16)));
  277. if (entskb->network_header > entskb->mac_header)
  278. nlalen += nla_total_size((entskb->network_header -
  279. entskb->mac_header));
  280. return nlalen;
  281. }
  282. static int nfqnl_put_bridge(struct nf_queue_entry *entry, struct sk_buff *skb)
  283. {
  284. struct sk_buff *entskb = entry->skb;
  285. if (entry->state.pf != PF_BRIDGE || !skb_mac_header_was_set(entskb))
  286. return 0;
  287. if (skb_vlan_tag_present(entskb)) {
  288. struct nlattr *nest;
  289. nest = nla_nest_start(skb, NFQA_VLAN | NLA_F_NESTED);
  290. if (!nest)
  291. goto nla_put_failure;
  292. if (nla_put_be16(skb, NFQA_VLAN_TCI, htons(entskb->vlan_tci)) ||
  293. nla_put_be16(skb, NFQA_VLAN_PROTO, entskb->vlan_proto))
  294. goto nla_put_failure;
  295. nla_nest_end(skb, nest);
  296. }
  297. if (entskb->mac_header < entskb->network_header) {
  298. int len = (int)(entskb->network_header - entskb->mac_header);
  299. if (nla_put(skb, NFQA_L2HDR, len, skb_mac_header(entskb)))
  300. goto nla_put_failure;
  301. }
  302. return 0;
  303. nla_put_failure:
  304. return -1;
  305. }
  306. static struct sk_buff *
  307. nfqnl_build_packet_message(struct net *net, struct nfqnl_instance *queue,
  308. struct nf_queue_entry *entry,
  309. __be32 **packet_id_ptr)
  310. {
  311. size_t size;
  312. size_t data_len = 0, cap_len = 0;
  313. unsigned int hlen = 0;
  314. struct sk_buff *skb;
  315. struct nlattr *nla;
  316. struct nfqnl_msg_packet_hdr *pmsg;
  317. struct nlmsghdr *nlh;
  318. struct nfgenmsg *nfmsg;
  319. struct sk_buff *entskb = entry->skb;
  320. struct net_device *indev;
  321. struct net_device *outdev;
  322. struct nf_conn *ct = NULL;
  323. enum ip_conntrack_info uninitialized_var(ctinfo);
  324. struct nfnl_ct_hook *nfnl_ct;
  325. bool csum_verify;
  326. char *secdata = NULL;
  327. u32 seclen = 0;
  328. size = nlmsg_total_size(sizeof(struct nfgenmsg))
  329. + nla_total_size(sizeof(struct nfqnl_msg_packet_hdr))
  330. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  331. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  332. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  333. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  334. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  335. #endif
  336. + nla_total_size(sizeof(u_int32_t)) /* mark */
  337. + nla_total_size(sizeof(struct nfqnl_msg_packet_hw))
  338. + nla_total_size(sizeof(u_int32_t)) /* skbinfo */
  339. + nla_total_size(sizeof(u_int32_t)); /* cap_len */
  340. if (entskb->tstamp)
  341. size += nla_total_size(sizeof(struct nfqnl_msg_packet_timestamp));
  342. size += nfqnl_get_bridge_size(entry);
  343. if (entry->state.hook <= NF_INET_FORWARD ||
  344. (entry->state.hook == NF_INET_POST_ROUTING && entskb->sk == NULL))
  345. csum_verify = !skb_csum_unnecessary(entskb);
  346. else
  347. csum_verify = false;
  348. outdev = entry->state.out;
  349. switch ((enum nfqnl_config_mode)READ_ONCE(queue->copy_mode)) {
  350. case NFQNL_COPY_META:
  351. case NFQNL_COPY_NONE:
  352. break;
  353. case NFQNL_COPY_PACKET:
  354. if (!(queue->flags & NFQA_CFG_F_GSO) &&
  355. entskb->ip_summed == CHECKSUM_PARTIAL &&
  356. skb_checksum_help(entskb))
  357. return NULL;
  358. data_len = READ_ONCE(queue->copy_range);
  359. if (data_len > entskb->len)
  360. data_len = entskb->len;
  361. hlen = skb_zerocopy_headlen(entskb);
  362. hlen = min_t(unsigned int, hlen, data_len);
  363. size += sizeof(struct nlattr) + hlen;
  364. cap_len = entskb->len;
  365. break;
  366. }
  367. nfnl_ct = rcu_dereference(nfnl_ct_hook);
  368. if (queue->flags & NFQA_CFG_F_CONNTRACK) {
  369. if (nfnl_ct != NULL) {
  370. ct = nfnl_ct->get_ct(entskb, &ctinfo);
  371. if (ct != NULL)
  372. size += nfnl_ct->build_size(ct);
  373. }
  374. }
  375. if (queue->flags & NFQA_CFG_F_UID_GID) {
  376. size += (nla_total_size(sizeof(u_int32_t)) /* uid */
  377. + nla_total_size(sizeof(u_int32_t))); /* gid */
  378. }
  379. if ((queue->flags & NFQA_CFG_F_SECCTX) && entskb->sk) {
  380. seclen = nfqnl_get_sk_secctx(entskb, &secdata);
  381. if (seclen)
  382. size += nla_total_size(seclen);
  383. }
  384. skb = alloc_skb(size, GFP_ATOMIC);
  385. if (!skb) {
  386. skb_tx_error(entskb);
  387. goto nlmsg_failure;
  388. }
  389. nlh = nlmsg_put(skb, 0, 0,
  390. nfnl_msg_type(NFNL_SUBSYS_QUEUE, NFQNL_MSG_PACKET),
  391. sizeof(struct nfgenmsg), 0);
  392. if (!nlh) {
  393. skb_tx_error(entskb);
  394. kfree_skb(skb);
  395. goto nlmsg_failure;
  396. }
  397. nfmsg = nlmsg_data(nlh);
  398. nfmsg->nfgen_family = entry->state.pf;
  399. nfmsg->version = NFNETLINK_V0;
  400. nfmsg->res_id = htons(queue->queue_num);
  401. nla = __nla_reserve(skb, NFQA_PACKET_HDR, sizeof(*pmsg));
  402. pmsg = nla_data(nla);
  403. pmsg->hw_protocol = entskb->protocol;
  404. pmsg->hook = entry->state.hook;
  405. *packet_id_ptr = &pmsg->packet_id;
