time.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/kernel.h>
  31. #include <linux/timex.h>
  32. #include <linux/capability.h>
  33. #include <linux/timekeeper_internal.h>
  34. #include <linux/errno.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/security.h>
  37. #include <linux/fs.h>
  38. #include <linux/math64.h>
  39. #include <linux/ptrace.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/compat.h>
  42. #include <asm/unistd.h>
  43. #include <generated/timeconst.h>
  44. #include "timekeeping.h"
  45. /*
  46. * The timezone where the local system is located. Used as a default by some
  47. * programs who obtain this value by using gettimeofday.
  48. */
  49. struct timezone sys_tz;
  50. EXPORT_SYMBOL(sys_tz);
  51. #ifdef __ARCH_WANT_SYS_TIME
  52. /*
  53. * sys_time() can be implemented in user-level using
  54. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  55. * why not move it into the appropriate arch directory (for those
  56. * architectures that need it).
  57. */
  58. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  59. {
  60. time_t i = (time_t)ktime_get_real_seconds();
  61. if (tloc) {
  62. if (put_user(i,tloc))
  63. return -EFAULT;
  64. }
  65. force_successful_syscall_return();
  66. return i;
  67. }
  68. /*
  69. * sys_stime() can be implemented in user-level using
  70. * sys_settimeofday(). Is this for backwards compatibility? If so,
  71. * why not move it into the appropriate arch directory (for those
  72. * architectures that need it).
  73. */
  74. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  75. {
  76. struct timespec64 tv;
  77. int err;
  78. if (get_user(tv.tv_sec, tptr))
  79. return -EFAULT;
  80. tv.tv_nsec = 0;
  81. err = security_settime64(&tv, NULL);
  82. if (err)
  83. return err;
  84. do_settimeofday64(&tv);
  85. return 0;
  86. }
  87. #endif /* __ARCH_WANT_SYS_TIME */
  88. #ifdef CONFIG_COMPAT
  89. #ifdef __ARCH_WANT_COMPAT_SYS_TIME
  90. /* compat_time_t is a 32 bit "long" and needs to get converted. */
  91. COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
  92. {
  93. compat_time_t i;
  94. i = (compat_time_t)ktime_get_real_seconds();
  95. if (tloc) {
  96. if (put_user(i,tloc))
  97. return -EFAULT;
  98. }
  99. force_successful_syscall_return();
  100. return i;
  101. }
  102. COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
  103. {
  104. struct timespec64 tv;
  105. int err;
  106. if (get_user(tv.tv_sec, tptr))
  107. return -EFAULT;
  108. tv.tv_nsec = 0;
  109. err = security_settime64(&tv, NULL);
  110. if (err)
  111. return err;
  112. do_settimeofday64(&tv);
  113. return 0;
  114. }
  115. #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
  116. #endif
  117. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  118. struct timezone __user *, tz)
  119. {
  120. if (likely(tv != NULL)) {
  121. struct timespec64 ts;
  122. ktime_get_real_ts64(&ts);
  123. if (put_user(ts.tv_sec, &tv->tv_sec) ||
  124. put_user(ts.tv_nsec / 1000, &tv->tv_usec))
  125. return -EFAULT;
  126. }
  127. if (unlikely(tz != NULL)) {
  128. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  129. return -EFAULT;
  130. }
  131. return 0;
  132. }
  133. /*
  134. * In case for some reason the CMOS clock has not already been running
  135. * in UTC, but in some local time: The first time we set the timezone,
  136. * we will warp the clock so that it is ticking UTC time instead of
  137. * local time. Presumably, if someone is setting the timezone then we
  138. * are running in an environment where the programs understand about
  139. * timezones. This should be done at boot time in the /etc/rc script,
  140. * as soon as possible, so that the clock can be set right. Otherwise,
  141. * various programs will get confused when the clock gets warped.
