tick-common.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * linux/kernel/time/tick-common.c
  3. *
  4. * This file contains the base functions to manage periodic tick
  5. * related events.
  6. *
  7. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  8. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  9. * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10. *
  11. * This code is licenced under the GPL version 2. For details see
  12. * kernel-base/COPYING.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/percpu.h>
  19. #include <linux/profile.h>
  20. #include <linux/sched.h>
  21. #include <linux/module.h>
  22. #include <trace/events/power.h>
  23. #include <asm/irq_regs.h>
  24. #include "tick-internal.h"
  25. /*
  26. * Tick devices
  27. */
  28. DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
  29. /*
  30. * Tick next event: keeps track of the tick time
  31. */
  32. ktime_t tick_next_period;
  33. ktime_t tick_period;
  34. /*
  35. * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
  36. * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
  37. * variable has two functions:
  38. *
  39. * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
  40. * timekeeping lock all at once. Only the CPU which is assigned to do the
  41. * update is handling it.
  42. *
  43. * 2) Hand off the duty in the NOHZ idle case by setting the value to
  44. * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
  45. * at it will take over and keep the time keeping alive. The handover
  46. * procedure also covers cpu hotplug.
  47. */
  48. int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
  49. /*
  50. * Debugging: see timer_list.c
  51. */
  52. struct tick_device *tick_get_device(int cpu)
  53. {
  54. return &per_cpu(tick_cpu_device, cpu);
  55. }
  56. /**
  57. * tick_is_oneshot_available - check for a oneshot capable event device
  58. */
  59. int tick_is_oneshot_available(void)
  60. {
  61. struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  62. if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
  63. return 0;
  64. if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  65. return 1;
  66. return tick_broadcast_oneshot_available();
  67. }
  68. /*
  69. * Periodic tick
  70. */
  71. static void tick_periodic(int cpu)
  72. {
  73. if (tick_do_timer_cpu == cpu) {
  74. write_seqlock(&jiffies_lock);
  75. /* Keep track of the next tick event */
  76. tick_next_period = ktime_add(tick_next_period, tick_period);
  77. do_timer(1);
  78. write_sequnlock(&jiffies_lock);
  79. update_wall_time();
  80. }
  81. update_process_times(user_mode(get_irq_regs()));
  82. profile_tick(CPU_PROFILING);
  83. }
  84. /*
  85. * Event handler for periodic ticks
  86. */
  87. void tick_handle_periodic(struct clock_event_device *dev)
  88. {
  89. int cpu = smp_processor_id();
  90. ktime_t next = dev->next_event;
  91. tick_periodic(cpu);
  92. #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
  93. /*
  94. * The cpu might have transitioned to HIGHRES or NOHZ mode via
  95. * update_process_times() -> run_local_timers() ->
  96. * hrtimer_run_queues().
  97. */
  98. if (dev->event_handler != tick_handle_periodic)
  99. return;
  100. #endif
  101. if (!clockevent_state_oneshot(dev))
  102. return;
  103. for (;;) {
  104. /*
  105. * Setup the next period for devices, which do not have
  106. * periodic mode:
  107. */
  108. next = ktime_add(next, tick_period);
  109. if (!clockevents_program_event(dev, next, false))
  110. return;
  111. /*
  112. * Have to be careful here. If we're in oneshot mode,
  113. * before we call tick_periodic() in a loop, we need
  114. * to be sure we're using a real hardware clocksource.
  115. * Otherwise we could get trapped in an infinite
  116. * loop, as the tick_periodic() increments jiffies,
  117. * which then will increment time, possibly causing
  118. * the loop to trigger again and again.
