legacy.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. /*
  2. * net/dsa/legacy.c - Hardware switch handling
  3. * Copyright (c) 2008-2009 Marvell Semiconductor
  4. * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/device.h>
  12. #include <linux/list.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/slab.h>
  15. #include <linux/module.h>
  16. #include <linux/of.h>
  17. #include <linux/of_mdio.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/of_net.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/phy_fixed.h>
  23. #include <linux/etherdevice.h>
  24. #include "dsa_priv.h"
  25. /* switch driver registration ***********************************************/
  26. static DEFINE_MUTEX(dsa_switch_drivers_mutex);
  27. static LIST_HEAD(dsa_switch_drivers);
  28. void register_switch_driver(struct dsa_switch_driver *drv)
  29. {
  30. mutex_lock(&dsa_switch_drivers_mutex);
  31. list_add_tail(&drv->list, &dsa_switch_drivers);
  32. mutex_unlock(&dsa_switch_drivers_mutex);
  33. }
  34. EXPORT_SYMBOL_GPL(register_switch_driver);
  35. void unregister_switch_driver(struct dsa_switch_driver *drv)
  36. {
  37. mutex_lock(&dsa_switch_drivers_mutex);
  38. list_del_init(&drv->list);
  39. mutex_unlock(&dsa_switch_drivers_mutex);
  40. }
  41. EXPORT_SYMBOL_GPL(unregister_switch_driver);
  42. static const struct dsa_switch_ops *
  43. dsa_switch_probe(struct device *parent, struct device *host_dev, int sw_addr,
  44. const char **_name, void **priv)
  45. {
  46. const struct dsa_switch_ops *ret;
  47. struct list_head *list;
  48. const char *name;
  49. ret = NULL;
  50. name = NULL;
  51. mutex_lock(&dsa_switch_drivers_mutex);
  52. list_for_each(list, &dsa_switch_drivers) {
  53. const struct dsa_switch_ops *ops;
  54. struct dsa_switch_driver *drv;
  55. drv = list_entry(list, struct dsa_switch_driver, list);
  56. ops = drv->ops;
  57. name = ops->probe(parent, host_dev, sw_addr, priv);
  58. if (name != NULL) {
  59. ret = ops;
  60. break;
  61. }
  62. }
  63. mutex_unlock(&dsa_switch_drivers_mutex);
  64. *_name = name;
  65. return ret;
  66. }
  67. /* basic switch operations **************************************************/
  68. static int dsa_cpu_dsa_setups(struct dsa_switch *ds)
  69. {
  70. int ret, port;
  71. for (port = 0; port < ds->num_ports; port++) {
  72. if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
  73. continue;
  74. ret = dsa_port_link_register_of(&ds->ports[port]);
  75. if (ret)
  76. return ret;
  77. }
  78. return 0;
  79. }
  80. static int dsa_switch_setup_one(struct dsa_switch *ds,
  81. struct net_device *master)
  82. {
  83. const struct dsa_switch_ops *ops = ds->ops;
  84. struct dsa_switch_tree *dst = ds->dst;
  85. struct dsa_chip_data *cd = ds->cd;
  86. bool valid_name_found = false;
  87. int index = ds->index;
  88. struct dsa_port *dp;
  89. int i, ret;
  90. /*
  91. * Validate supplied switch configuration.
  92. */
  93. for (i = 0; i < ds->num_ports; i++) {
  94. char *name;
  95. dp = &ds->ports[i];
  96. name = cd->port_names[i];
  97. if (name == NULL)
  98. continue;
  99. dp->name = name;
  100. if (!strcmp(name, "cpu")) {
  101. if (dst->cpu_dp) {
  102. netdev_err(master,
  103. "multiple cpu ports?!\n");
  104. return -EINVAL;
  105. }
  106. dst->cpu_dp = &ds->ports[i];
  107. dst->cpu_dp->master = master;
  108. dp->type = DSA_PORT_TYPE_CPU;
  109. } else if (!strcmp(name, "dsa")) {
  110. dp->type = DSA_PORT_TYPE_DSA;
  111. } else {
  112. dp->type = DSA_PORT_TYPE_USER;
  113. }
  114. valid_name_found = true;
  115. }
  116. if (!valid_name_found && i == ds->num_ports)
  117. return -EINVAL;
  118. /* Make the built-in MII bus mask match the number of ports,
  119. * switch drivers can override this later
  120. */
  121. ds->phys_mii_mask |= dsa_user_ports(ds);
  122. /*
  123. * If the CPU connects to this switch, set the switch tree
  124. * tagging protocol to the preferred tagging format of this
  125. * switch.