  142. */
  143. int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
  144. {
  145. static int firsttime = 1;
  146. int error = 0;
  147. if (tv && !timespec64_valid_settod(tv))
  148. return -EINVAL;
  149. error = security_settime64(tv, tz);
  150. if (error)
  151. return error;
  152. if (tz) {
  153. /* Verify we're witin the +-15 hrs range */
  154. if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
  155. return -EINVAL;
  156. sys_tz = *tz;
  157. update_vsyscall_tz();
  158. if (firsttime) {
  159. firsttime = 0;
  160. if (!tv)
  161. timekeeping_warp_clock();
  162. }
  163. }
  164. if (tv)
  165. return do_settimeofday64(tv);
  166. return 0;
  167. }
  168. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  169. struct timezone __user *, tz)
  170. {
  171. struct timespec64 new_ts;
  172. struct timeval user_tv;
  173. struct timezone new_tz;
  174. if (tv) {
  175. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  176. return -EFAULT;
  177. if (!timeval_valid(&user_tv))
  178. return -EINVAL;
  179. new_ts.tv_sec = user_tv.tv_sec;
  180. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  181. }
  182. if (tz) {
  183. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  184. return -EFAULT;
  185. }
  186. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  187. }
  188. #ifdef CONFIG_COMPAT
  189. COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
  190. struct timezone __user *, tz)
  191. {
  192. if (tv) {
  193. struct timespec64 ts;
  194. ktime_get_real_ts64(&ts);
  195. if (put_user(ts.tv_sec, &tv->tv_sec) ||
  196. put_user(ts.tv_nsec / 1000, &tv->tv_usec))
  197. return -EFAULT;
  198. }
  199. if (tz) {
  200. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  201. return -EFAULT;
  202. }
  203. return 0;
  204. }
  205. COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
  206. struct timezone __user *, tz)
  207. {
  208. struct timespec64 new_ts;
  209. struct timeval user_tv;
  210. struct timezone new_tz;
  211. if (tv) {
  212. if (compat_get_timeval(&user_tv, tv))
  213. return -EFAULT;
  214. new_ts.tv_sec = user_tv.tv_sec;
  215. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  216. }
  217. if (tz) {
  218. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  219. return -EFAULT;
  220. }
  221. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  222. }
  223. #endif
  224. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  225. {
  226. struct timex txc; /* Local copy of parameter */
  227. int ret;
  228. /* Copy the user data space into the kernel copy
  229. * structure. But bear in mind that the structures
  230. * may change
  231. */
  232. if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
  233. return -EFAULT;
  234. ret = do_adjtimex(&txc);
  235. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  236. }
  237. #ifdef CONFIG_COMPAT
  238. COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
  239. {
  240. struct timex txc;
  241. int err, ret;
  242. err = compat_get_timex(&txc, utp);
  243. if (err)
  244. return err;
  245. ret = do_adjtimex(&txc);
  246. err = compat_put_timex(utp, &txc);
  247. if (err)
  248. return err;
  249. return ret;
  250. }
  251. #endif
  252. /*
  253. * Convert jiffies to milliseconds and back.
  254. *
  255. * Avoid unnecessary multiplications/divisions in the
  256. * two most common HZ cases:
  257. */
  258. unsigned int jiffies_to_msecs(const unsigned long j)
  259. {
  260. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  261. return (MSEC_PER_SEC / HZ) * j;
  262. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  263. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  264. #else
  265. # if BITS_PER_LONG == 32
  266. return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
  267. HZ_TO_MSEC_SHR32;
  268. # else
  269. return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
  270. # endif
  271. #endif
  272. }
  273. EXPORT_SYMBOL(jiffies_to_msecs);
  274. unsigned int jiffies_to_usecs(const unsigned long j)
  275. {
  276. /*
  277. * Hz usually doesn't go much further MSEC_PER_SEC.
  278. * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
  279. */
  280. BUILD_BUG_ON(HZ > USEC_PER_SEC);
  281. #if !(USEC_PER_SEC % HZ)
  282. return (USEC_PER_SEC / HZ) * j;
  283. #else
  284. # if BITS_PER_LONG == 32
  285. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  286. # else
  287. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  288. # endif
  289. #endif
  290. }
  291. EXPORT_SYMBOL(jiffies_to_usecs);
  292. /**
  293. * timespec_trunc - Truncate timespec to a granularity
  294. * @t: Timespec
  295. * @gran: Granularity in ns.
