1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Implement CPU time clocks for the POSIX clock interface.
- */
- #include <linux/sched/signal.h>
- #include <linux/sched/cputime.h>
- #include <linux/posix-timers.h>
- #include <linux/errno.h>
- #include <linux/math64.h>
- #include <linux/uaccess.h>
- #include <linux/kernel_stat.h>
- #include <trace/events/timer.h>
- #include <linux/tick.h>
- #include <linux/workqueue.h>
- #include <linux/compat.h>
- #include <linux/sched/deadline.h>
- #include "posix-timers.h"
- static void posix_cpu_timer_rearm(struct k_itimer *timer);
- /*
- * Called after updating RLIMIT_CPU to run cpu timer and update
- * tsk->signal->cputime_expires expiration cache if necessary. Needs
- * siglock protection since other code may update expiration cache as
- * well.
- */
- void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
- {
- u64 nsecs = rlim_new * NSEC_PER_SEC;
- spin_lock_irq(&task->sighand->siglock);
- set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
- spin_unlock_irq(&task->sighand->siglock);
- }
- static int check_clock(const clockid_t which_clock)
- {
- int error = 0;
- struct task_struct *p;
- const pid_t pid = CPUCLOCK_PID(which_clock);
- if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
- return -EINVAL;
- if (pid == 0)
- return 0;
- rcu_read_lock();
- p = find_task_by_vpid(pid);
- if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
- same_thread_group(p, current) : has_group_leader_pid(p))) {
- error = -EINVAL;
- }
- rcu_read_unlock();
- return error;
- }
- /*
- * Update expiry time from increment, and increase overrun count,
- * given the current clock sample.
- */
- static void bump_cpu_timer(struct k_itimer *timer, u64 now)
- {
- int i;
- u64 delta, incr;
- if (timer->it.cpu.incr == 0)
- return;
- if (now < timer->it.cpu.expires)
- return;
- incr = timer->it.cpu.incr;
- delta = now + incr - timer->it.cpu.expires;
- /* Don't use (incr*2 < delta), incr*2 might overflow. */
- for (i = 0; incr < delta - incr; i++)
- incr = incr << 1;
- for (; i >= 0; incr >>= 1, i--) {
- if (delta < incr)
- continue;
- timer->it.cpu.expires += incr;
- timer->it_overrun += 1LL << i;
- delta -= incr;
- }
- }
- /**
- * task_cputime_zero - Check a task_cputime struct for all zero fields.
- *
- * @cputime: The struct to compare.
- *
- * Checks @cputime to see if all fields are zero. Returns true if all fields
- * are zero, false if any field is nonzero.
- */
- static inline int task_cputime_zero(const struct task_cputime *cputime)
- {
- if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
- return 1;
- return 0;
- }
- static inline u64 prof_ticks(struct task_struct *p)
- {
- u64 utime, stime;
- task_cputime(p, &utime, &stime);
- return utime + stime;
- }
- static inline u64 virt_ticks(struct task_struct *p)
- {
- u64 utime, stime;
- task_cputime(p, &utime, &stime);
- return utime;
- }
- static int
- posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
- {
- int error = check_clock(which_clock);
- if (!error) {
- tp->tv_sec = 0;
- tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
- if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
- /*
- * If sched_clock is using a cycle counter, we
- * don't have any idea of its true resolution
- * exported, but it is much more than 1s/HZ.
- */
- tp->tv_nsec = 1;
- }
- }
- return error;
- }
- static int
- posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
- {
- /*
- * You can never reset a CPU clock, but we check for other errors
- * in the call before failing with EPERM.
- */
- int error = check_clock(which_clock);
- if (error == 0) {
- error = -EPERM;
- }
- return error;
- }
- /*
- * Sample a per-thread clock for the given task.
- */
- static int cpu_clock_sample(const clockid_t which_clock,
- struct task_struct *p, u64 *sample)
- {
- switch (CPUCLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case CPUCLOCK_PROF:
- *sample = prof_ticks(p);
- break;
- case CPUCLOCK_VIRT:
- *sample = virt_ticks(p);
- break;
- case CPUCLOCK_SCHED:
- *sample = task_sched_runtime(p);
- break;
- }
- return 0;
- }
- /*
- * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
- * to avoid race conditions with concurrent updates to cputime.