  119. */
  120. if (timekeeping_valid_for_hres())
  121. tick_periodic(cpu);
  122. }
  123. }
  124. /*
  125. * Setup the device for a periodic tick
  126. */
  127. void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
  128. {
  129. tick_set_periodic_handler(dev, broadcast);
  130. /* Broadcast setup ? */
  131. if (!tick_device_is_functional(dev))
  132. return;
  133. if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
  134. !tick_broadcast_oneshot_active()) {
  135. clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
  136. } else {
  137. unsigned long seq;
  138. ktime_t next;
  139. do {
  140. seq = read_seqbegin(&jiffies_lock);
  141. next = tick_next_period;
  142. } while (read_seqretry(&jiffies_lock, seq));
  143. clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
  144. for (;;) {
  145. if (!clockevents_program_event(dev, next, false))
  146. return;
  147. next = ktime_add(next, tick_period);
  148. }
  149. }
  150. }
  151. /*
  152. * Setup the tick device
  153. */
  154. static void tick_setup_device(struct tick_device *td,
  155. struct clock_event_device *newdev, int cpu,
  156. const struct cpumask *cpumask)
  157. {
  158. void (*handler)(struct clock_event_device *) = NULL;
  159. ktime_t next_event = 0;
  160. /*
  161. * First device setup ?
  162. */
  163. if (!td->evtdev) {
  164. /*
  165. * If no cpu took the do_timer update, assign it to
  166. * this cpu:
  167. */
  168. if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
  169. if (!tick_nohz_full_cpu(cpu))
  170. tick_do_timer_cpu = cpu;
  171. else
  172. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  173. tick_next_period = ktime_get();
  174. tick_period = NSEC_PER_SEC / HZ;
  175. }
  176. /*
  177. * Startup in periodic mode first.
  178. */
  179. td->mode = TICKDEV_MODE_PERIODIC;
  180. } else {
  181. handler = td->evtdev->event_handler;
  182. next_event = td->evtdev->next_event;
  183. td->evtdev->event_handler = clockevents_handle_noop;
  184. }
  185. td->evtdev = newdev;
  186. /*
  187. * When the device is not per cpu, pin the interrupt to the
  188. * current cpu:
  189. */
  190. if (!cpumask_equal(newdev->cpumask, cpumask))
  191. irq_set_affinity(newdev->irq, cpumask);
  192. /*
  193. * When global broadcasting is active, check if the current
  194. * device is registered as a placeholder for broadcast mode.
  195. * This allows us to handle this x86 misfeature in a generic
  196. * way. This function also returns !=0 when we keep the
  197. * current active broadcast state for this CPU.
  198. */
  199. if (tick_device_uses_broadcast(newdev, cpu))
  200. return;
  201. if (td->mode == TICKDEV_MODE_PERIODIC)
  202. tick_setup_periodic(newdev, 0);
  203. else
  204. tick_setup_oneshot(newdev, handler, next_event);
  205. }
  206. void tick_install_replacement(struct clock_event_device *newdev)
  207. {
  208. struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
  209. int cpu = smp_processor_id();
  210. clockevents_exchange_device(td->evtdev, newdev);
  211. tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
  212. if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
  213. tick_oneshot_notify();
  214. }
  215. static bool tick_check_percpu(struct clock_event_device *curdev,
  216. struct clock_event_device *newdev, int cpu)
  217. {
  218. if (!cpumask_test_cpu(cpu, newdev->cpumask))
  219. return false;
  220. if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
  221. return true;
  222. /* Check if irq affinity can be set */
  223. if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
  224. return false;
  225. /* Prefer an existing cpu local device */
  226. if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
  227. return false;
  228. return true;
  229. }
  230. static bool tick_check_preferred(struct clock_event_device *curdev,
  231. struct clock_event_device *newdev)
  232. {
  233. /* Prefer oneshot capable device */
  234. if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
  235. if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
  236. return false;
  237. if (tick_oneshot_mode_active())
  238. return false;
  239. }
  240. /*
  241. * Use the higher rated one, but prefer a CPU local device with a lower
  242. * rating than a non-CPU local device
  243. */
  244. return !curdev ||
  245. newdev->rating > curdev->rating ||
  246. !cpumask_equal(curdev->cpumask, newdev->cpumask);
  247. }
  248. /*
  249. * Check whether the new device is a better fit than curdev. curdev
  250. * can be NULL !