  126. */
  127. if (dst->cpu_dp->ds == ds) {
  128. const struct dsa_device_ops *tag_ops;
  129. enum dsa_tag_protocol tag_protocol;
  130. tag_protocol = ops->get_tag_protocol(ds, dst->cpu_dp->index);
  131. tag_ops = dsa_resolve_tag_protocol(tag_protocol);
  132. if (IS_ERR(tag_ops))
  133. return PTR_ERR(tag_ops);
  134. dst->cpu_dp->tag_ops = tag_ops;
  135. /* Few copies for faster access in master receive hot path */
  136. dst->cpu_dp->rcv = dst->cpu_dp->tag_ops->rcv;
  137. dst->cpu_dp->dst = dst;
  138. }
  139. memcpy(ds->rtable, cd->rtable, sizeof(ds->rtable));
  140. /*
  141. * Do basic register setup.
  142. */
  143. ret = ops->setup(ds);
  144. if (ret < 0)
  145. return ret;
  146. ret = dsa_switch_register_notifier(ds);
  147. if (ret)
  148. return ret;
  149. if (!ds->slave_mii_bus && ops->phy_read) {
  150. ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
  151. if (!ds->slave_mii_bus)
  152. return -ENOMEM;
  153. dsa_slave_mii_bus_init(ds);
  154. ret = mdiobus_register(ds->slave_mii_bus);
  155. if (ret < 0)
  156. return ret;
  157. }
  158. /*
  159. * Create network devices for physical switch ports.
  160. */
  161. for (i = 0; i < ds->num_ports; i++) {
  162. ds->ports[i].dn = cd->port_dn[i];
  163. ds->ports[i].cpu_dp = dst->cpu_dp;
  164. if (!dsa_is_user_port(ds, i))
  165. continue;
  166. ret = dsa_slave_create(&ds->ports[i]);
  167. if (ret < 0)
  168. netdev_err(master, "[%d]: can't create dsa slave device for port %d(%s): %d\n",
  169. index, i, cd->port_names[i], ret);
  170. }
  171. /* Perform configuration of the CPU and DSA ports */
  172. ret = dsa_cpu_dsa_setups(ds);
  173. if (ret < 0)
  174. netdev_err(master, "[%d] : can't configure CPU and DSA ports\n",
  175. index);
  176. return 0;
  177. }
  178. static struct dsa_switch *
  179. dsa_switch_setup(struct dsa_switch_tree *dst, struct net_device *master,
  180. int index, struct device *parent, struct device *host_dev)
  181. {
  182. struct dsa_chip_data *cd = dst->pd->chip + index;
  183. const struct dsa_switch_ops *ops;
  184. struct dsa_switch *ds;
  185. int ret;
  186. const char *name;
  187. void *priv;
  188. /*
  189. * Probe for switch model.
  190. */
  191. ops = dsa_switch_probe(parent, host_dev, cd->sw_addr, &name, &priv);
  192. if (!ops) {
  193. netdev_err(master, "[%d]: could not detect attached switch\n",
  194. index);
  195. return ERR_PTR(-EINVAL);
  196. }
  197. netdev_info(master, "[%d]: detected a %s switch\n",
  198. index, name);
  199. /*
  200. * Allocate and initialise switch state.