- */
- static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
- {
- u64 curr_cputime;
- retry:
- curr_cputime = atomic64_read(cputime);
- if (sum_cputime > curr_cputime) {
- if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
- goto retry;
- }
- }
- static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
- {
- __update_gt_cputime(&cputime_atomic->utime, sum->utime);
- __update_gt_cputime(&cputime_atomic->stime, sum->stime);
- __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
- }
- /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
- static inline void sample_cputime_atomic(struct task_cputime *times,
- struct task_cputime_atomic *atomic_times)
- {
- times->utime = atomic64_read(&atomic_times->utime);
- times->stime = atomic64_read(&atomic_times->stime);
- times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
- }
- void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
- {
- struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
- struct task_cputime sum;
- /* Check if cputimer isn't running. This is accessed without locking. */
- if (!READ_ONCE(cputimer->running)) {
- /*
- * The POSIX timer interface allows for absolute time expiry
- * values through the TIMER_ABSTIME flag, therefore we have
- * to synchronize the timer to the clock every time we start it.
- */
- thread_group_cputime(tsk, &sum);
- update_gt_cputime(&cputimer->cputime_atomic, &sum);
- /*
- * We're setting cputimer->running without a lock. Ensure
- * this only gets written to in one operation. We set
- * running after update_gt_cputime() as a small optimization,
- * but barriers are not required because update_gt_cputime()
- * can handle concurrent updates.
- */
- WRITE_ONCE(cputimer->running, true);
- }
- sample_cputime_atomic(times, &cputimer->cputime_atomic);
- }
- /*
- * Sample a process (thread group) clock for the given group_leader task.
- * Must be called with task sighand lock held for safe while_each_thread()
- * traversal.
- */
- static int cpu_clock_sample_group(const clockid_t which_clock,
- struct task_struct *p,
- u64 *sample)
- {
- struct task_cputime cputime;
- switch (CPUCLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case CPUCLOCK_PROF:
- thread_group_cputime(p, &cputime);
- *sample = cputime.utime + cputime.stime;
- break;
- case CPUCLOCK_VIRT:
- thread_group_cputime(p, &cputime);
- *sample = cputime.utime;
- break;
- case CPUCLOCK_SCHED:
- thread_group_cputime(p, &cputime);
- *sample = cputime.sum_exec_runtime;
- break;
- }
- return 0;
- }
- static int posix_cpu_clock_get_task(struct task_struct *tsk,
- const clockid_t which_clock,
- struct timespec64 *tp)
- {
- int err = -EINVAL;
- u64 rtn;
- if (CPUCLOCK_PERTHREAD(which_clock)) {
- if (same_thread_group(tsk, current))
- err = cpu_clock_sample(which_clock, tsk, &rtn);
- } else {
- if (tsk == current || thread_group_leader(tsk))
- err = cpu_clock_sample_group(which_clock, tsk, &rtn);
- }
- if (!err)
- *tp = ns_to_timespec64(rtn);
- return err;
- }
- static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
- {
- const pid_t pid = CPUCLOCK_PID(which_clock);
- int err = -EINVAL;
- if (pid == 0) {
- /*
- * Special case constant value for our own clocks.
- * We don't have to do any lookup to find ourselves.
- */
- err = posix_cpu_clock_get_task(current, which_clock, tp);
- } else {
- /*
- * Find the given PID, and validate that the caller
- * should be able to see it.
- */
- struct task_struct *p;
- rcu_read_lock();
- p = find_task_by_vpid(pid);
- if (p)
- err = posix_cpu_clock_get_task(p, which_clock, tp);
- rcu_read_unlock();
- }
- return err;
- }
- /*
- * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
- * This is called from sys_timer_create() and do_cpu_nanosleep() with the
- * new timer already all-zeros initialized.
- */
- static int posix_cpu_timer_create(struct k_itimer *new_timer)
- {
- int ret = 0;
- const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
- struct task_struct *p;
- if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
- return -EINVAL;
- new_timer->kclock = &clock_posix_cpu;
- INIT_LIST_HEAD(&new_timer->it.cpu.entry);
- rcu_read_lock();
- if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
- if (pid == 0) {
- p = current;
- } else {
- p = find_task_by_vpid(pid);
- if (p && !same_thread_group(p, current))
- p = NULL;
- }
- } else {
- if (pid == 0) {
- p = current->group_leader;
- } else {
- p = find_task_by_vpid(pid);
- if (p && !has_group_leader_pid(p))
- p = NULL;
- }
- }
- new_timer->it.cpu.task = p;
- if (p) {
- get_task_struct(p);
- } else {
- ret = -EINVAL;
- }
- rcu_read_unlock();
- return ret;
- }
- /*
- * Clean up a CPU-clock timer that is about to be destroyed.
- * This is called from timer deletion with the timer already locked.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
- static int posix_cpu_timer_del(struct k_itimer *timer)
- {
- int ret = 0;
- unsigned long flags;
- struct sighand_struct *sighand;
- struct task_struct *p = timer->it.cpu.task;
- if (WARN_ON_ONCE(!p))
- return -EINVAL;
- /*
- * Protect against sighand release/switch in exit/exec and process/
- * thread timer list entry concurrent read/writes.
- */
- sighand = lock_task_sighand(p, &flags);
- if (unlikely(sighand == NULL)) {
- /*
- * We raced with the reaping of the task.