  251. */
  252. bool tick_check_replacement(struct clock_event_device *curdev,
  253. struct clock_event_device *newdev)
  254. {
  255. if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
  256. return false;
  257. return tick_check_preferred(curdev, newdev);
  258. }
  259. /*
  260. * Check, if the new registered device should be used. Called with
  261. * clockevents_lock held and interrupts disabled.
  262. */
  263. void tick_check_new_device(struct clock_event_device *newdev)
  264. {
  265. struct clock_event_device *curdev;
  266. struct tick_device *td;
  267. int cpu;
  268. cpu = smp_processor_id();
  269. td = &per_cpu(tick_cpu_device, cpu);
  270. curdev = td->evtdev;
  271. /* cpu local device ? */
  272. if (!tick_check_percpu(curdev, newdev, cpu))
  273. goto out_bc;
  274. /* Preference decision */
  275. if (!tick_check_preferred(curdev, newdev))
  276. goto out_bc;
  277. if (!try_module_get(newdev->owner))
  278. return;
  279. /*
  280. * Replace the eventually existing device by the new
  281. * device. If the current device is the broadcast device, do
  282. * not give it back to the clockevents layer !
  283. */
  284. if (tick_is_broadcast_device(curdev)) {
  285. clockevents_shutdown(curdev);
  286. curdev = NULL;
  287. }
  288. clockevents_exchange_device(curdev, newdev);
  289. tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
  290. if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
  291. tick_oneshot_notify();
  292. return;
  293. out_bc:
  294. /*
  295. * Can the new device be used as a broadcast device ?
  296. */
  297. tick_install_broadcast_device(newdev);
  298. }
  299. /**
  300. * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
  301. * @state: The target state (enter/exit)
  302. *
  303. * The system enters/leaves a state, where affected devices might stop
  304. * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
  305. *
  306. * Called with interrupts disabled, so clockevents_lock is not
  307. * required here because the local clock event device cannot go away
  308. * under us.
  309. */
  310. int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
  311. {
  312. struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
  313. if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
  314. return 0;
  315. return __tick_broadcast_oneshot_control(state);
  316. }
  317. EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
  318. #ifdef CONFIG_HOTPLUG_CPU
  319. /*
  320. * Transfer the do_timer job away from a dying cpu.
  321. *
  322. * Called with interrupts disabled. Not locking required. If
  323. * tick_do_timer_cpu is owned by this cpu, nothing can change it.
  324. */
  325. void tick_handover_do_timer(void)
  326. {
  327. if (tick_do_timer_cpu == smp_processor_id()) {
  328. int cpu = cpumask_first(cpu_online_mask);
  329. tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
  330. TICK_DO_TIMER_NONE;
  331. }
  332. }
  333. /*
  334. * Shutdown an event device on a given cpu:
  335. *
  336. * This is called on a life CPU, when a CPU is dead. So we cannot
  337. * access the hardware device itself.
  338. * We just set the mode and remove it from the lists.
  339. */
  340. void tick_shutdown(unsigned int cpu)
  341. {
  342. struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
  343. struct clock_event_device *dev = td->evtdev;
  344. td->mode = TICKDEV_MODE_PERIODIC;
  345. if (dev) {
  346. /*
  347. * Prevent that the clock events layer tries to call
  348. * the set mode function!
  349. */
  350. clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
  351. clockevents_exchange_device(dev, NULL);
  352. dev->event_handler = clockevents_handle_noop;
  353. td->evtdev = NULL;
  354. }
  355. }
  356. #endif
  357. /**
  358. * tick_suspend_local - Suspend the local tick device
  359. *
  360. * Called from the local cpu for freeze with interrupts disabled.
  361. *
  362. * No locks required. Nothing can change the per cpu device.