  201. */
  202. ds = dsa_switch_alloc(parent, DSA_MAX_PORTS);
  203. if (!ds)
  204. return ERR_PTR(-ENOMEM);
  205. ds->dst = dst;
  206. ds->index = index;
  207. ds->cd = cd;
  208. ds->ops = ops;
  209. ds->priv = priv;
  210. ret = dsa_switch_setup_one(ds, master);
  211. if (ret)
  212. return ERR_PTR(ret);
  213. return ds;
  214. }
  215. static void dsa_switch_destroy(struct dsa_switch *ds)
  216. {
  217. int port;
  218. /* Destroy network devices for physical switch ports. */
  219. for (port = 0; port < ds->num_ports; port++) {
  220. if (!dsa_is_user_port(ds, port))
  221. continue;
  222. if (!ds->ports[port].slave)
  223. continue;
  224. dsa_slave_destroy(ds->ports[port].slave);
  225. }
  226. /* Disable configuration of the CPU and DSA ports */
  227. for (port = 0; port < ds->num_ports; port++) {
  228. if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
  229. continue;
  230. dsa_port_link_unregister_of(&ds->ports[port]);
  231. }
  232. if (ds->slave_mii_bus && ds->ops->phy_read)
  233. mdiobus_unregister(ds->slave_mii_bus);
  234. dsa_switch_unregister_notifier(ds);
  235. }
  236. /* platform driver init and cleanup *****************************************/
  237. static int dev_is_class(struct device *dev, void *class)
  238. {
  239. if (dev->class != NULL && !strcmp(dev->class->name, class))
  240. return 1;
  241. return 0;
  242. }
  243. static struct device *dev_find_class(struct device *parent, char *class)
  244. {
  245. if (dev_is_class(parent, class)) {
  246. get_device(parent);
  247. return parent;
  248. }
  249. return device_find_child(parent, class, dev_is_class);
  250. }
  251. struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev)
  252. {
  253. struct device *d;
  254. d = dev_find_class(dev, "mdio_bus");
  255. if (d != NULL) {
  256. struct mii_bus *bus;
  257. bus = to_mii_bus(d);
  258. put_device(d);
  259. return bus;
  260. }
  261. return NULL;
  262. }
  263. EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus);
  264. #ifdef CONFIG_OF
  265. static int dsa_of_setup_routing_table(struct dsa_platform_data *pd,
  266. struct dsa_chip_data *cd,
  267. int chip_index, int port_index,
  268. struct device_node *link)
  269. {
  270. const __be32 *reg;
  271. int link_sw_addr;
  272. struct device_node *parent_sw;
  273. int len;
  274. parent_sw = of_get_parent(link);
  275. if (!parent_sw)
  276. return -EINVAL;
  277. reg = of_get_property(parent_sw, "reg", &len);
  278. if (!reg || (len != sizeof(*reg) * 2))
  279. return -EINVAL;
  280. /*
  281. * Get the destination switch number from the second field of its 'reg'
  282. * property, i.e. for "reg = <0x19 1>" sw_addr is '1'.
  283. */
  284. link_sw_addr = be32_to_cpup(reg + 1);
  285. if (link_sw_addr >= pd->nr_chips)
  286. return -EINVAL;
  287. cd->rtable[link_sw_addr] = port_index;
  288. return 0;
  289. }
  290. static int dsa_of_probe_links(struct dsa_platform_data *pd,
  291. struct dsa_chip_data *cd,
  292. int chip_index, int port_index,
  293. struct device_node *port,
  294. const char *port_name)
  295. {
  296. struct device_node *link;
  297. int link_index;
  298. int ret;
  299. for (link_index = 0;; link_index++) {
  300. link = of_parse_phandle(port, "link", link_index);
  301. if (!link)
  302. break;
  303. if (!strcmp(port_name, "dsa") && pd->nr_chips > 1) {
  304. ret = dsa_of_setup_routing_table(pd, cd, chip_index,
  305. port_index, link);
  306. if (ret)
  307. return ret;
  308. }
  309. }
  310. return 0;
  311. }
  312. static void dsa_of_free_platform_data(struct dsa_platform_data *pd)
  313. {
  314. int i;
  315. int port_index;
  316. for (i = 0; i < pd->nr_chips; i++) {
  317. port_index = 0;
  318. while (port_index < DSA_MAX_PORTS) {
  319. kfree(pd->chip[i].port_names[port_index]);
  320. port_index++;
  321. }
  322. /* Drop our reference to the MDIO bus device */
  323. if (pd->chip[i].host_dev)
  324. put_device(pd->chip[i].host_dev);
  325. }
  326. kfree(pd->chip);
  327. }
  328. static int dsa_of_probe(struct device *dev)
  329. {
  330. struct device_node *np = dev->of_node;