- * The deletion should have cleared us off the list.
- */
- WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
- } else {
- if (timer->it.cpu.firing)
- ret = TIMER_RETRY;
- else
- list_del(&timer->it.cpu.entry);
- unlock_task_sighand(p, &flags);
- }
- if (!ret)
- put_task_struct(p);
- return ret;
- }
- static void cleanup_timers_list(struct list_head *head)
- {
- struct cpu_timer_list *timer, *next;
- list_for_each_entry_safe(timer, next, head, entry)
- list_del_init(&timer->entry);
- }
- /*
- * Clean out CPU timers still ticking when a thread exited. The task
- * pointer is cleared, and the expiry time is replaced with the residual
- * time for later timer_gettime calls to return.
- * This must be called with the siglock held.
- */
- static void cleanup_timers(struct list_head *head)
- {
- cleanup_timers_list(head);
- cleanup_timers_list(++head);
- cleanup_timers_list(++head);
- }
- /*
- * These are both called with the siglock held, when the current thread
- * is being reaped. When the final (leader) thread in the group is reaped,
- * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
- */
- void posix_cpu_timers_exit(struct task_struct *tsk)
- {
- cleanup_timers(tsk->cpu_timers);
- }
- void posix_cpu_timers_exit_group(struct task_struct *tsk)
- {
- cleanup_timers(tsk->signal->cpu_timers);
- }
- static inline int expires_gt(u64 expires, u64 new_exp)
- {
- return expires == 0 || expires > new_exp;
- }
- /*
- * Insert the timer on the appropriate list before any timers that
- * expire later. This must be called with the sighand lock held.
- */
- static void arm_timer(struct k_itimer *timer)
- {
- struct task_struct *p = timer->it.cpu.task;
- struct list_head *head, *listpos;
- struct task_cputime *cputime_expires;
- struct cpu_timer_list *const nt = &timer->it.cpu;
- struct cpu_timer_list *next;
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- head = p->cpu_timers;
- cputime_expires = &p->cputime_expires;
- } else {
- head = p->signal->cpu_timers;
- cputime_expires = &p->signal->cputime_expires;
- }
- head += CPUCLOCK_WHICH(timer->it_clock);
- listpos = head;
- list_for_each_entry(next, head, entry) {
- if (nt->expires < next->expires)
- break;
- listpos = &next->entry;
- }
- list_add(&nt->entry, listpos);
- if (listpos == head) {
- u64 exp = nt->expires;
- /*
- * We are the new earliest-expiring POSIX 1.b timer, hence
- * need to update expiration cache. Take into account that
- * for process timers we share expiration cache with itimers
- * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
- */
- switch (CPUCLOCK_WHICH(timer->it_clock)) {
- case CPUCLOCK_PROF:
- if (expires_gt(cputime_expires->prof_exp, exp))
- cputime_expires->prof_exp = exp;
- break;
- case CPUCLOCK_VIRT:
- if (expires_gt(cputime_expires->virt_exp, exp))
- cputime_expires->virt_exp = exp;
- break;
- case CPUCLOCK_SCHED:
- if (expires_gt(cputime_expires->sched_exp, exp))
- cputime_expires->sched_exp = exp;
- break;
- }
- if (CPUCLOCK_PERTHREAD(timer->it_clock))
- tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
- else
- tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
- }
- }
- /*
- * The timer is locked, fire it and arrange for its reload.
- */
- static void cpu_timer_fire(struct k_itimer *timer)
- {
- if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
- /*
- * User don't want any signal.
- */
- timer->it.cpu.expires = 0;
- } else if (unlikely(timer->sigq == NULL)) {
- /*
- * This a special case for clock_nanosleep,
- * not a normal timer from sys_timer_create.
- */
- wake_up_process(timer->it_process);
- timer->it.cpu.expires = 0;
- } else if (timer->it.cpu.incr == 0) {
- /*
- * One-shot timer. Clear it as soon as it's fired.
- */
- posix_timer_event(timer, 0);
- timer->it.cpu.expires = 0;
- } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
- /*
- * The signal did not get queued because the signal
- * was ignored, so we won't get any callback to
- * reload the timer. But we need to keep it
- * ticking in case the signal is deliverable next time.
- */
- posix_cpu_timer_rearm(timer);
- ++timer->it_requeue_pending;
- }
- }
- /*
- * Sample a process (thread group) timer for the given group_leader task.
- * Must be called with task sighand lock held for safe while_each_thread()
- * traversal.