  296. *
  297. * Truncate a timespec to a granularity. Always rounds down. gran must
  298. * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
  299. */
  300. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  301. {
  302. /* Avoid division in the common cases 1 ns and 1 s. */
  303. if (gran == 1) {
  304. /* nothing */
  305. } else if (gran == NSEC_PER_SEC) {
  306. t.tv_nsec = 0;
  307. } else if (gran > 1 && gran < NSEC_PER_SEC) {
  308. t.tv_nsec -= t.tv_nsec % gran;
  309. } else {
  310. WARN(1, "illegal file time granularity: %u", gran);
  311. }
  312. return t;
  313. }
  314. EXPORT_SYMBOL(timespec_trunc);
  315. /*
  316. * mktime64 - Converts date to seconds.
  317. * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  318. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  319. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  320. *
  321. * [For the Julian calendar (which was used in Russia before 1917,
  322. * Britain & colonies before 1752, anywhere else before 1582,
  323. * and is still in use by some communities) leave out the
  324. * -year/100+year/400 terms, and add 10.]
  325. *
  326. * This algorithm was first published by Gauss (I think).
  327. *
  328. * A leap second can be indicated by calling this function with sec as
  329. * 60 (allowable under ISO 8601). The leap second is treated the same
  330. * as the following second since they don't exist in UNIX time.
  331. *
  332. * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
  333. * tomorrow - (allowable under ISO 8601) is supported.
  334. */
  335. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  336. const unsigned int day, const unsigned int hour,
  337. const unsigned int min, const unsigned int sec)
  338. {
  339. unsigned int mon = mon0, year = year0;
  340. /* 1..12 -> 11,12,1..10 */
  341. if (0 >= (int) (mon -= 2)) {
  342. mon += 12; /* Puts Feb last since it has leap day */
  343. year -= 1;
  344. }
  345. return ((((time64_t)
  346. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  347. year*365 - 719499
  348. )*24 + hour /* now have hours - midnight tomorrow handled here */
  349. )*60 + min /* now have minutes */
  350. )*60 + sec; /* finally seconds */
  351. }
  352. EXPORT_SYMBOL(mktime64);
  353. /**
  354. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  355. *
  356. * @ts: pointer to timespec variable to be set
  357. * @sec: seconds to set
  358. * @nsec: nanoseconds to set
  359. *
  360. * Set seconds and nanoseconds field of a timespec variable and
  361. * normalize to the timespec storage format
  362. *
  363. * Note: The tv_nsec part is always in the range of
  364. * 0 <= tv_nsec < NSEC_PER_SEC
  365. * For negative values only the tv_sec field is negative !
  366. */
  367. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  368. {
  369. while (nsec >= NSEC_PER_SEC) {
  370. /*
  371. * The following asm() prevents the compiler from
  372. * optimising this loop into a modulo operation. See
  373. * also __iter_div_u64_rem() in include/linux/time.h
  374. */
  375. asm("" : "+rm"(nsec));
  376. nsec -= NSEC_PER_SEC;
  377. ++sec;
  378. }
  379. while (nsec < 0) {
  380. asm("" : "+rm"(nsec));
  381. nsec += NSEC_PER_SEC;
  382. --sec;
  383. }
  384. ts->tv_sec = sec;
  385. ts->tv_nsec = nsec;
  386. }
  387. EXPORT_SYMBOL(set_normalized_timespec);
  388. /**
  389. * ns_to_timespec - Convert nanoseconds to timespec
  390. * @nsec: the nanoseconds value to be converted
  391. *
  392. * Returns the timespec representation of the nsec parameter.