  331. struct device_node *child, *mdio, *ethernet, *port;
  332. struct mii_bus *mdio_bus, *mdio_bus_switch;
  333. struct net_device *ethernet_dev;
  334. struct dsa_platform_data *pd;
  335. struct dsa_chip_data *cd;
  336. const char *port_name;
  337. int chip_index, port_index;
  338. const unsigned int *sw_addr, *port_reg;
  339. u32 eeprom_len;
  340. int ret;
  341. mdio = of_parse_phandle(np, "dsa,mii-bus", 0);
  342. if (!mdio)
  343. return -EINVAL;
  344. mdio_bus = of_mdio_find_bus(mdio);
  345. if (!mdio_bus)
  346. return -EPROBE_DEFER;
  347. ethernet = of_parse_phandle(np, "dsa,ethernet", 0);
  348. if (!ethernet) {
  349. ret = -EINVAL;
  350. goto out_put_mdio;
  351. }
  352. ethernet_dev = of_find_net_device_by_node(ethernet);
  353. if (!ethernet_dev) {
  354. ret = -EPROBE_DEFER;
  355. goto out_put_mdio;
  356. }
  357. pd = kzalloc(sizeof(*pd), GFP_KERNEL);
  358. if (!pd) {
  359. ret = -ENOMEM;
  360. goto out_put_ethernet;
  361. }
  362. dev->platform_data = pd;
  363. pd->of_netdev = ethernet_dev;
  364. pd->nr_chips = of_get_available_child_count(np);
  365. if (pd->nr_chips > DSA_MAX_SWITCHES)
  366. pd->nr_chips = DSA_MAX_SWITCHES;
  367. pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data),
  368. GFP_KERNEL);
  369. if (!pd->chip) {
  370. ret = -ENOMEM;
  371. goto out_free;
  372. }
  373. chip_index = -1;
  374. for_each_available_child_of_node(np, child) {
  375. int i;
  376. chip_index++;
  377. cd = &pd->chip[chip_index];
  378. cd->of_node = child;
  379. /* Initialize the routing table */
  380. for (i = 0; i < DSA_MAX_SWITCHES; ++i)
  381. cd->rtable[i] = DSA_RTABLE_NONE;
  382. /* When assigning the host device, increment its refcount */
  383. cd->host_dev = get_device(&mdio_bus->dev);
  384. sw_addr = of_get_property(child, "reg", NULL);
  385. if (!sw_addr)
  386. continue;
  387. cd->sw_addr = be32_to_cpup(sw_addr);
  388. if (cd->sw_addr >= PHY_MAX_ADDR)
  389. continue;
  390. if (!of_property_read_u32(child, "eeprom-length", &eeprom_len))
  391. cd->eeprom_len = eeprom_len;
  392. mdio = of_parse_phandle(child, "mii-bus", 0);
  393. if (mdio) {
  394. mdio_bus_switch = of_mdio_find_bus(mdio);
  395. if (!mdio_bus_switch) {
  396. ret = -EPROBE_DEFER;
  397. goto out_free_chip;
  398. }
  399. /* Drop the mdio_bus device ref, replacing the host
  400. * device with the mdio_bus_switch device, keeping
  401. * the refcount from of_mdio_find_bus() above.
  402. */
  403. put_device(cd->host_dev);
  404. cd->host_dev = &mdio_bus_switch->dev;
  405. }
  406. for_each_available_child_of_node(child, port) {
  407. port_reg = of_get_property(port, "reg", NULL);
  408. if (!port_reg)
  409. continue;
  410. port_index = be32_to_cpup(port_reg);
  411. if (port_index >= DSA_MAX_PORTS)
  412. break;
  413. port_name = of_get_property(port, "label", NULL);
  414. if (!port_name)
  415. continue;
  416. cd->port_dn[port_index] = port;
  417. cd->port_names[port_index] = kstrdup(port_name,
  418. GFP_KERNEL);
  419. if (!cd->port_names[port_index]) {
  420. ret = -ENOMEM;
  421. goto out_free_chip;
  422. }
  423. ret = dsa_of_probe_links(pd, cd, chip_index,
  424. port_index, port, port_name);
  425. if (ret)
  426. goto out_free_chip;
  427. }
  428. }
  429. /* The individual chips hold their own refcount on the mdio bus,
  430. * so drop ours */
  431. put_device(&mdio_bus->dev);
  432. return 0;
  433. out_free_chip:
  434. dsa_of_free_platform_data(pd);
  435. out_free:
  436. kfree(pd);
  437. dev->platform_data = NULL;
  438. out_put_ethernet:
  439. put_device(&ethernet_dev->dev);
  440. out_put_mdio:
  441. put_device(&mdio_bus->dev);
  442. return ret;
  443. }
  444. static void dsa_of_remove(struct device *dev)
  445. {
  446. struct dsa_platform_data *pd = dev->platform_data;
  447. if (!dev->of_node)
  448. return;
  449. dsa_of_free_platform_data(pd);
  450. put_device(&pd->of_netdev->dev);
  451. kfree(pd);
  452. }
  453. #else
  454. static inline int dsa_of_probe(struct device *dev)
  455. {
  456. return 0;
  457. }
  458. static inline void dsa_of_remove(struct device *dev)
  459. {
  460. }
  461. #endif