- */
- static int cpu_timer_sample_group(const clockid_t which_clock,
- struct task_struct *p, u64 *sample)
- {
- struct task_cputime cputime;
- thread_group_cputimer(p, &cputime);
- switch (CPUCLOCK_WHICH(which_clock)) {
- default:
- return -EINVAL;
- case CPUCLOCK_PROF:
- *sample = cputime.utime + cputime.stime;
- break;
- case CPUCLOCK_VIRT:
- *sample = cputime.utime;
- break;
- case CPUCLOCK_SCHED:
- *sample = cputime.sum_exec_runtime;
- break;
- }
- return 0;
- }
- /*
- * Guts of sys_timer_settime for CPU timers.
- * This is called with the timer locked and interrupts disabled.
- * If we return TIMER_RETRY, it's necessary to release the timer's lock
- * and try again. (This happens when the timer is in the middle of firing.)
- */
- static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
- struct itimerspec64 *new, struct itimerspec64 *old)
- {
- unsigned long flags;
- struct sighand_struct *sighand;
- struct task_struct *p = timer->it.cpu.task;
- u64 old_expires, new_expires, old_incr, val;
- int ret;
- if (WARN_ON_ONCE(!p))
- return -EINVAL;
- /*
- * Use the to_ktime conversion because that clamps the maximum
- * value to KTIME_MAX and avoid multiplication overflows.
- */
- new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
- /*
- * Protect against sighand release/switch in exit/exec and p->cpu_timers
- * and p->signal->cpu_timers read/write in arm_timer()
- */
- sighand = lock_task_sighand(p, &flags);
- /*
- * If p has just been reaped, we can no
- * longer get any information about it at all.
- */
- if (unlikely(sighand == NULL)) {
- return -ESRCH;
- }
- /*
- * Disarm any old timer after extracting its expiry time.
- */
- ret = 0;
- old_incr = timer->it.cpu.incr;
- old_expires = timer->it.cpu.expires;
- if (unlikely(timer->it.cpu.firing)) {
- timer->it.cpu.firing = -1;
- ret = TIMER_RETRY;
- } else
- list_del_init(&timer->it.cpu.entry);
- /*
- * We need to sample the current value to convert the new
- * value from to relative and absolute, and to convert the
- * old value from absolute to relative. To set a process
- * timer, we need a sample to balance the thread expiry
- * times (in arm_timer). With an absolute time, we must
- * check if it's already passed. In short, we need a sample.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &val);
- } else {
- cpu_timer_sample_group(timer->it_clock, p, &val);
- }
- if (old) {
- if (old_expires == 0) {
- old->it_value.tv_sec = 0;
- old->it_value.tv_nsec = 0;
- } else {
- /*
- * Update the timer in case it has
- * overrun already. If it has,
- * we'll report it as having overrun
- * and with the next reloaded timer
- * already ticking, though we are
- * swallowing that pending
- * notification here to install the
- * new setting.
- */
- bump_cpu_timer(timer, val);
- if (val < timer->it.cpu.expires) {
- old_expires = timer->it.cpu.expires - val;
- old->it_value = ns_to_timespec64(old_expires);
- } else {
- old->it_value.tv_nsec = 1;
- old->it_value.tv_sec = 0;
- }
- }
- }
- if (unlikely(ret)) {
- /*
- * We are colliding with the timer actually firing.
- * Punt after filling in the timer's old value, and
- * disable this firing since we are already reporting
- * it as an overrun (thanks to bump_cpu_timer above).
- */
- unlock_task_sighand(p, &flags);
- goto out;
- }
- if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
- new_expires += val;
- }
- /*
- * Install the new expiry time (or zero).
- * For a timer with no notification action, we don't actually
- * arm the timer (we'll just fake it for timer_gettime).
- */
- timer->it.cpu.expires = new_expires;
- if (new_expires != 0 && val < new_expires) {
- arm_timer(timer);
- }
- unlock_task_sighand(p, &flags);
- /*
- * Install the new reload setting, and
- * set up the signal and overrun bookkeeping.
- */
- timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
- timer->it_interval = ns_to_ktime(timer->it.cpu.incr);
- /*
- * This acts as a modification timestamp for the timer,
- * so any automatic reload attempt will punt on seeing
- * that we have reset the timer manually.
- */
- timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
- ~REQUEUE_PENDING;
- timer->it_overrun_last = 0;
- timer->it_overrun = -1;
- if (new_expires != 0 && !(val < new_expires)) {
- /*
- * The designated time already passed, so we notify
- * immediately, even if the thread never runs to
- * accumulate more time on this clock.
- */
- cpu_timer_fire(timer);
- }
- ret = 0;
- out:
- if (old)
- old->it_interval = ns_to_timespec64(old_incr);
- return ret;
- }
- static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
- {
- struct task_struct *p = timer->it.cpu.task;
- u64 now;
- if (WARN_ON_ONCE(!p))
- return;
- /*
- * Easy part: convert the reload time.