  406. indev = entry->state.in;
  407. if (indev) {
  408. #if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  409. if (nla_put_be32(skb, NFQA_IFINDEX_INDEV, htonl(indev->ifindex)))
  410. goto nla_put_failure;
  411. #else
  412. if (entry->state.pf == PF_BRIDGE) {
  413. /* Case 1: indev is physical input device, we need to
  414. * look for bridge group (when called from
  415. * netfilter_bridge) */
  416. if (nla_put_be32(skb, NFQA_IFINDEX_PHYSINDEV,
  417. htonl(indev->ifindex)) ||
  418. /* this is the bridge group "brX" */
  419. /* rcu_read_lock()ed by __nf_queue */
  420. nla_put_be32(skb, NFQA_IFINDEX_INDEV,
  421. htonl(br_port_get_rcu(indev)->br->dev->ifindex)))
  422. goto nla_put_failure;
  423. } else {
  424. int physinif;
  425. /* Case 2: indev is bridge group, we need to look for
  426. * physical device (when called from ipv4) */
  427. if (nla_put_be32(skb, NFQA_IFINDEX_INDEV,
  428. htonl(indev->ifindex)))
  429. goto nla_put_failure;
  430. physinif = nf_bridge_get_physinif(entskb);
  431. if (physinif &&
  432. nla_put_be32(skb, NFQA_IFINDEX_PHYSINDEV,
  433. htonl(physinif)))
  434. goto nla_put_failure;
  435. }
  436. #endif
  437. }
  438. if (outdev) {
  439. #if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  440. if (nla_put_be32(skb, NFQA_IFINDEX_OUTDEV, htonl(outdev->ifindex)))
  441. goto nla_put_failure;
  442. #else
  443. if (entry->state.pf == PF_BRIDGE) {
  444. /* Case 1: outdev is physical output device, we need to
  445. * look for bridge group (when called from
  446. * netfilter_bridge) */
  447. if (nla_put_be32(skb, NFQA_IFINDEX_PHYSOUTDEV,
  448. htonl(outdev->ifindex)) ||
  449. /* this is the bridge group "brX" */
  450. /* rcu_read_lock()ed by __nf_queue */
  451. nla_put_be32(skb, NFQA_IFINDEX_OUTDEV,
  452. htonl(br_port_get_rcu(outdev)->br->dev->ifindex)))
  453. goto nla_put_failure;
  454. } else {
  455. int physoutif;
  456. /* Case 2: outdev is bridge group, we need to look for
  457. * physical output device (when called from ipv4) */
  458. if (nla_put_be32(skb, NFQA_IFINDEX_OUTDEV,
  459. htonl(outdev->ifindex)))
  460. goto nla_put_failure;
  461. physoutif = nf_bridge_get_physoutif(entskb);
  462. if (physoutif &&
  463. nla_put_be32(skb, NFQA_IFINDEX_PHYSOUTDEV,
  464. htonl(physoutif)))
  465. goto nla_put_failure;
  466. }
  467. #endif
  468. }
  469. if (entskb->mark &&
  470. nla_put_be32(skb, NFQA_MARK, htonl(entskb->mark)))
  471. goto nla_put_failure;
  472. if (indev && entskb->dev &&
  473. entskb->mac_header != entskb->network_header) {
  474. struct nfqnl_msg_packet_hw phw;
  475. int len;
  476. memset(&phw, 0, sizeof(phw));
  477. len = dev_parse_header(entskb, phw.hw_addr);
  478. if (len) {
  479. phw.hw_addrlen = htons(len);
  480. if (nla_put(skb, NFQA_HWADDR, sizeof(phw), &phw))
  481. goto nla_put_failure;
  482. }
  483. }
  484. if (nfqnl_put_bridge(entry, skb) < 0)
  485. goto nla_put_failure;
  486. if (entskb->tstamp) {
  487. struct nfqnl_msg_packet_timestamp ts;
  488. struct timespec64 kts = ktime_to_timespec64(entskb->tstamp);
  489. ts.sec = cpu_to_be64(kts.tv_sec);
  490. ts.usec = cpu_to_be64(kts.tv_nsec / NSEC_PER_USEC);
  491. if (nla_put(skb, NFQA_TIMESTAMP, sizeof(ts), &ts))
  492. goto nla_put_failure;
  493. }
  494. if ((queue->flags & NFQA_CFG_F_UID_GID) && entskb->sk &&
  495. nfqnl_put_sk_uidgid(skb, entskb->sk) < 0)
  496. goto nla_put_failure;
  497. if (seclen && nla_put(skb, NFQA_SECCTX, seclen, secdata))
  498. goto nla_put_failure;
  499. if (ct && nfnl_ct->build(skb, ct, ctinfo, NFQA_CT, NFQA_CT_INFO) < 0)
  500. goto nla_put_failure;
  501. if (cap_len > data_len &&
  502. nla_put_be32(skb, NFQA_CAP_LEN, htonl(cap_len)))
  503. goto nla_put_failure;
  504. if (nfqnl_put_packet_info(skb, entskb, csum_verify))
  505. goto nla_put_failure;
  506. if (data_len) {
  507. struct nlattr *nla;
  508. if (skb_tailroom(skb) < sizeof(*nla) + hlen)
  509. goto nla_put_failure;
  510. nla = skb_put(skb, sizeof(*nla));
  511. nla->nla_type = NFQA_PAYLOAD;
  512. nla->nla_len = nla_attr_size(data_len);
  513. if (skb_zerocopy(skb, entskb, data_len, hlen))
  514. goto nla_put_failure;
  515. }
  516. nlh->nlmsg_len = skb->len;
  517. if (seclen)
  518. security_release_secctx(secdata, seclen);
  519. return skb;
  520. nla_put_failure:
  521. skb_tx_error(entskb);
  522. kfree_skb(skb);
  523. net_err_ratelimited("nf_queue: error creating packet message\n");
  524. nlmsg_failure:
  525. if (seclen)
  526. security_release_secctx(secdata, seclen);
  527. return NULL;
  528. }
  529. static bool nf_ct_drop_unconfirmed(const struct nf_queue_entry *entry)
  530. {
  531. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  532. static const unsigned long flags = IPS_CONFIRMED | IPS_DYING;
  533. const struct nf_conn *ct = (void *)skb_nfct(entry->skb);