  462. static int dsa_setup_dst(struct dsa_switch_tree *dst, struct net_device *dev,
  463. struct device *parent, struct dsa_platform_data *pd)
  464. {
  465. int i;
  466. unsigned configured = 0;
  467. dst->pd = pd;
  468. for (i = 0; i < pd->nr_chips; i++) {
  469. struct dsa_switch *ds;
  470. ds = dsa_switch_setup(dst, dev, i, parent, pd->chip[i].host_dev);
  471. if (IS_ERR(ds)) {
  472. netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n",
  473. i, PTR_ERR(ds));
  474. continue;
  475. }
  476. dst->ds[i] = ds;
  477. ++configured;
  478. }
  479. /*
  480. * If no switch was found, exit cleanly
  481. */
  482. if (!configured)
  483. return -EPROBE_DEFER;
  484. return dsa_master_setup(dst->cpu_dp->master, dst->cpu_dp);
  485. }
  486. static int dsa_probe(struct platform_device *pdev)
  487. {
  488. struct dsa_platform_data *pd = pdev->dev.platform_data;
  489. struct net_device *dev;
  490. struct dsa_switch_tree *dst;
  491. int ret;
  492. if (pdev->dev.of_node) {
  493. ret = dsa_of_probe(&pdev->dev);
  494. if (ret)
  495. return ret;
  496. pd = pdev->dev.platform_data;
  497. }
  498. if (pd == NULL || (pd->netdev == NULL && pd->of_netdev == NULL))
  499. return -EINVAL;
  500. if (pd->of_netdev) {
  501. dev = pd->of_netdev;
  502. dev_hold(dev);
  503. } else {
  504. dev = dsa_dev_to_net_device(pd->netdev);
  505. }
  506. if (dev == NULL) {
  507. ret = -EPROBE_DEFER;
  508. goto out;
  509. }
  510. if (dev->dsa_ptr != NULL) {
  511. dev_put(dev);
  512. ret = -EEXIST;
  513. goto out;
  514. }
  515. dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
  516. if (dst == NULL) {
  517. dev_put(dev);
  518. ret = -ENOMEM;
  519. goto out;
  520. }
  521. platform_set_drvdata(pdev, dst);
  522. ret = dsa_setup_dst(dst, dev, &pdev->dev, pd);
  523. if (ret) {
  524. dev_put(dev);
  525. goto out;
  526. }
  527. return 0;
  528. out:
  529. dsa_of_remove(&pdev->dev);
  530. return ret;
  531. }
  532. static void dsa_remove_dst(struct dsa_switch_tree *dst)
  533. {
  534. int i;
  535. dsa_master_teardown(dst->cpu_dp->master);
  536. for (i = 0; i < dst->pd->nr_chips; i++) {
  537. struct dsa_switch *ds = dst->ds[i];
  538. if (ds)
  539. dsa_switch_destroy(ds);
  540. }
  541. dev_put(dst->cpu_dp->master);
  542. }
  543. static int dsa_remove(struct platform_device *pdev)
  544. {
  545. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  546. dsa_remove_dst(dst);
  547. dsa_of_remove(&pdev->dev);
  548. return 0;
  549. }
  550. static void dsa_shutdown(struct platform_device *pdev)
  551. {
  552. }
  553. #ifdef CONFIG_PM_SLEEP
  554. static int dsa_suspend(struct device *d)
  555. {
  556. struct platform_device *pdev = to_platform_device(d);
  557. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  558. int i, ret = 0;
  559. for (i = 0; i < dst->pd->nr_chips; i++) {
  560. struct dsa_switch *ds = dst->ds[i];
  561. if (ds != NULL)
  562. ret = dsa_switch_suspend(ds);
  563. }
  564. return ret;
  565. }
  566. static int dsa_resume(struct device *d)
  567. {
  568. struct platform_device *pdev = to_platform_device(d);
  569. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  570. int i, ret = 0;
  571. for (i = 0; i < dst->pd->nr_chips; i++) {
  572. struct dsa_switch *ds = dst->ds[i];
  573. if (ds != NULL)
  574. ret = dsa_switch_resume(ds);
  575. }
  576. return ret;
  577. }
  578. #endif
  579. static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume);
  580. static const struct of_device_id dsa_of_match_table[] = {
  581. { .compatible = "marvell,dsa", },
  582. {}
  583. };
  584. MODULE_DEVICE_TABLE(of, dsa_of_match_table);
  585. static struct platform_driver dsa_driver = {
  586. .probe = dsa_probe,
  587. .remove = dsa_remove,
  588. .shutdown = dsa_shutdown,
  589. .driver = {
  590. .name = "dsa",
  591. .of_match_table = dsa_of_match_table,
  592. .pm = &dsa_pm_ops,
  593. },
  594. };
  595. int dsa_legacy_register(void)
  596. {
  597. return platform_driver_register(&dsa_driver);
  598. }
  599. void dsa_legacy_unregister(void)
  600. {
  601. platform_driver_unregister(&dsa_driver);
  602. }