  393. */
  394. struct timespec ns_to_timespec(const s64 nsec)
  395. {
  396. struct timespec ts;
  397. s32 rem;
  398. if (!nsec)
  399. return (struct timespec) {0, 0};
  400. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  401. if (unlikely(rem < 0)) {
  402. ts.tv_sec--;
  403. rem += NSEC_PER_SEC;
  404. }
  405. ts.tv_nsec = rem;
  406. return ts;
  407. }
  408. EXPORT_SYMBOL(ns_to_timespec);
  409. /**
  410. * ns_to_timeval - Convert nanoseconds to timeval
  411. * @nsec: the nanoseconds value to be converted
  412. *
  413. * Returns the timeval representation of the nsec parameter.
  414. */
  415. struct timeval ns_to_timeval(const s64 nsec)
  416. {
  417. struct timespec ts = ns_to_timespec(nsec);
  418. struct timeval tv;
  419. tv.tv_sec = ts.tv_sec;
  420. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  421. return tv;
  422. }
  423. EXPORT_SYMBOL(ns_to_timeval);
  424. struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
  425. {
  426. struct timespec64 ts = ns_to_timespec64(nsec);
  427. struct __kernel_old_timeval tv;
  428. tv.tv_sec = ts.tv_sec;
  429. tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
  430. return tv;
  431. }
  432. EXPORT_SYMBOL(ns_to_kernel_old_timeval);
  433. /**
  434. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  435. *
  436. * @ts: pointer to timespec variable to be set
  437. * @sec: seconds to set
  438. * @nsec: nanoseconds to set
  439. *
  440. * Set seconds and nanoseconds field of a timespec variable and
  441. * normalize to the timespec storage format
  442. *
  443. * Note: The tv_nsec part is always in the range of
  444. * 0 <= tv_nsec < NSEC_PER_SEC
  445. * For negative values only the tv_sec field is negative !
  446. */
  447. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  448. {
  449. while (nsec >= NSEC_PER_SEC) {
  450. /*
  451. * The following asm() prevents the compiler from
  452. * optimising this loop into a modulo operation. See
  453. * also __iter_div_u64_rem() in include/linux/time.h
  454. */
  455. asm("" : "+rm"(nsec));
  456. nsec -= NSEC_PER_SEC;
  457. ++sec;
  458. }
  459. while (nsec < 0) {
  460. asm("" : "+rm"(nsec));
  461. nsec += NSEC_PER_SEC;
  462. --sec;
  463. }
  464. ts->tv_sec = sec;
  465. ts->tv_nsec = nsec;
  466. }
  467. EXPORT_SYMBOL(set_normalized_timespec64);
  468. /**
  469. * ns_to_timespec64 - Convert nanoseconds to timespec64
  470. * @nsec: the nanoseconds value to be converted
  471. *
  472. * Returns the timespec64 representation of the nsec parameter.
  473. */
  474. struct timespec64 ns_to_timespec64(const s64 nsec)
  475. {
  476. struct timespec64 ts;
  477. s32 rem;
  478. if (!nsec)
  479. return (struct timespec64) {0, 0};
  480. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  481. if (unlikely(rem < 0)) {
  482. ts.tv_sec--;
  483. rem += NSEC_PER_SEC;
  484. }
  485. ts.tv_nsec = rem;
  486. return ts;
  487. }
  488. EXPORT_SYMBOL(ns_to_timespec64);
  489. /**
  490. * msecs_to_jiffies: - convert milliseconds to jiffies
  491. * @m: time in milliseconds
  492. *
  493. * conversion is done as follows:
  494. *
  495. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  496. *
  497. * - 'too large' values [that would result in larger than
  498. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  499. *
  500. * - all other values are converted to jiffies by either multiplying
  501. * the input value by a factor or dividing it with a factor and
  502. * handling any 32-bit overflows.
  503. * for the details see __msecs_to_jiffies()
  504. *
  505. * msecs_to_jiffies() checks for the passed in value being a constant
  506. * via __builtin_constant_p() allowing gcc to eliminate most of the
  507. * code, __msecs_to_jiffies() is called if the value passed does not
  508. * allow constant folding and the actual conversion must be done at
  509. * runtime.