  534. if (ct && ((ct->status & flags) == IPS_DYING))
  535. return true;
  536. #endif
  537. return false;
  538. }
  539. static int
  540. __nfqnl_enqueue_packet(struct net *net, struct nfqnl_instance *queue,
  541. struct nf_queue_entry *entry)
  542. {
  543. struct sk_buff *nskb;
  544. int err = -ENOBUFS;
  545. __be32 *packet_id_ptr;
  546. int failopen = 0;
  547. nskb = nfqnl_build_packet_message(net, queue, entry, &packet_id_ptr);
  548. if (nskb == NULL) {
  549. err = -ENOMEM;
  550. goto err_out;
  551. }
  552. spin_lock_bh(&queue->lock);
  553. if (nf_ct_drop_unconfirmed(entry))
  554. goto err_out_free_nskb;
  555. if (queue->queue_total >= queue->queue_maxlen) {
  556. if (queue->flags & NFQA_CFG_F_FAIL_OPEN) {
  557. failopen = 1;
  558. err = 0;
  559. } else {
  560. queue->queue_dropped++;
  561. net_warn_ratelimited("nf_queue: full at %d entries, dropping packets(s)\n",
  562. queue->queue_total);
  563. }
  564. goto err_out_free_nskb;
  565. }
  566. entry->id = ++queue->id_sequence;
  567. *packet_id_ptr = htonl(entry->id);
  568. /* nfnetlink_unicast will either free the nskb or add it to a socket */
  569. err = nfnetlink_unicast(nskb, net, queue->peer_portid, MSG_DONTWAIT);
  570. if (err < 0) {
  571. if (queue->flags & NFQA_CFG_F_FAIL_OPEN) {
  572. failopen = 1;
  573. err = 0;
  574. } else {
  575. queue->queue_user_dropped++;
  576. }
  577. goto err_out_unlock;
  578. }
  579. __enqueue_entry(queue, entry);
  580. spin_unlock_bh(&queue->lock);
  581. return 0;
  582. err_out_free_nskb:
  583. kfree_skb(nskb);
  584. err_out_unlock:
  585. spin_unlock_bh(&queue->lock);
  586. if (failopen)
  587. nfqnl_reinject(entry, NF_ACCEPT);
  588. err_out:
  589. return err;
  590. }
  591. static struct nf_queue_entry *
  592. nf_queue_entry_dup(struct nf_queue_entry *e)
  593. {
  594. struct nf_queue_entry *entry = kmemdup(e, e->size, GFP_ATOMIC);
  595. if (entry)
  596. nf_queue_entry_get_refs(entry);
  597. return entry;
  598. }
  599. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  600. /* When called from bridge netfilter, skb->data must point to MAC header
  601. * before calling skb_gso_segment(). Else, original MAC header is lost
  602. * and segmented skbs will be sent to wrong destination.
  603. */
  604. static void nf_bridge_adjust_skb_data(struct sk_buff *skb)
  605. {
  606. if (skb->nf_bridge)
  607. __skb_push(skb, skb->network_header - skb->mac_header);
  608. }
  609. static void nf_bridge_adjust_segmented_data(struct sk_buff *skb)
  610. {
  611. if (skb->nf_bridge)
  612. __skb_pull(skb, skb->network_header - skb->mac_header);
  613. }
  614. #else
  615. #define nf_bridge_adjust_skb_data(s) do {} while (0)
  616. #define nf_bridge_adjust_segmented_data(s) do {} while (0)
  617. #endif
  618. static void free_entry(struct nf_queue_entry *entry)
  619. {
  620. nf_queue_entry_release_refs(entry);
  621. kfree(entry);
  622. }
  623. static int
  624. __nfqnl_enqueue_packet_gso(struct net *net, struct nfqnl_instance *queue,
  625. struct sk_buff *skb, struct nf_queue_entry *entry)
  626. {
  627. int ret = -ENOMEM;
  628. struct nf_queue_entry *entry_seg;
  629. nf_bridge_adjust_segmented_data(skb);
  630. if (skb->next == NULL) { /* last packet, no need to copy entry */
  631. struct sk_buff *gso_skb = entry->skb;
  632. entry->skb = skb;
  633. ret = __nfqnl_enqueue_packet(net, queue, entry);
  634. if (ret)
  635. entry->skb = gso_skb;
  636. return ret;
  637. }
  638. skb->next = NULL;
  639. entry_seg = nf_queue_entry_dup(entry);
  640. if (entry_seg) {
  641. entry_seg->skb = skb;
  642. ret = __nfqnl_enqueue_packet(net, queue, entry_seg);
  643. if (ret)
  644. free_entry(entry_seg);
  645. }
  646. return ret;
  647. }
  648. static int
  649. nfqnl_enqueue_packet(struct nf_queue_entry *entry, unsigned int queuenum)
  650. {
  651. unsigned int queued;
  652. struct nfqnl_instance *queue;
  653. struct sk_buff *skb, *segs;
  654. int err = -ENOBUFS;
  655. struct net *net = entry->state.net;
  656. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  657. /* rcu_read_lock()ed by nf_hook_thresh */
  658. queue = instance_lookup(q, queuenum);
  659. if (!queue)
  660. return -ESRCH;
  661. if (queue->copy_mode == NFQNL_COPY_NONE)
  662. return -EINVAL;
  663. skb = entry->skb;
  664. switch (entry->state.pf) {
  665. case NFPROTO_IPV4:
  666. skb->protocol = htons(ETH_P_IP);
  667. break;
  668. case NFPROTO_IPV6:
  669. skb->protocol = htons(ETH_P_IPV6);
  670. break;
  671. }
  672. if ((queue->flags & NFQA_CFG_F_GSO) || !skb_is_gso(skb))
  673. return __nfqnl_enqueue_packet(net, queue, entry);
  674. nf_bridge_adjust_skb_data(skb);
  675. segs = skb_gso_segment(skb, 0);
  676. /* Does not use PTR_ERR to limit the number of error codes that can be
  677. * returned by nf_queue. For instance, callers rely on -ESRCH to
  678. * mean 'ignore this hook'.
