1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032 |
- /*
- * linux/kernel/hrtimer.c
- *
- * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
- * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
- * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
- *
- * High-resolution kernel timers
- *
- * In contrast to the low-resolution timeout API implemented in
- * kernel/timer.c, hrtimers provide finer resolution and accuracy
- * depending on system configuration and capabilities.
- *
- * These timers are currently used for:
- * - itimers
- * - POSIX timers
- * - nanosleep
- * - precise in-kernel timing
- *
- * Started by: Thomas Gleixner and Ingo Molnar
- *
- * Credits:
- * based on kernel/timer.c
- *
- * Help, testing, suggestions, bugfixes, improvements were
- * provided by:
- *
- * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
- * et. al.
- *
- * For licencing details see kernel-base/COPYING
- */
- #include <linux/cpu.h>
- #include <linux/export.h>
- #include <linux/percpu.h>
- #include <linux/hrtimer.h>
- #include <linux/notifier.h>
- #include <linux/syscalls.h>
- #include <linux/interrupt.h>
- #include <linux/tick.h>
- #include <linux/seq_file.h>
- #include <linux/err.h>
- #include <linux/debugobjects.h>
- #include <linux/sched/signal.h>
- #include <linux/sched/sysctl.h>
- #include <linux/sched/rt.h>
- #include <linux/sched/deadline.h>
- #include <linux/sched/nohz.h>
- #include <linux/sched/debug.h>
- #include <linux/timer.h>
- #include <linux/freezer.h>
- #include <linux/compat.h>
- #include <linux/uaccess.h>
- #include <trace/events/timer.h>
- #include "tick-internal.h"
- /*
- * Masks for selecting the soft and hard context timers from
- * cpu_base->active
- */
- #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
- #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
- #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
- #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
- /*
- * The timer bases:
- *
- * There are more clockids than hrtimer bases. Thus, we index
- * into the timer bases by the hrtimer_base_type enum. When trying
- * to reach a base using a clockid, hrtimer_clockid_to_base()
- * is used to convert from clockid to the proper hrtimer_base_type.
- */
- DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
- {
- .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
- .clock_base =
- {
- {
- .index = HRTIMER_BASE_MONOTONIC,
- .clockid = CLOCK_MONOTONIC,
- .get_time = &ktime_get,
- },
- {
- .index = HRTIMER_BASE_REALTIME,
- .clockid = CLOCK_REALTIME,
- .get_time = &ktime_get_real,
- },
- {
- .index = HRTIMER_BASE_BOOTTIME,
- .clockid = CLOCK_BOOTTIME,
- .get_time = &ktime_get_boottime,
- },
- {
- .index = HRTIMER_BASE_TAI,
- .clockid = CLOCK_TAI,
- .get_time = &ktime_get_clocktai,
- },
- {
- .index = HRTIMER_BASE_MONOTONIC_SOFT,
- .clockid = CLOCK_MONOTONIC,
- .get_time = &ktime_get,
- },
- {
- .index = HRTIMER_BASE_REALTIME_SOFT,
- .clockid = CLOCK_REALTIME,
- .get_time = &ktime_get_real,
- },
- {
- .index = HRTIMER_BASE_BOOTTIME_SOFT,
- .clockid = CLOCK_BOOTTIME,
- .get_time = &ktime_get_boottime,
- },
- {
- .index = HRTIMER_BASE_TAI_SOFT,
- .clockid = CLOCK_TAI,
- .get_time = &ktime_get_clocktai,
- },
- }
- };
- static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
- /* Make sure we catch unsupported clockids */
- [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
- [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
- [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
- [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
- [CLOCK_TAI] = HRTIMER_BASE_TAI,
- };
- /*
- * Functions and macros which are different for UP/SMP systems are kept in a
- * single place
- */
- #ifdef CONFIG_SMP
- /*
- * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
- * such that hrtimer_callback_running() can unconditionally dereference
- * timer->base->cpu_base
- */
- static struct hrtimer_cpu_base migration_cpu_base = {
- .clock_base = { { .cpu_base = &migration_cpu_base, }, },
- };
- #define migration_base migration_cpu_base.clock_base[0]
- /*
- * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
- * means that all timers which are tied to this base via timer->base are
- * locked, and the base itself is locked too.
- *
- * So __run_timers/migrate_timers can safely modify all timers which could
- * be found on the lists/queues.
- *
- * When the timer's base is locked, and the timer removed from list, it is
- * possible to set timer->base = &migration_base and drop the lock: the timer
- * remains locked.
- */
- static
- struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
- unsigned long *flags)
- {
- struct hrtimer_clock_base *base;
- for (;;) {
- base = timer->base;
- if (likely(base != &migration_base)) {
- raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
- if (likely(base == timer->base))
- return base;
- /* The timer has migrated to another CPU: */
- raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
- }
- cpu_relax();
- }
- }
- /*
- * We do not migrate the timer when it is expiring before the next
- * event on the target cpu. When high resolution is enabled, we cannot
- * reprogram the target cpu hardware and we would cause it to fire
- * late. To keep it simple, we handle the high resolution enabled and
- * disabled case similar.