- */
- itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
- if (!timer->it.cpu.expires)
- return;
- /*
- * Sample the clock to take the difference with the expiry time.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &now);
- } else {
- struct sighand_struct *sighand;
- unsigned long flags;
- /*
- * Protect against sighand release/switch in exit/exec and
- * also make timer sampling safe if it ends up calling
- * thread_group_cputime().
- */
- sighand = lock_task_sighand(p, &flags);
- if (unlikely(sighand == NULL)) {
- /*
- * The process has been reaped.
- * We can't even collect a sample any more.
- * Call the timer disarmed, nothing else to do.
- */
- timer->it.cpu.expires = 0;
- return;
- } else {
- cpu_timer_sample_group(timer->it_clock, p, &now);
- unlock_task_sighand(p, &flags);
- }
- }
- if (now < timer->it.cpu.expires) {
- itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
- } else {
- /*
- * The timer should have expired already, but the firing
- * hasn't taken place yet. Say it's just about to expire.
- */
- itp->it_value.tv_nsec = 1;
- itp->it_value.tv_sec = 0;
- }
- }
- static unsigned long long
- check_timers_list(struct list_head *timers,
- struct list_head *firing,
- unsigned long long curr)
- {
- int maxfire = 20;
- while (!list_empty(timers)) {
- struct cpu_timer_list *t;
- t = list_first_entry(timers, struct cpu_timer_list, entry);
- if (!--maxfire || curr < t->expires)
- return t->expires;
- t->firing = 1;
- list_move_tail(&t->entry, firing);
- }
- return 0;
- }
- static inline void check_dl_overrun(struct task_struct *tsk)
- {
- if (tsk->dl.dl_overrun) {
- tsk->dl.dl_overrun = 0;
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- }
- }
- /*
- * Check for any per-thread CPU timers that have fired and move them off
- * the tsk->cpu_timers[N] list onto the firing list. Here we update the
- * tsk->it_*_expires values to reflect the remaining thread CPU timers.
- */
- static void check_thread_timers(struct task_struct *tsk,
- struct list_head *firing)
- {
- struct list_head *timers = tsk->cpu_timers;
- struct task_cputime *tsk_expires = &tsk->cputime_expires;
- u64 expires;
- unsigned long soft;
- if (dl_task(tsk))
- check_dl_overrun(tsk);
- /*
- * If cputime_expires is zero, then there are no active
- * per thread CPU timers.
- */
- if (task_cputime_zero(&tsk->cputime_expires))
- return;
- expires = check_timers_list(timers, firing, prof_ticks(tsk));
- tsk_expires->prof_exp = expires;
- expires = check_timers_list(++timers, firing, virt_ticks(tsk));
- tsk_expires->virt_exp = expires;
- tsk_expires->sched_exp = check_timers_list(++timers, firing,
- tsk->se.sum_exec_runtime);
- /*
- * Check for the special case thread timers.
- */
- soft = task_rlimit(tsk, RLIMIT_RTTIME);
- if (soft != RLIM_INFINITY) {
- unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
- if (hard != RLIM_INFINITY &&
- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
- */
- if (print_fatal_signals) {
- pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
- tsk->comm, task_pid_nr(tsk));
- }
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
- if (soft < hard) {
- soft += USEC_PER_SEC;
- tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
- soft;
- }
- if (print_fatal_signals) {
- pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
- tsk->comm, task_pid_nr(tsk));
- }
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- }
- }
- if (task_cputime_zero(tsk_expires))
- tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
- }
- static inline void stop_process_timers(struct signal_struct *sig)
- {
- struct thread_group_cputimer *cputimer = &sig->cputimer;
- /* Turn off cputimer->running. This is done without locking. */
- WRITE_ONCE(cputimer->running, false);
- tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
- }
- static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
- u64 *expires, u64 cur_time, int signo)
- {
- if (!it->expires)
- return;
- if (cur_time >= it->expires) {
- if (it->incr)
- it->expires += it->incr;
- else
- it->expires = 0;
- trace_itimer_expire(signo == SIGPROF ?
- ITIMER_PROF : ITIMER_VIRTUAL,
- task_tgid(tsk), cur_time);
- __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
- }
- if (it->expires && (!*expires || it->expires < *expires))
- *expires = it->expires;
- }
- /*
- * Check for any per-thread CPU timers that have fired and move them
- * off the tsk->*_timers list onto the firing list. Per-thread timers
- * have already been taken off.
- */
- static void check_process_timers(struct task_struct *tsk,
- struct list_head *firing)
- {
- struct signal_struct *const sig = tsk->signal;
- u64 utime, ptime, virt_expires, prof_expires;
- u64 sum_sched_runtime, sched_expires;
- struct list_head *timers = sig->cpu_timers;
- struct task_cputime cputime;
- unsigned long soft;
- if (dl_task(tsk))
- check_dl_overrun(tsk);
- /*
- * If cputimer is not running, then there are no active
- * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
- */
- if (!READ_ONCE(tsk->signal->cputimer.running))
- return;
- /*
- * Signify that a thread is checking for process timers.