  679. */
  680. if (IS_ERR_OR_NULL(segs))
  681. goto out_err;
  682. queued = 0;
  683. err = 0;
  684. do {
  685. struct sk_buff *nskb = segs->next;
  686. if (err == 0)
  687. err = __nfqnl_enqueue_packet_gso(net, queue,
  688. segs, entry);
  689. if (err == 0)
  690. queued++;
  691. else
  692. kfree_skb(segs);
  693. segs = nskb;
  694. } while (segs);
  695. if (queued) {
  696. if (err) /* some segments are already queued */
  697. free_entry(entry);
  698. kfree_skb(skb);
  699. return 0;
  700. }
  701. out_err:
  702. nf_bridge_adjust_segmented_data(skb);
  703. return err;
  704. }
  705. static int
  706. nfqnl_mangle(void *data, int data_len, struct nf_queue_entry *e, int diff)
  707. {
  708. struct sk_buff *nskb;
  709. if (diff < 0) {
  710. if (pskb_trim(e->skb, data_len))
  711. return -ENOMEM;
  712. } else if (diff > 0) {
  713. if (data_len > 0xFFFF)
  714. return -EINVAL;
  715. if (diff > skb_tailroom(e->skb)) {
  716. nskb = skb_copy_expand(e->skb, skb_headroom(e->skb),
  717. diff, GFP_ATOMIC);
  718. if (!nskb)
  719. return -ENOMEM;
  720. kfree_skb(e->skb);
  721. e->skb = nskb;
  722. }
  723. skb_put(e->skb, diff);
  724. }
  725. if (!skb_make_writable(e->skb, data_len))
  726. return -ENOMEM;
  727. skb_copy_to_linear_data(e->skb, data, data_len);
  728. e->skb->ip_summed = CHECKSUM_NONE;
  729. return 0;
  730. }
  731. static int
  732. nfqnl_set_mode(struct nfqnl_instance *queue,
  733. unsigned char mode, unsigned int range)
  734. {
  735. int status = 0;
  736. spin_lock_bh(&queue->lock);
  737. switch (mode) {
  738. case NFQNL_COPY_NONE:
  739. case NFQNL_COPY_META:
  740. queue->copy_mode = mode;
  741. queue->copy_range = 0;
  742. break;
  743. case NFQNL_COPY_PACKET:
  744. queue->copy_mode = mode;
  745. if (range == 0 || range > NFQNL_MAX_COPY_RANGE)
  746. queue->copy_range = NFQNL_MAX_COPY_RANGE;
  747. else
  748. queue->copy_range = range;
  749. break;
  750. default:
  751. status = -EINVAL;
  752. }
  753. spin_unlock_bh(&queue->lock);
  754. return status;
  755. }
  756. static int
  757. dev_cmp(struct nf_queue_entry *entry, unsigned long ifindex)
  758. {
  759. if (entry->state.in)
  760. if (entry->state.in->ifindex == ifindex)
  761. return 1;
  762. if (entry->state.out)
  763. if (entry->state.out->ifindex == ifindex)
  764. return 1;
  765. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  766. if (entry->skb->nf_bridge) {
  767. int physinif, physoutif;
  768. physinif = nf_bridge_get_physinif(entry->skb);
  769. physoutif = nf_bridge_get_physoutif(entry->skb);
  770. if (physinif == ifindex || physoutif == ifindex)
  771. return 1;
  772. }
  773. #endif
  774. return 0;
  775. }
  776. /* drop all packets with either indev or outdev == ifindex from all queue
  777. * instances */
  778. static void
  779. nfqnl_dev_drop(struct net *net, int ifindex)
  780. {
  781. int i;
  782. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  783. rcu_read_lock();
  784. for (i = 0; i < INSTANCE_BUCKETS; i++) {
  785. struct nfqnl_instance *inst;
  786. struct hlist_head *head = &q->instance_table[i];
  787. hlist_for_each_entry_rcu(inst, head, hlist)
  788. nfqnl_flush(inst, dev_cmp, ifindex);
  789. }
  790. rcu_read_unlock();
  791. }
  792. static int
  793. nfqnl_rcv_dev_event(struct notifier_block *this,
  794. unsigned long event, void *ptr)
  795. {
  796. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  797. /* Drop any packets associated with the downed device */
  798. if (event == NETDEV_DOWN)
  799. nfqnl_dev_drop(dev_net(dev), dev->ifindex);
  800. return NOTIFY_DONE;
  801. }
  802. static struct notifier_block nfqnl_dev_notifier = {
  803. .notifier_call = nfqnl_rcv_dev_event,
  804. };
  805. static void nfqnl_nf_hook_drop(struct net *net)
  806. {
  807. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  808. int i;
  809. for (i = 0; i < INSTANCE_BUCKETS; i++) {
  810. struct nfqnl_instance *inst;
  811. struct hlist_head *head = &q->instance_table[i];
  812. hlist_for_each_entry_rcu(inst, head, hlist)
  813. nfqnl_flush(inst, NULL, 0);
  814. }
  815. }
  816. static int
  817. nfqnl_rcv_nl_event(struct notifier_block *this,
  818. unsigned long event, void *ptr)
  819. {
  820. struct netlink_notify *n = ptr;
  821. struct nfnl_queue_net *q = nfnl_queue_pernet(n->net);
  822. if (event == NETLINK_URELEASE && n->protocol == NETLINK_NETFILTER) {
  823. int i;
  824. /* destroy all instances for this portid */
  825. spin_lock(&q->instances_lock);