- *
- * Called with cpu_base->lock of target cpu held.
- */
- static int
- hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
- {
- ktime_t expires;
- expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
- return expires < new_base->cpu_base->expires_next;
- }
- static inline
- struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
- int pinned)
- {
- #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
- if (static_branch_likely(&timers_migration_enabled) && !pinned)
- return &per_cpu(hrtimer_bases, get_nohz_timer_target());
- #endif
- return base;
- }
- /*
- * We switch the timer base to a power-optimized selected CPU target,
- * if:
- * - NO_HZ_COMMON is enabled
- * - timer migration is enabled
- * - the timer callback is not running
- * - the timer is not the first expiring timer on the new target
- *
- * If one of the above requirements is not fulfilled we move the timer
- * to the current CPU or leave it on the previously assigned CPU if
- * the timer callback is currently running.
- */
- static inline struct hrtimer_clock_base *
- switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
- int pinned)
- {
- struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
- struct hrtimer_clock_base *new_base;
- int basenum = base->index;
- this_cpu_base = this_cpu_ptr(&hrtimer_bases);
- new_cpu_base = get_target_base(this_cpu_base, pinned);
- again:
- new_base = &new_cpu_base->clock_base[basenum];
- if (base != new_base) {
- /*
- * We are trying to move timer to new_base.
- * However we can't change timer's base while it is running,
- * so we keep it on the same CPU. No hassle vs. reprogramming
- * the event source in the high resolution case. The softirq
- * code will take care of this when the timer function has
- * completed. There is no conflict as we hold the lock until
- * the timer is enqueued.
- */
- if (unlikely(hrtimer_callback_running(timer)))
- return base;
- /* See the comment in lock_hrtimer_base() */
- timer->base = &migration_base;
- raw_spin_unlock(&base->cpu_base->lock);
- raw_spin_lock(&new_base->cpu_base->lock);
- if (new_cpu_base != this_cpu_base &&
- hrtimer_check_target(timer, new_base)) {
- raw_spin_unlock(&new_base->cpu_base->lock);
- raw_spin_lock(&base->cpu_base->lock);
- new_cpu_base = this_cpu_base;
- timer->base = base;
- goto again;
- }
- timer->base = new_base;
- } else {
- if (new_cpu_base != this_cpu_base &&
- hrtimer_check_target(timer, new_base)) {
- new_cpu_base = this_cpu_base;
- goto again;
- }
- }
- return new_base;
- }
- #else /* CONFIG_SMP */
- static inline struct hrtimer_clock_base *
- lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
- {
- struct hrtimer_clock_base *base = timer->base;
- raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
- return base;
- }
- # define switch_hrtimer_base(t, b, p) (b)
- #endif /* !CONFIG_SMP */
- /*
- * Functions for the union type storage format of ktime_t which are
- * too large for inlining:
- */
- #if BITS_PER_LONG < 64
- /*
- * Divide a ktime value by a nanosecond value
- */
- s64 __ktime_divns(const ktime_t kt, s64 div)
- {
- int sft = 0;
- s64 dclc;
- u64 tmp;
- dclc = ktime_to_ns(kt);
- tmp = dclc < 0 ? -dclc : dclc;
- /* Make sure the divisor is less than 2^32: */
- while (div >> 32) {
- sft++;
- div >>= 1;
- }
- tmp >>= sft;
- do_div(tmp, (unsigned long) div);
- return dclc < 0 ? -tmp : tmp;
- }
- EXPORT_SYMBOL_GPL(__ktime_divns);
- #endif /* BITS_PER_LONG >= 64 */
- /*
- * Add two ktime values and do a safety check for overflow:
- */
- ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
- {
- ktime_t res = ktime_add_unsafe(lhs, rhs);
- /*
- * We use KTIME_SEC_MAX here, the maximum timeout which we can
- * return to user space in a timespec:
- */
- if (res < 0 || res < lhs || res < rhs)
- res = ktime_set(KTIME_SEC_MAX, 0);
- return res;
- }
- EXPORT_SYMBOL_GPL(ktime_add_safe);
- #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
- static struct debug_obj_descr hrtimer_debug_descr;
- static void *hrtimer_debug_hint(void *addr)
- {
- return ((struct hrtimer *) addr)->function;
- }
- /*
- * fixup_init is called when:
- * - an active object is initialized
- */
- static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
- {
- struct hrtimer *timer = addr;
- switch (state) {
- case ODEBUG_STATE_ACTIVE:
- hrtimer_cancel(timer);
- debug_object_init(timer, &hrtimer_debug_descr);
- return true;
- default:
- return false;
- }
- }
- /*
- * fixup_activate is called when:
- * - an active object is activated
- * - an unknown non-static object is activated
- */