  510. * the _msecs_to_jiffies helpers are the HZ dependent conversion
  511. * routines found in include/linux/jiffies.h
  512. */
  513. unsigned long __msecs_to_jiffies(const unsigned int m)
  514. {
  515. /*
  516. * Negative value, means infinite timeout:
  517. */
  518. if ((int)m < 0)
  519. return MAX_JIFFY_OFFSET;
  520. return _msecs_to_jiffies(m);
  521. }
  522. EXPORT_SYMBOL(__msecs_to_jiffies);
  523. unsigned long __usecs_to_jiffies(const unsigned int u)
  524. {
  525. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  526. return MAX_JIFFY_OFFSET;
  527. return _usecs_to_jiffies(u);
  528. }
  529. EXPORT_SYMBOL(__usecs_to_jiffies);
  530. /*
  531. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  532. * that a remainder subtract here would not do the right thing as the
  533. * resolution values don't fall on second boundries. I.e. the line:
  534. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  535. * Note that due to the small error in the multiplier here, this
  536. * rounding is incorrect for sufficiently large values of tv_nsec, but
  537. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  538. * OK.
  539. *
  540. * Rather, we just shift the bits off the right.
  541. *
  542. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  543. * value to a scaled second value.
  544. */
  545. static unsigned long
  546. __timespec64_to_jiffies(u64 sec, long nsec)
  547. {
  548. nsec = nsec + TICK_NSEC - 1;
  549. if (sec >= MAX_SEC_IN_JIFFIES){
  550. sec = MAX_SEC_IN_JIFFIES;
  551. nsec = 0;
  552. }
  553. return ((sec * SEC_CONVERSION) +
  554. (((u64)nsec * NSEC_CONVERSION) >>
  555. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  556. }
  557. static unsigned long
  558. __timespec_to_jiffies(unsigned long sec, long nsec)
  559. {
  560. return __timespec64_to_jiffies((u64)sec, nsec);
  561. }
  562. unsigned long
  563. timespec64_to_jiffies(const struct timespec64 *value)
  564. {
  565. return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
  566. }
  567. EXPORT_SYMBOL(timespec64_to_jiffies);
  568. void
  569. jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
  570. {
  571. /*
  572. * Convert jiffies to nanoseconds and separate with
  573. * one divide.
  574. */
  575. u32 rem;
  576. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  577. NSEC_PER_SEC, &rem);
  578. value->tv_nsec = rem;
  579. }
  580. EXPORT_SYMBOL(jiffies_to_timespec64);
  581. /*
  582. * We could use a similar algorithm to timespec_to_jiffies (with a
  583. * different multiplier for usec instead of nsec). But this has a
  584. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  585. * usec value, since it's not necessarily integral.
  586. *
  587. * We could instead round in the intermediate scaled representation
  588. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  589. * perilous: the scaling introduces a small positive error, which
  590. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  591. * units to the intermediate before shifting) leads to accidental
  592. * overflow and overestimates.
  593. *
  594. * At the cost of one additional multiplication by a constant, just
  595. * use the timespec implementation.
  596. */
  597. unsigned long
  598. timeval_to_jiffies(const struct timeval *value)
  599. {
  600. return __timespec_to_jiffies(value->tv_sec,
  601. value->tv_usec * NSEC_PER_USEC);
  602. }
  603. EXPORT_SYMBOL(timeval_to_jiffies);
  604. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  605. {
  606. /*
  607. * Convert jiffies to nanoseconds and separate with
  608. * one divide.
  609. */
  610. u32 rem;
  611. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  612. NSEC_PER_SEC, &rem);
  613. value->tv_usec = rem / NSEC_PER_USEC;
  614. }
  615. EXPORT_SYMBOL(jiffies_to_timeval);
  616. /*
  617. * Convert jiffies/jiffies_64 to clock_t and back.