- * Write access to this field is protected by the sighand lock.
- */
- sig->cputimer.checking_timer = true;
- /*
- * Collect the current process totals.
- */
- thread_group_cputimer(tsk, &cputime);
- utime = cputime.utime;
- ptime = utime + cputime.stime;
- sum_sched_runtime = cputime.sum_exec_runtime;
- prof_expires = check_timers_list(timers, firing, ptime);
- virt_expires = check_timers_list(++timers, firing, utime);
- sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
- /*
- * Check for the special case process timers.
- */
- check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
- SIGPROF);
- check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
- SIGVTALRM);
- soft = task_rlimit(tsk, RLIMIT_CPU);
- if (soft != RLIM_INFINITY) {
- unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
- unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
- u64 x;
- if (psecs >= hard) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
- */
- if (print_fatal_signals) {
- pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
- tsk->comm, task_pid_nr(tsk));
- }
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
- if (psecs >= soft) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
- if (print_fatal_signals) {
- pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
- tsk->comm, task_pid_nr(tsk));
- }
- __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
- if (soft < hard) {
- soft++;
- sig->rlim[RLIMIT_CPU].rlim_cur = soft;
- }
- }
- x = soft * NSEC_PER_SEC;
- if (!prof_expires || x < prof_expires)
- prof_expires = x;
- }
- sig->cputime_expires.prof_exp = prof_expires;
- sig->cputime_expires.virt_exp = virt_expires;
- sig->cputime_expires.sched_exp = sched_expires;
- if (task_cputime_zero(&sig->cputime_expires))
- stop_process_timers(sig);
- sig->cputimer.checking_timer = false;
- }
- /*
- * This is called from the signal code (via posixtimer_rearm)
- * when the last timer signal was delivered and we have to reload the timer.
- */
- static void posix_cpu_timer_rearm(struct k_itimer *timer)
- {
- struct task_struct *p = timer->it.cpu.task;
- struct sighand_struct *sighand;
- unsigned long flags;
- u64 now;
- if (WARN_ON_ONCE(!p))
- return;
- /*
- * Fetch the current sample and update the timer's expiry time.
- */
- if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
- cpu_clock_sample(timer->it_clock, p, &now);
- bump_cpu_timer(timer, now);
- if (unlikely(p->exit_state))
- return;
- /* Protect timer list r/w in arm_timer() */
- sighand = lock_task_sighand(p, &flags);
- if (!sighand)
- return;
- } else {
- /*
- * Protect arm_timer() and timer sampling in case of call to
- * thread_group_cputime().
- */
- sighand = lock_task_sighand(p, &flags);
- if (unlikely(sighand == NULL)) {
- /*
- * The process has been reaped.
- * We can't even collect a sample any more.
- */
- timer->it.cpu.expires = 0;
- return;
- } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
- /* If the process is dying, no need to rearm */
- goto unlock;
- }
- cpu_timer_sample_group(timer->it_clock, p, &now);
- bump_cpu_timer(timer, now);
- /* Leave the sighand locked for the call below. */
- }
- /*
- * Now re-arm for the new expiry time.
- */
- arm_timer(timer);
- unlock:
- unlock_task_sighand(p, &flags);
- }
- /**
- * task_cputime_expired - Compare two task_cputime entities.
- *
- * @sample: The task_cputime structure to be checked for expiration.
- * @expires: Expiration times, against which @sample will be checked.
- *
- * Checks @sample against @expires to see if any field of @sample has expired.
- * Returns true if any field of the former is greater than the corresponding
- * field of the latter if the latter field is set. Otherwise returns false.
- */
- static inline int task_cputime_expired(const struct task_cputime *sample,
- const struct task_cputime *expires)
- {
- if (expires->utime && sample->utime >= expires->utime)
- return 1;
- if (expires->stime && sample->utime + sample->stime >= expires->stime)
- return 1;
- if (expires->sum_exec_runtime != 0 &&
- sample->sum_exec_runtime >= expires->sum_exec_runtime)
- return 1;
- return 0;
- }
- /**
- * fastpath_timer_check - POSIX CPU timers fast path.
- *
- * @tsk: The task (thread) being checked.
- *
- * Check the task and thread group timers. If both are zero (there are no
- * timers set) return false. Otherwise snapshot the task and thread group
- * timers and compare them with the corresponding expiration times. Return
- * true if a timer has expired, else return false.