  826. for (i = 0; i < INSTANCE_BUCKETS; i++) {
  827. struct hlist_node *t2;
  828. struct nfqnl_instance *inst;
  829. struct hlist_head *head = &q->instance_table[i];
  830. hlist_for_each_entry_safe(inst, t2, head, hlist) {
  831. if (n->portid == inst->peer_portid)
  832. __instance_destroy(inst);
  833. }
  834. }
  835. spin_unlock(&q->instances_lock);
  836. }
  837. return NOTIFY_DONE;
  838. }
  839. static struct notifier_block nfqnl_rtnl_notifier = {
  840. .notifier_call = nfqnl_rcv_nl_event,
  841. };
  842. static const struct nla_policy nfqa_vlan_policy[NFQA_VLAN_MAX + 1] = {
  843. [NFQA_VLAN_TCI] = { .type = NLA_U16},
  844. [NFQA_VLAN_PROTO] = { .type = NLA_U16},
  845. };
  846. static const struct nla_policy nfqa_verdict_policy[NFQA_MAX+1] = {
  847. [NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) },
  848. [NFQA_MARK] = { .type = NLA_U32 },
  849. [NFQA_PAYLOAD] = { .type = NLA_UNSPEC },
  850. [NFQA_CT] = { .type = NLA_UNSPEC },
  851. [NFQA_EXP] = { .type = NLA_UNSPEC },
  852. [NFQA_VLAN] = { .type = NLA_NESTED },
  853. };
  854. static const struct nla_policy nfqa_verdict_batch_policy[NFQA_MAX+1] = {
  855. [NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) },
  856. [NFQA_MARK] = { .type = NLA_U32 },
  857. };
  858. static struct nfqnl_instance *
  859. verdict_instance_lookup(struct nfnl_queue_net *q, u16 queue_num, u32 nlportid)
  860. {
  861. struct nfqnl_instance *queue;
  862. queue = instance_lookup(q, queue_num);
  863. if (!queue)
  864. return ERR_PTR(-ENODEV);
  865. if (queue->peer_portid != nlportid)
  866. return ERR_PTR(-EPERM);
  867. return queue;
  868. }
  869. static struct nfqnl_msg_verdict_hdr*
  870. verdicthdr_get(const struct nlattr * const nfqa[])
  871. {
  872. struct nfqnl_msg_verdict_hdr *vhdr;
  873. unsigned int verdict;
  874. if (!nfqa[NFQA_VERDICT_HDR])
  875. return NULL;
  876. vhdr = nla_data(nfqa[NFQA_VERDICT_HDR]);
  877. verdict = ntohl(vhdr->verdict) & NF_VERDICT_MASK;
  878. if (verdict > NF_MAX_VERDICT || verdict == NF_STOLEN)
  879. return NULL;
  880. return vhdr;
  881. }
  882. static int nfq_id_after(unsigned int id, unsigned int max)
  883. {
  884. return (int)(id - max) > 0;
  885. }
  886. static int nfqnl_recv_verdict_batch(struct net *net, struct sock *ctnl,
  887. struct sk_buff *skb,
  888. const struct nlmsghdr *nlh,
  889. const struct nlattr * const nfqa[],
  890. struct netlink_ext_ack *extack)
  891. {
  892. struct nfgenmsg *nfmsg = nlmsg_data(nlh);
  893. struct nf_queue_entry *entry, *tmp;
  894. unsigned int verdict, maxid;
  895. struct nfqnl_msg_verdict_hdr *vhdr;
  896. struct nfqnl_instance *queue;
  897. LIST_HEAD(batch_list);
  898. u16 queue_num = ntohs(nfmsg->res_id);
  899. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  900. queue = verdict_instance_lookup(q, queue_num,
  901. NETLINK_CB(skb).portid);
  902. if (IS_ERR(queue))
  903. return PTR_ERR(queue);
  904. vhdr = verdicthdr_get(nfqa);
  905. if (!vhdr)
  906. return -EINVAL;
  907. verdict = ntohl(vhdr->verdict);
  908. maxid = ntohl(vhdr->id);
  909. spin_lock_bh(&queue->lock);
  910. list_for_each_entry_safe(entry, tmp, &queue->queue_list, list) {
  911. if (nfq_id_after(entry->id, maxid))
  912. break;
  913. __dequeue_entry(queue, entry);
  914. list_add_tail(&entry->list, &batch_list);
  915. }
  916. spin_unlock_bh(&queue->lock);
  917. if (list_empty(&batch_list))
  918. return -ENOENT;
  919. list_for_each_entry_safe(entry, tmp, &batch_list, list) {
  920. if (nfqa[NFQA_MARK])
  921. entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK]));
  922. nfqnl_reinject(entry, verdict);
  923. }
  924. return 0;
  925. }
  926. static struct nf_conn *nfqnl_ct_parse(struct nfnl_ct_hook *nfnl_ct,
  927. const struct nlmsghdr *nlh,
  928. const struct nlattr * const nfqa[],
  929. struct nf_queue_entry *entry,
  930. enum ip_conntrack_info *ctinfo)
  931. {
  932. struct nf_conn *ct;
  933. ct = nfnl_ct->get_ct(entry->skb, ctinfo);
  934. if (ct == NULL)
  935. return NULL;
  936. if (nfnl_ct->parse(nfqa[NFQA_CT], ct) < 0)
  937. return NULL;
  938. if (nfqa[NFQA_EXP])
  939. nfnl_ct->attach_expect(nfqa[NFQA_EXP], ct,
  940. NETLINK_CB(entry->skb).portid,
  941. nlmsg_report(nlh));
  942. return ct;
  943. }
  944. static int nfqa_parse_bridge(struct nf_queue_entry *entry,
  945. const struct nlattr * const nfqa[])
  946. {
  947. if (nfqa[NFQA_VLAN]) {
  948. struct nlattr *tb[NFQA_VLAN_MAX + 1];
  949. int err;
  950. err = nla_parse_nested(tb, NFQA_VLAN_MAX, nfqa[NFQA_VLAN],