  618. */
  619. clock_t jiffies_to_clock_t(unsigned long x)
  620. {
  621. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  622. # if HZ < USER_HZ
  623. return x * (USER_HZ / HZ);
  624. # else
  625. return x / (HZ / USER_HZ);
  626. # endif
  627. #else
  628. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  629. #endif
  630. }
  631. EXPORT_SYMBOL(jiffies_to_clock_t);
  632. unsigned long clock_t_to_jiffies(unsigned long x)
  633. {
  634. #if (HZ % USER_HZ)==0
  635. if (x >= ~0UL / (HZ / USER_HZ))
  636. return ~0UL;
  637. return x * (HZ / USER_HZ);
  638. #else
  639. /* Don't worry about loss of precision here .. */
  640. if (x >= ~0UL / HZ * USER_HZ)
  641. return ~0UL;
  642. /* .. but do try to contain it here */
  643. return div_u64((u64)x * HZ, USER_HZ);
  644. #endif
  645. }
  646. EXPORT_SYMBOL(clock_t_to_jiffies);
  647. u64 jiffies_64_to_clock_t(u64 x)
  648. {
  649. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  650. # if HZ < USER_HZ
  651. x = div_u64(x * USER_HZ, HZ);
  652. # elif HZ > USER_HZ
  653. x = div_u64(x, HZ / USER_HZ);
  654. # else
  655. /* Nothing to do */
  656. # endif
  657. #else
  658. /*
  659. * There are better ways that don't overflow early,
  660. * but even this doesn't overflow in hundreds of years
  661. * in 64 bits, so..
  662. */
  663. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  664. #endif
  665. return x;
  666. }
  667. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  668. u64 nsec_to_clock_t(u64 x)
  669. {
  670. #if (NSEC_PER_SEC % USER_HZ) == 0
  671. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  672. #elif (USER_HZ % 512) == 0
  673. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  674. #else
  675. /*
  676. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  677. * overflow after 64.99 years.
  678. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  679. */
  680. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  681. #endif
  682. }
  683. u64 jiffies64_to_nsecs(u64 j)
  684. {
  685. #if !(NSEC_PER_SEC % HZ)
  686. return (NSEC_PER_SEC / HZ) * j;
  687. # else
  688. return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
  689. #endif
  690. }
  691. EXPORT_SYMBOL(jiffies64_to_nsecs);
  692. /**
  693. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  694. *
  695. * @n: nsecs in u64
  696. *
  697. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  698. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  699. * for scheduler, not for use in device drivers to calculate timeout value.
  700. *
  701. * note:
  702. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  703. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  704. */
  705. u64 nsecs_to_jiffies64(u64 n)
  706. {
  707. #if (NSEC_PER_SEC % HZ) == 0
  708. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  709. return div_u64(n, NSEC_PER_SEC / HZ);
  710. #elif (HZ % 512) == 0
  711. /* overflow after 292 years if HZ = 1024 */
  712. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  713. #else
  714. /*
  715. * Generic case - optimized for cases where HZ is a multiple of 3.
  716. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  717. */
  718. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  719. #endif
  720. }
  721. EXPORT_SYMBOL(nsecs_to_jiffies64);
  722. /**
  723. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  724. *
  725. * @n: nsecs in u64
  726. *
  727. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  728. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  729. * for scheduler, not for use in device drivers to calculate timeout value.
  730. *
  731. * note:
  732. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  733. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  734. */
  735. unsigned long nsecs_to_jiffies(u64 n)
  736. {
  737. return (unsigned long)nsecs_to_jiffies64(n);
  738. }
  739. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  740. /*
  741. * Add two timespec64 values and do a safety check for overflow.
  742. * It's assumed that both values are valid (>= 0).
  743. * And, each timespec64 is in normalized form.