- */
- static inline int fastpath_timer_check(struct task_struct *tsk)
- {
- struct signal_struct *sig;
- if (!task_cputime_zero(&tsk->cputime_expires)) {
- struct task_cputime task_sample;
- task_cputime(tsk, &task_sample.utime, &task_sample.stime);
- task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
- if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
- return 1;
- }
- sig = tsk->signal;
- /*
- * Check if thread group timers expired when the cputimer is
- * running and no other thread in the group is already checking
- * for thread group cputimers. These fields are read without the
- * sighand lock. However, this is fine because this is meant to
- * be a fastpath heuristic to determine whether we should try to
- * acquire the sighand lock to check/handle timers.
- *
- * In the worst case scenario, if 'running' or 'checking_timer' gets
- * set but the current thread doesn't see the change yet, we'll wait
- * until the next thread in the group gets a scheduler interrupt to
- * handle the timer. This isn't an issue in practice because these
- * types of delays with signals actually getting sent are expected.
- */
- if (READ_ONCE(sig->cputimer.running) &&
- !READ_ONCE(sig->cputimer.checking_timer)) {
- struct task_cputime group_sample;
- sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
- if (task_cputime_expired(&group_sample, &sig->cputime_expires))
- return 1;
- }
- if (dl_task(tsk) && tsk->dl.dl_overrun)
- return 1;
- return 0;
- }
- /*
- * This is called from the timer interrupt handler. The irq handler has
- * already updated our counts. We need to check if any timers fire now.
- * Interrupts are disabled.
- */
- void run_posix_cpu_timers(struct task_struct *tsk)
- {
- LIST_HEAD(firing);
- struct k_itimer *timer, *next;
- unsigned long flags;
- lockdep_assert_irqs_disabled();
- /*
- * The fast path checks that there are no expired thread or thread
- * group timers. If that's so, just return.
- */
- if (!fastpath_timer_check(tsk))
- return;
- if (!lock_task_sighand(tsk, &flags))
- return;
- /*
- * Here we take off tsk->signal->cpu_timers[N] and
- * tsk->cpu_timers[N] all the timers that are firing, and
- * put them on the firing list.
- */
- check_thread_timers(tsk, &firing);
- check_process_timers(tsk, &firing);
- /*
- * We must release these locks before taking any timer's lock.
- * There is a potential race with timer deletion here, as the
- * siglock now protects our private firing list. We have set
- * the firing flag in each timer, so that a deletion attempt
- * that gets the timer lock before we do will give it up and
- * spin until we've taken care of that timer below.
- */
- unlock_task_sighand(tsk, &flags);
- /*
- * Now that all the timers on our list have the firing flag,
- * no one will touch their list entries but us. We'll take
- * each timer's lock before clearing its firing flag, so no
- * timer call will interfere.
- */
- list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
- int cpu_firing;
- spin_lock(&timer->it_lock);
- list_del_init(&timer->it.cpu.entry);
- cpu_firing = timer->it.cpu.firing;
- timer->it.cpu.firing = 0;
- /*
- * The firing flag is -1 if we collided with a reset
- * of the timer, which already reported this
- * almost-firing as an overrun. So don't generate an event.
- */
- if (likely(cpu_firing >= 0))
- cpu_timer_fire(timer);
- spin_unlock(&timer->it_lock);
- }
- }
- /*
- * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
- * The tsk->sighand->siglock must be held by the caller.
- */
- void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
- u64 *newval, u64 *oldval)
- {
- u64 now;
- int ret;
- if (WARN_ON_ONCE(clock_idx >= CPUCLOCK_SCHED))
- return;
- ret = cpu_timer_sample_group(clock_idx, tsk, &now);
- if (oldval && ret != -EINVAL) {
- /*
- * We are setting itimer. The *oldval is absolute and we update
- * it to be relative, *newval argument is relative and we update
- * it to be absolute.
- */
- if (*oldval) {
- if (*oldval <= now) {
- /* Just about to fire. */
- *oldval = TICK_NSEC;
- } else {
- *oldval -= now;
- }
- }
- if (!*newval)
- return;
- *newval += now;
- }
- /*
- * Update expiration cache if we are the earliest timer, or eventually
- * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
- */
- switch (clock_idx) {
- case CPUCLOCK_PROF:
- if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
- tsk->signal->cputime_expires.prof_exp = *newval;
- break;
- case CPUCLOCK_VIRT:
- if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
- tsk->signal->cputime_expires.virt_exp = *newval;
- break;
- }
- tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
- }
- static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
- const struct timespec64 *rqtp)
- {
- struct itimerspec64 it;
- struct k_itimer timer;
- u64 expires;
- int error;
- /*
- * Set up a temporary timer and then wait for it to go off.