  951. nfqa_vlan_policy, NULL);
  952. if (err < 0)
  953. return err;
  954. if (!tb[NFQA_VLAN_TCI] || !tb[NFQA_VLAN_PROTO])
  955. return -EINVAL;
  956. entry->skb->vlan_tci = ntohs(nla_get_be16(tb[NFQA_VLAN_TCI]));
  957. entry->skb->vlan_proto = nla_get_be16(tb[NFQA_VLAN_PROTO]);
  958. }
  959. if (nfqa[NFQA_L2HDR]) {
  960. int mac_header_len = entry->skb->network_header -
  961. entry->skb->mac_header;
  962. if (mac_header_len != nla_len(nfqa[NFQA_L2HDR]))
  963. return -EINVAL;
  964. else if (mac_header_len > 0)
  965. memcpy(skb_mac_header(entry->skb),
  966. nla_data(nfqa[NFQA_L2HDR]),
  967. mac_header_len);
  968. }
  969. return 0;
  970. }
  971. static int nfqnl_recv_verdict(struct net *net, struct sock *ctnl,
  972. struct sk_buff *skb,
  973. const struct nlmsghdr *nlh,
  974. const struct nlattr * const nfqa[],
  975. struct netlink_ext_ack *extack)
  976. {
  977. struct nfgenmsg *nfmsg = nlmsg_data(nlh);
  978. u_int16_t queue_num = ntohs(nfmsg->res_id);
  979. struct nfqnl_msg_verdict_hdr *vhdr;
  980. struct nfqnl_instance *queue;
  981. unsigned int verdict;
  982. struct nf_queue_entry *entry;
  983. enum ip_conntrack_info uninitialized_var(ctinfo);
  984. struct nfnl_ct_hook *nfnl_ct;
  985. struct nf_conn *ct = NULL;
  986. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  987. int err;
  988. queue = verdict_instance_lookup(q, queue_num,
  989. NETLINK_CB(skb).portid);
  990. if (IS_ERR(queue))
  991. return PTR_ERR(queue);
  992. vhdr = verdicthdr_get(nfqa);
  993. if (!vhdr)
  994. return -EINVAL;
  995. verdict = ntohl(vhdr->verdict);
  996. entry = find_dequeue_entry(queue, ntohl(vhdr->id));
  997. if (entry == NULL)
  998. return -ENOENT;
  999. /* rcu lock already held from nfnl->call_rcu. */
  1000. nfnl_ct = rcu_dereference(nfnl_ct_hook);
  1001. if (nfqa[NFQA_CT]) {
  1002. if (nfnl_ct != NULL)
  1003. ct = nfqnl_ct_parse(nfnl_ct, nlh, nfqa, entry, &ctinfo);
  1004. }
  1005. if (entry->state.pf == PF_BRIDGE) {
  1006. err = nfqa_parse_bridge(entry, nfqa);
  1007. if (err < 0)
  1008. return err;
  1009. }
  1010. if (nfqa[NFQA_PAYLOAD]) {
  1011. u16 payload_len = nla_len(nfqa[NFQA_PAYLOAD]);
  1012. int diff = payload_len - entry->skb->len;
  1013. if (nfqnl_mangle(nla_data(nfqa[NFQA_PAYLOAD]),
  1014. payload_len, entry, diff) < 0)
  1015. verdict = NF_DROP;
  1016. if (ct && diff)
  1017. nfnl_ct->seq_adjust(entry->skb, ct, ctinfo, diff);
  1018. }
  1019. if (nfqa[NFQA_MARK])
  1020. entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK]));
  1021. nfqnl_reinject(entry, verdict);
  1022. return 0;
  1023. }
  1024. static int nfqnl_recv_unsupp(struct net *net, struct sock *ctnl,
  1025. struct sk_buff *skb, const struct nlmsghdr *nlh,
  1026. const struct nlattr * const nfqa[],
  1027. struct netlink_ext_ack *extack)
  1028. {
  1029. return -ENOTSUPP;
  1030. }
  1031. static const struct nla_policy nfqa_cfg_policy[NFQA_CFG_MAX+1] = {
  1032. [NFQA_CFG_CMD] = { .len = sizeof(struct nfqnl_msg_config_cmd) },
  1033. [NFQA_CFG_PARAMS] = { .len = sizeof(struct nfqnl_msg_config_params) },
  1034. [NFQA_CFG_QUEUE_MAXLEN] = { .type = NLA_U32 },
  1035. [NFQA_CFG_MASK] = { .type = NLA_U32 },
  1036. [NFQA_CFG_FLAGS] = { .type = NLA_U32 },
  1037. };
  1038. static const struct nf_queue_handler nfqh = {
  1039. .outfn = nfqnl_enqueue_packet,
  1040. .nf_hook_drop = nfqnl_nf_hook_drop,
  1041. };
  1042. static int nfqnl_recv_config(struct net *net, struct sock *ctnl,
  1043. struct sk_buff *skb, const struct nlmsghdr *nlh,
  1044. const struct nlattr * const nfqa[],
  1045. struct netlink_ext_ack *extack)
  1046. {
  1047. struct nfgenmsg *nfmsg = nlmsg_data(nlh);
  1048. u_int16_t queue_num = ntohs(nfmsg->res_id);
  1049. struct nfqnl_instance *queue;
  1050. struct nfqnl_msg_config_cmd *cmd = NULL;
  1051. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  1052. __u32 flags = 0, mask = 0;
  1053. int ret = 0;
  1054. if (nfqa[NFQA_CFG_CMD]) {
  1055. cmd = nla_data(nfqa[NFQA_CFG_CMD]);
  1056. /* Obsolete commands without queue context */
  1057. switch (cmd->command) {
  1058. case NFQNL_CFG_CMD_PF_BIND: return 0;
  1059. case NFQNL_CFG_CMD_PF_UNBIND: return 0;
  1060. }
  1061. }
  1062. /* Check if we support these flags in first place, dependencies should
  1063. * be there too not to break atomicity.
  1064. */
  1065. if (nfqa[NFQA_CFG_FLAGS]) {
  1066. if (!nfqa[NFQA_CFG_MASK]) {
  1067. /* A mask is needed to specify which flags are being
  1068. * changed.