  744. */
  745. struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
  746. const struct timespec64 rhs)
  747. {
  748. struct timespec64 res;
  749. set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
  750. lhs.tv_nsec + rhs.tv_nsec);
  751. if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
  752. res.tv_sec = TIME64_MAX;
  753. res.tv_nsec = 0;
  754. }
  755. return res;
  756. }
  757. int get_timespec64(struct timespec64 *ts,
  758. const struct __kernel_timespec __user *uts)
  759. {
  760. struct __kernel_timespec kts;
  761. int ret;
  762. ret = copy_from_user(&kts, uts, sizeof(kts));
  763. if (ret)
  764. return -EFAULT;
  765. ts->tv_sec = kts.tv_sec;
  766. /* Zero out the padding for 32 bit systems or in compat mode */
  767. if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
  768. kts.tv_nsec &= 0xFFFFFFFFUL;
  769. ts->tv_nsec = kts.tv_nsec;
  770. return 0;
  771. }
  772. EXPORT_SYMBOL_GPL(get_timespec64);
  773. int put_timespec64(const struct timespec64 *ts,
  774. struct __kernel_timespec __user *uts)
  775. {
  776. struct __kernel_timespec kts = {
  777. .tv_sec = ts->tv_sec,
  778. .tv_nsec = ts->tv_nsec
  779. };
  780. return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
  781. }
  782. EXPORT_SYMBOL_GPL(put_timespec64);
  783. int __compat_get_timespec64(struct timespec64 *ts64,
  784. const struct compat_timespec __user *cts)
  785. {
  786. struct compat_timespec ts;
  787. int ret;
  788. ret = copy_from_user(&ts, cts, sizeof(ts));
  789. if (ret)
  790. return -EFAULT;
  791. ts64->tv_sec = ts.tv_sec;
  792. ts64->tv_nsec = ts.tv_nsec;
  793. return 0;
  794. }
  795. int __compat_put_timespec64(const struct timespec64 *ts64,
  796. struct compat_timespec __user *cts)
  797. {
  798. struct compat_timespec ts = {
  799. .tv_sec = ts64->tv_sec,
  800. .tv_nsec = ts64->tv_nsec
  801. };
  802. return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
  803. }
  804. int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
  805. {
  806. if (COMPAT_USE_64BIT_TIME)
  807. return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
  808. else
  809. return __compat_get_timespec64(ts, uts);
  810. }
  811. EXPORT_SYMBOL_GPL(compat_get_timespec64);
  812. int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
  813. {
  814. if (COMPAT_USE_64BIT_TIME)
  815. return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
  816. else
  817. return __compat_put_timespec64(ts, uts);
  818. }
  819. EXPORT_SYMBOL_GPL(compat_put_timespec64);
  820. int get_itimerspec64(struct itimerspec64 *it,
  821. const struct __kernel_itimerspec __user *uit)
  822. {
  823. int ret;
  824. ret = get_timespec64(&it->it_interval, &uit->it_interval);
  825. if (ret)
  826. return ret;
  827. ret = get_timespec64(&it->it_value, &uit->it_value);
  828. return ret;
  829. }
  830. EXPORT_SYMBOL_GPL(get_itimerspec64);
  831. int put_itimerspec64(const struct itimerspec64 *it,
  832. struct __kernel_itimerspec __user *uit)
  833. {
  834. int ret;
  835. ret = put_timespec64(&it->it_interval, &uit->it_interval);
  836. if (ret)
  837. return ret;
  838. ret = put_timespec64(&it->it_value, &uit->it_value);
  839. return ret;
  840. }
  841. EXPORT_SYMBOL_GPL(put_itimerspec64);
  842. int get_compat_itimerspec64(struct itimerspec64 *its,
  843. const struct compat_itimerspec __user *uits)
  844. {
  845. if (__compat_get_timespec64(&its->it_interval, &uits->it_interval) ||
  846. __compat_get_timespec64(&its->it_value, &uits->it_value))
  847. return -EFAULT;
  848. return 0;
  849. }
  850. EXPORT_SYMBOL_GPL(get_compat_itimerspec64);
  851. int put_compat_itimerspec64(const struct itimerspec64 *its,
  852. struct compat_itimerspec __user *uits)
  853. {
  854. if (__compat_put_timespec64(&its->it_interval, &uits->it_interval) ||
  855. __compat_put_timespec64(&its->it_value, &uits->it_value))
  856. return -EFAULT;
  857. return 0;
  858. }
  859. EXPORT_SYMBOL_GPL(put_compat_itimerspec64);