- */
- memset(&timer, 0, sizeof timer);
- spin_lock_init(&timer.it_lock);
- timer.it_clock = which_clock;
- timer.it_overrun = -1;
- error = posix_cpu_timer_create(&timer);
- timer.it_process = current;
- if (!error) {
- static struct itimerspec64 zero_it;
- struct restart_block *restart;
- memset(&it, 0, sizeof(it));
- it.it_value = *rqtp;
- spin_lock_irq(&timer.it_lock);
- error = posix_cpu_timer_set(&timer, flags, &it, NULL);
- if (error) {
- spin_unlock_irq(&timer.it_lock);
- return error;
- }
- while (!signal_pending(current)) {
- if (timer.it.cpu.expires == 0) {
- /*
- * Our timer fired and was reset, below
- * deletion can not fail.
- */
- posix_cpu_timer_del(&timer);
- spin_unlock_irq(&timer.it_lock);
- return 0;
- }
- /*
- * Block until cpu_timer_fire (or a signal) wakes us.
- */
- __set_current_state(TASK_INTERRUPTIBLE);
- spin_unlock_irq(&timer.it_lock);
- schedule();
- spin_lock_irq(&timer.it_lock);
- }
- /*
- * We were interrupted by a signal.
- */
- expires = timer.it.cpu.expires;
- error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
- if (!error) {
- /*
- * Timer is now unarmed, deletion can not fail.
- */
- posix_cpu_timer_del(&timer);
- }
- spin_unlock_irq(&timer.it_lock);
- while (error == TIMER_RETRY) {
- /*
- * We need to handle case when timer was or is in the
- * middle of firing. In other cases we already freed
- * resources.
- */
- spin_lock_irq(&timer.it_lock);
- error = posix_cpu_timer_del(&timer);
- spin_unlock_irq(&timer.it_lock);
- }
- if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
- /*
- * It actually did fire already.
- */
- return 0;
- }
- error = -ERESTART_RESTARTBLOCK;
- /*
- * Report back to the user the time still remaining.
- */
- restart = ¤t->restart_block;
- restart->nanosleep.expires = expires;
- if (restart->nanosleep.type != TT_NONE)
- error = nanosleep_copyout(restart, &it.it_value);
- }
- return error;
- }
- static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
- static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
- const struct timespec64 *rqtp)
- {
- struct restart_block *restart_block = ¤t->restart_block;
- int error;
- /*
- * Diagnose required errors first.
- */
- if (CPUCLOCK_PERTHREAD(which_clock) &&
- (CPUCLOCK_PID(which_clock) == 0 ||
- CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
- return -EINVAL;
- error = do_cpu_nanosleep(which_clock, flags, rqtp);
- if (error == -ERESTART_RESTARTBLOCK) {
- if (flags & TIMER_ABSTIME)
- return -ERESTARTNOHAND;
- restart_block->fn = posix_cpu_nsleep_restart;
- restart_block->nanosleep.clockid = which_clock;
- }
- return error;
- }
- static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
- {
- clockid_t which_clock = restart_block->nanosleep.clockid;
- struct timespec64 t;
- t = ns_to_timespec64(restart_block->nanosleep.expires);
- return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
- }
- #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
- #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
- static int process_cpu_clock_getres(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
- }
- static int process_cpu_clock_get(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_get(PROCESS_CLOCK, tp);
- }
- static int process_cpu_timer_create(struct k_itimer *timer)
- {
- timer->it_clock = PROCESS_CLOCK;
- return posix_cpu_timer_create(timer);
- }
- static int process_cpu_nsleep(const clockid_t which_clock, int flags,
- const struct timespec64 *rqtp)
- {
- return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
- }
- static int thread_cpu_clock_getres(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_getres(THREAD_CLOCK, tp);
- }
- static int thread_cpu_clock_get(const clockid_t which_clock,
- struct timespec64 *tp)
- {
- return posix_cpu_clock_get(THREAD_CLOCK, tp);
- }
- static int thread_cpu_timer_create(struct k_itimer *timer)
- {
- timer->it_clock = THREAD_CLOCK;
- return posix_cpu_timer_create(timer);
- }
- const struct k_clock clock_posix_cpu = {
- .clock_getres = posix_cpu_clock_getres,
- .clock_set = posix_cpu_clock_set,
- .clock_get = posix_cpu_clock_get,
- .timer_create = posix_cpu_timer_create,
- .nsleep = posix_cpu_nsleep,
- .timer_set = posix_cpu_timer_set,
- .timer_del = posix_cpu_timer_del,
- .timer_get = posix_cpu_timer_get,
- .timer_rearm = posix_cpu_timer_rearm,
- };
- const struct k_clock clock_process = {
- .clock_getres = process_cpu_clock_getres,
- .clock_get = process_cpu_clock_get,
- .timer_create = process_cpu_timer_create,
- .nsleep = process_cpu_nsleep,
- };
- const struct k_clock clock_thread = {
- .clock_getres = thread_cpu_clock_getres,
- .clock_get = thread_cpu_clock_get,
- .timer_create = thread_cpu_timer_create,
- };
|