  1069. */
  1070. return -EINVAL;
  1071. }
  1072. flags = ntohl(nla_get_be32(nfqa[NFQA_CFG_FLAGS]));
  1073. mask = ntohl(nla_get_be32(nfqa[NFQA_CFG_MASK]));
  1074. if (flags >= NFQA_CFG_F_MAX)
  1075. return -EOPNOTSUPP;
  1076. #if !IS_ENABLED(CONFIG_NETWORK_SECMARK)
  1077. if (flags & mask & NFQA_CFG_F_SECCTX)
  1078. return -EOPNOTSUPP;
  1079. #endif
  1080. if ((flags & mask & NFQA_CFG_F_CONNTRACK) &&
  1081. !rcu_access_pointer(nfnl_ct_hook)) {
  1082. #ifdef CONFIG_MODULES
  1083. nfnl_unlock(NFNL_SUBSYS_QUEUE);
  1084. request_module("ip_conntrack_netlink");
  1085. nfnl_lock(NFNL_SUBSYS_QUEUE);
  1086. if (rcu_access_pointer(nfnl_ct_hook))
  1087. return -EAGAIN;
  1088. #endif
  1089. return -EOPNOTSUPP;
  1090. }
  1091. }
  1092. rcu_read_lock();
  1093. queue = instance_lookup(q, queue_num);
  1094. if (queue && queue->peer_portid != NETLINK_CB(skb).portid) {
  1095. ret = -EPERM;
  1096. goto err_out_unlock;
  1097. }
  1098. if (cmd != NULL) {
  1099. switch (cmd->command) {
  1100. case NFQNL_CFG_CMD_BIND:
  1101. if (queue) {
  1102. ret = -EBUSY;
  1103. goto err_out_unlock;
  1104. }
  1105. queue = instance_create(q, queue_num,
  1106. NETLINK_CB(skb).portid);
  1107. if (IS_ERR(queue)) {
  1108. ret = PTR_ERR(queue);
  1109. goto err_out_unlock;
  1110. }
  1111. break;
  1112. case NFQNL_CFG_CMD_UNBIND:
  1113. if (!queue) {
  1114. ret = -ENODEV;
  1115. goto err_out_unlock;
  1116. }
  1117. instance_destroy(q, queue);
  1118. goto err_out_unlock;
  1119. case NFQNL_CFG_CMD_PF_BIND:
  1120. case NFQNL_CFG_CMD_PF_UNBIND:
  1121. break;
  1122. default:
  1123. ret = -ENOTSUPP;
  1124. goto err_out_unlock;
  1125. }
  1126. }
  1127. if (!queue) {
  1128. ret = -ENODEV;
  1129. goto err_out_unlock;
  1130. }
  1131. if (nfqa[NFQA_CFG_PARAMS]) {
  1132. struct nfqnl_msg_config_params *params =
  1133. nla_data(nfqa[NFQA_CFG_PARAMS]);
  1134. nfqnl_set_mode(queue, params->copy_mode,
  1135. ntohl(params->copy_range));
  1136. }
  1137. if (nfqa[NFQA_CFG_QUEUE_MAXLEN]) {
  1138. __be32 *queue_maxlen = nla_data(nfqa[NFQA_CFG_QUEUE_MAXLEN]);
  1139. spin_lock_bh(&queue->lock);
  1140. queue->queue_maxlen = ntohl(*queue_maxlen);
  1141. spin_unlock_bh(&queue->lock);
  1142. }
  1143. if (nfqa[NFQA_CFG_FLAGS]) {
  1144. spin_lock_bh(&queue->lock);
  1145. queue->flags &= ~mask;
  1146. queue->flags |= flags & mask;
  1147. spin_unlock_bh(&queue->lock);
  1148. }
  1149. err_out_unlock:
  1150. rcu_read_unlock();
  1151. return ret;
  1152. }
  1153. static const struct nfnl_callback nfqnl_cb[NFQNL_MSG_MAX] = {
  1154. [NFQNL_MSG_PACKET] = { .call_rcu = nfqnl_recv_unsupp,
  1155. .attr_count = NFQA_MAX, },
  1156. [NFQNL_MSG_VERDICT] = { .call_rcu = nfqnl_recv_verdict,
  1157. .attr_count = NFQA_MAX,
  1158. .policy = nfqa_verdict_policy },
  1159. [NFQNL_MSG_CONFIG] = { .call = nfqnl_recv_config,
  1160. .attr_count = NFQA_CFG_MAX,
  1161. .policy = nfqa_cfg_policy },
  1162. [NFQNL_MSG_VERDICT_BATCH]={ .call_rcu = nfqnl_recv_verdict_batch,
  1163. .attr_count = NFQA_MAX,
  1164. .policy = nfqa_verdict_batch_policy },
  1165. };
  1166. static const struct nfnetlink_subsystem nfqnl_subsys = {
  1167. .name = "nf_queue",
  1168. .subsys_id = NFNL_SUBSYS_QUEUE,
  1169. .cb_count = NFQNL_MSG_MAX,
  1170. .cb = nfqnl_cb,
  1171. };
  1172. #ifdef CONFIG_PROC_FS
  1173. struct iter_state {
  1174. struct seq_net_private p;
  1175. unsigned int bucket;
  1176. };
  1177. static struct hlist_node *get_first(struct seq_file *seq)
  1178. {
  1179. struct iter_state *st = seq->private;
  1180. struct net *net;
  1181. struct nfnl_queue_net *q;
  1182. if (!st)
  1183. return NULL;
  1184. net = seq_file_net(seq);
  1185. q = nfnl_queue_pernet(net);
  1186. for (st->bucket = 0; st->bucket < INSTANCE_BUCKETS; st->bucket++) {
  1187. if (!hlist_empty(&q->instance_table[st->bucket]))
  1188. return q->instance_table[st->bucket].first;
  1189. }
  1190. return NULL;
  1191. }
  1192. static struct hlist_node *get_next(struct seq_file *seq, struct hlist_node *h)
  1193. {
  1194. struct iter_state *st = seq->private;
  1195. struct net *net = seq_file_net(seq);
  1196. h = h->next;
  1197. while (!h) {
  1198. struct nfnl_queue_net *q;
  1199. if (++st->bucket >= INSTANCE_BUCKETS)
  1200. return NULL;
  1201. q = nfnl_queue_pernet(net);
  1202. h = q->instance_table[st->bucket].first;
  1203. }
  1204. return h;
  1205. }
  1206. static struct hlist_node *get_idx(struct seq_file *seq, loff_t pos)
  1207. {