- static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
- {
- switch (state) {
- case ODEBUG_STATE_ACTIVE:
- WARN_ON(1);
- default:
- return false;
- }
- }
- /*
- * fixup_free is called when:
- * - an active object is freed
- */
- static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
- {
- struct hrtimer *timer = addr;
- switch (state) {
- case ODEBUG_STATE_ACTIVE:
- hrtimer_cancel(timer);
- debug_object_free(timer, &hrtimer_debug_descr);
- return true;
- default:
- return false;
- }
- }
- static struct debug_obj_descr hrtimer_debug_descr = {
- .name = "hrtimer",
- .debug_hint = hrtimer_debug_hint,
- .fixup_init = hrtimer_fixup_init,
- .fixup_activate = hrtimer_fixup_activate,
- .fixup_free = hrtimer_fixup_free,
- };
- static inline void debug_hrtimer_init(struct hrtimer *timer)
- {
- debug_object_init(timer, &hrtimer_debug_descr);
- }
- static inline void debug_hrtimer_activate(struct hrtimer *timer,
- enum hrtimer_mode mode)
- {
- debug_object_activate(timer, &hrtimer_debug_descr);
- }
- static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
- {
- debug_object_deactivate(timer, &hrtimer_debug_descr);
- }
- static inline void debug_hrtimer_free(struct hrtimer *timer)
- {
- debug_object_free(timer, &hrtimer_debug_descr);
- }
- static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode);
- void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode)
- {
- debug_object_init_on_stack(timer, &hrtimer_debug_descr);
- __hrtimer_init(timer, clock_id, mode);
- }
- EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
- void destroy_hrtimer_on_stack(struct hrtimer *timer)
- {
- debug_object_free(timer, &hrtimer_debug_descr);
- }
- EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
- #else
- static inline void debug_hrtimer_init(struct hrtimer *timer) { }
- static inline void debug_hrtimer_activate(struct hrtimer *timer,
- enum hrtimer_mode mode) { }
- static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
- #endif
- static inline void
- debug_init(struct hrtimer *timer, clockid_t clockid,
- enum hrtimer_mode mode)
- {
- debug_hrtimer_init(timer);
- trace_hrtimer_init(timer, clockid, mode);
- }
- static inline void debug_activate(struct hrtimer *timer,
- enum hrtimer_mode mode)
- {
- debug_hrtimer_activate(timer, mode);
- trace_hrtimer_start(timer, mode);
- }
- static inline void debug_deactivate(struct hrtimer *timer)
- {
- debug_hrtimer_deactivate(timer);
- trace_hrtimer_cancel(timer);
- }
- static struct hrtimer_clock_base *
- __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
- {
- unsigned int idx;
- if (!*active)
- return NULL;
- idx = __ffs(*active);
- *active &= ~(1U << idx);
- return &cpu_base->clock_base[idx];
- }
- #define for_each_active_base(base, cpu_base, active) \
- while ((base = __next_base((cpu_base), &(active))))
- static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
- const struct hrtimer *exclude,
- unsigned int active,
- ktime_t expires_next)
- {
- struct hrtimer_clock_base *base;
- ktime_t expires;
- for_each_active_base(base, cpu_base, active) {
- struct timerqueue_node *next;
- struct hrtimer *timer;
- next = timerqueue_getnext(&base->active);
- timer = container_of(next, struct hrtimer, node);
- if (timer == exclude) {
- /* Get to the next timer in the queue. */
- next = timerqueue_iterate_next(next);
- if (!next)
- continue;
- timer = container_of(next, struct hrtimer, node);
- }
- expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
- if (expires < expires_next) {
- expires_next = expires;
- /* Skip cpu_base update if a timer is being excluded. */
- if (exclude)
- continue;
- if (timer->is_soft)
- cpu_base->softirq_next_timer = timer;
- else
- cpu_base->next_timer = timer;
- }
- }
- /*
- * clock_was_set() might have changed base->offset of any of
- * the clock bases so the result might be negative. Fix it up
- * to prevent a false positive in clockevents_program_event().
- */
- if (expires_next < 0)
- expires_next = 0;
- return expires_next;
- }
- /*
- * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
- * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
- *
- * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
- * those timers will get run whenever the softirq gets handled, at the end of
- * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
- *
- * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
- * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
- * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
- *
- * @active_mask must be one of:
- * - HRTIMER_ACTIVE_ALL,
- * - HRTIMER_ACTIVE_SOFT, or
- * - HRTIMER_ACTIVE_HARD.