  363. */
  364. void tick_suspend_local(void)
  365. {
  366. struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
  367. clockevents_shutdown(td->evtdev);
  368. }
  369. /**
  370. * tick_resume_local - Resume the local tick device
  371. *
  372. * Called from the local CPU for unfreeze or XEN resume magic.
  373. *
  374. * No locks required. Nothing can change the per cpu device.
  375. */
  376. void tick_resume_local(void)
  377. {
  378. struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
  379. bool broadcast = tick_resume_check_broadcast();
  380. clockevents_tick_resume(td->evtdev);
  381. if (!broadcast) {
  382. if (td->mode == TICKDEV_MODE_PERIODIC)
  383. tick_setup_periodic(td->evtdev, 0);
  384. else
  385. tick_resume_oneshot();
  386. }
  387. }
  388. /**
  389. * tick_suspend - Suspend the tick and the broadcast device
  390. *
  391. * Called from syscore_suspend() via timekeeping_suspend with only one
  392. * CPU online and interrupts disabled or from tick_unfreeze() under
  393. * tick_freeze_lock.
  394. *
  395. * No locks required. Nothing can change the per cpu device.
  396. */
  397. void tick_suspend(void)
  398. {
  399. tick_suspend_local();
  400. tick_suspend_broadcast();
  401. }
  402. /**
  403. * tick_resume - Resume the tick and the broadcast device
  404. *
  405. * Called from syscore_resume() via timekeeping_resume with only one
  406. * CPU online and interrupts disabled.
  407. *
  408. * No locks required. Nothing can change the per cpu device.
  409. */
  410. void tick_resume(void)
  411. {
  412. tick_resume_broadcast();
  413. tick_resume_local();
  414. }
  415. #ifdef CONFIG_SUSPEND
  416. static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
  417. static unsigned int tick_freeze_depth;
  418. /**
  419. * tick_freeze - Suspend the local tick and (possibly) timekeeping.
  420. *
  421. * Check if this is the last online CPU executing the function and if so,
  422. * suspend timekeeping. Otherwise suspend the local tick.
  423. *
  424. * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
  425. * Interrupts must not be enabled before the subsequent %tick_unfreeze().
  426. */
  427. void tick_freeze(void)
  428. {
  429. raw_spin_lock(&tick_freeze_lock);
  430. tick_freeze_depth++;
  431. if (tick_freeze_depth == num_online_cpus()) {
  432. trace_suspend_resume(TPS("timekeeping_freeze"),
  433. smp_processor_id(), true);
  434. system_state = SYSTEM_SUSPEND;
  435. sched_clock_suspend();
  436. timekeeping_suspend();
  437. } else {
  438. tick_suspend_local();
  439. }
  440. raw_spin_unlock(&tick_freeze_lock);
  441. }
  442. /**
  443. * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
  444. *
  445. * Check if this is the first CPU executing the function and if so, resume
  446. * timekeeping. Otherwise resume the local tick.
  447. *
  448. * Call with interrupts disabled. Must be balanced with %tick_freeze().
  449. * Interrupts must not be enabled after the preceding %tick_freeze().
  450. */
  451. void tick_unfreeze(void)
  452. {
  453. raw_spin_lock(&tick_freeze_lock);
  454. if (tick_freeze_depth == num_online_cpus()) {
  455. timekeeping_resume();
  456. sched_clock_resume();
  457. system_state = SYSTEM_RUNNING;
  458. trace_suspend_resume(TPS("timekeeping_freeze"),
  459. smp_processor_id(), false);
  460. } else {
  461. tick_resume_local();
  462. }
  463. tick_freeze_depth--;
  464. raw_spin_unlock(&tick_freeze_lock);
  465. }
  466. #endif /* CONFIG_SUSPEND */
  467. /**
  468. * tick_init - initialize the tick control
  469. */
  470. void __init tick_init(void)
  471. {
  472. tick_broadcast_init();
  473. tick_nohz_init();
  474. }