  1208. struct hlist_node *head;
  1209. head = get_first(seq);
  1210. if (head)
  1211. while (pos && (head = get_next(seq, head)))
  1212. pos--;
  1213. return pos ? NULL : head;
  1214. }
  1215. static void *seq_start(struct seq_file *s, loff_t *pos)
  1216. __acquires(nfnl_queue_pernet(seq_file_net(s))->instances_lock)
  1217. {
  1218. spin_lock(&nfnl_queue_pernet(seq_file_net(s))->instances_lock);
  1219. return get_idx(s, *pos);
  1220. }
  1221. static void *seq_next(struct seq_file *s, void *v, loff_t *pos)
  1222. {
  1223. (*pos)++;
  1224. return get_next(s, v);
  1225. }
  1226. static void seq_stop(struct seq_file *s, void *v)
  1227. __releases(nfnl_queue_pernet(seq_file_net(s))->instances_lock)
  1228. {
  1229. spin_unlock(&nfnl_queue_pernet(seq_file_net(s))->instances_lock);
  1230. }
  1231. static int seq_show(struct seq_file *s, void *v)
  1232. {
  1233. const struct nfqnl_instance *inst = v;
  1234. seq_printf(s, "%5u %6u %5u %1u %5u %5u %5u %8u %2d\n",
  1235. inst->queue_num,
  1236. inst->peer_portid, inst->queue_total,
  1237. inst->copy_mode, inst->copy_range,
  1238. inst->queue_dropped, inst->queue_user_dropped,
  1239. inst->id_sequence, 1);
  1240. return 0;
  1241. }
  1242. static const struct seq_operations nfqnl_seq_ops = {
  1243. .start = seq_start,
  1244. .next = seq_next,
  1245. .stop = seq_stop,
  1246. .show = seq_show,
  1247. };
  1248. #endif /* PROC_FS */
  1249. static int __net_init nfnl_queue_net_init(struct net *net)
  1250. {
  1251. unsigned int i;
  1252. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  1253. for (i = 0; i < INSTANCE_BUCKETS; i++)
  1254. INIT_HLIST_HEAD(&q->instance_table[i]);
  1255. spin_lock_init(&q->instances_lock);
  1256. #ifdef CONFIG_PROC_FS
  1257. if (!proc_create_net("nfnetlink_queue", 0440, net->nf.proc_netfilter,
  1258. &nfqnl_seq_ops, sizeof(struct iter_state)))
  1259. return -ENOMEM;
  1260. #endif
  1261. nf_register_queue_handler(net, &nfqh);
  1262. return 0;
  1263. }
  1264. static void __net_exit nfnl_queue_net_exit(struct net *net)
  1265. {
  1266. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  1267. unsigned int i;
  1268. nf_unregister_queue_handler(net);
  1269. #ifdef CONFIG_PROC_FS
  1270. remove_proc_entry("nfnetlink_queue", net->nf.proc_netfilter);
  1271. #endif
  1272. for (i = 0; i < INSTANCE_BUCKETS; i++)
  1273. WARN_ON_ONCE(!hlist_empty(&q->instance_table[i]));
  1274. }
  1275. static void nfnl_queue_net_exit_batch(struct list_head *net_exit_list)
  1276. {
  1277. synchronize_rcu();
  1278. }
  1279. static struct pernet_operations nfnl_queue_net_ops = {
  1280. .init = nfnl_queue_net_init,
  1281. .exit = nfnl_queue_net_exit,
  1282. .exit_batch = nfnl_queue_net_exit_batch,
  1283. .id = &nfnl_queue_net_id,
  1284. .size = sizeof(struct nfnl_queue_net),
  1285. };
  1286. static int __init nfnetlink_queue_init(void)
  1287. {
  1288. int status;
  1289. status = register_pernet_subsys(&nfnl_queue_net_ops);
  1290. if (status < 0) {
  1291. pr_err("failed to register pernet ops\n");
  1292. goto out;
  1293. }
  1294. netlink_register_notifier(&nfqnl_rtnl_notifier);
  1295. status = nfnetlink_subsys_register(&nfqnl_subsys);
  1296. if (status < 0) {
  1297. pr_err("failed to create netlink socket\n");
  1298. goto cleanup_netlink_notifier;
  1299. }
  1300. status = register_netdevice_notifier(&nfqnl_dev_notifier);
  1301. if (status < 0) {
  1302. pr_err("failed to register netdevice notifier\n");
  1303. goto cleanup_netlink_subsys;
  1304. }
  1305. return status;
  1306. cleanup_netlink_subsys:
  1307. nfnetlink_subsys_unregister(&nfqnl_subsys);
  1308. cleanup_netlink_notifier:
  1309. netlink_unregister_notifier(&nfqnl_rtnl_notifier);
  1310. unregister_pernet_subsys(&nfnl_queue_net_ops);
  1311. out:
  1312. return status;
  1313. }
  1314. static void __exit nfnetlink_queue_fini(void)
  1315. {
  1316. unregister_netdevice_notifier(&nfqnl_dev_notifier);
  1317. nfnetlink_subsys_unregister(&nfqnl_subsys);
  1318. netlink_unregister_notifier(&nfqnl_rtnl_notifier);
  1319. unregister_pernet_subsys(&nfnl_queue_net_ops);
  1320. rcu_barrier(); /* Wait for completion of call_rcu()'s */
  1321. }
  1322. MODULE_DESCRIPTION("netfilter packet queue handler");
  1323. MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
  1324. MODULE_LICENSE("GPL");
  1325. MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_QUEUE);
  1326. module_init(nfnetlink_queue_init);
  1327. module_exit(nfnetlink_queue_fini);