- */
- static ktime_t
- __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
- {
- unsigned int active;
- struct hrtimer *next_timer = NULL;
- ktime_t expires_next = KTIME_MAX;
- if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
- active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
- cpu_base->softirq_next_timer = NULL;
- expires_next = __hrtimer_next_event_base(cpu_base, NULL,
- active, KTIME_MAX);
- next_timer = cpu_base->softirq_next_timer;
- }
- if (active_mask & HRTIMER_ACTIVE_HARD) {
- active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
- cpu_base->next_timer = next_timer;
- expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
- expires_next);
- }
- return expires_next;
- }
- static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
- {
- ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
- ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
- ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
- ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
- offs_real, offs_boot, offs_tai);
- base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
- base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
- base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
- return now;
- }
- /*
- * Is the high resolution mode active ?
- */
- static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
- {
- return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
- cpu_base->hres_active : 0;
- }
- static inline int hrtimer_hres_active(void)
- {
- return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
- }
- /*
- * Reprogram the event source with checking both queues for the
- * next event
- * Called with interrupts disabled and base->lock held
- */
- static void
- hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
- {
- ktime_t expires_next;
- /*
- * Find the current next expiration time.
- */
- expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
- if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
- /*
- * When the softirq is activated, hrtimer has to be
- * programmed with the first hard hrtimer because soft
- * timer interrupt could occur too late.
- */
- if (cpu_base->softirq_activated)
- expires_next = __hrtimer_get_next_event(cpu_base,
- HRTIMER_ACTIVE_HARD);
- else
- cpu_base->softirq_expires_next = expires_next;
- }
- if (skip_equal && expires_next == cpu_base->expires_next)
- return;
- cpu_base->expires_next = expires_next;
- /*
- * If hres is not active, hardware does not have to be
- * reprogrammed yet.
- *
- * If a hang was detected in the last timer interrupt then we
- * leave the hang delay active in the hardware. We want the
- * system to make progress. That also prevents the following
- * scenario:
- * T1 expires 50ms from now
- * T2 expires 5s from now
- *
- * T1 is removed, so this code is called and would reprogram
- * the hardware to 5s from now. Any hrtimer_start after that
- * will not reprogram the hardware due to hang_detected being
- * set. So we'd effectivly block all timers until the T2 event
- * fires.
- */
- if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
- return;
- tick_program_event(cpu_base->expires_next, 1);
- }
- /* High resolution timer related functions */
- #ifdef CONFIG_HIGH_RES_TIMERS
- /*
- * High resolution timer enabled ?
- */
- static bool hrtimer_hres_enabled __read_mostly = true;
- unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
- EXPORT_SYMBOL_GPL(hrtimer_resolution);
- /*
- * Enable / Disable high resolution mode
- */
- static int __init setup_hrtimer_hres(char *str)
- {
- return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
- }
- __setup("highres=", setup_hrtimer_hres);
- /*
- * hrtimer_high_res_enabled - query, if the highres mode is enabled
- */
- static inline int hrtimer_is_hres_enabled(void)
- {
- return hrtimer_hres_enabled;
- }
- /*
- * Retrigger next event is called after clock was set
- *
- * Called with interrupts disabled via on_each_cpu()
- */
- static void retrigger_next_event(void *arg)
- {
- struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
- if (!__hrtimer_hres_active(base))
- return;
- raw_spin_lock(&base->lock);
- hrtimer_update_base(base);
- hrtimer_force_reprogram(base, 0);
- raw_spin_unlock(&base->lock);
- }
- /*
- * Switch to high resolution mode
- */
- static void hrtimer_switch_to_hres(void)
- {
- struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
- if (tick_init_highres()) {
- pr_warn("Could not switch to high resolution mode on CPU %u\n",
- base->cpu);
- return;
- }
- base->hres_active = 1;
- hrtimer_resolution = HIGH_RES_NSEC;
- tick_setup_sched_timer();
- /* "Retrigger" the interrupt to get things going */
- retrigger_next_event(NULL);
- }
- static void clock_was_set_work(struct work_struct *work)
- {
- clock_was_set();
- }
- static DECLARE_WORK(hrtimer_work, clock_was_set_work);
- /*
- * Called from timekeeping and resume code to reprogram the hrtimer
- * interrupt device on all cpus.
- */
- void clock_was_set_delayed(void)
- {
- schedule_work(&hrtimer_work);
- }
- #else
- static inline int hrtimer_is_hres_enabled(void) { return 0; }
- static inline void hrtimer_switch_to_hres(void) { }
- static inline void retrigger_next_event(void *arg) { }
- #endif /* CONFIG_HIGH_RES_TIMERS */
- /*
- * When a timer is enqueued and expires earlier than the already enqueued
- * timers, we have to check, whether it expires earlier than the timer for
- * which the clock event device was armed.
- *
- * Called with interrupts disabled and base->cpu_base.lock held
- */
- static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
- {
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- struct hrtimer_clock_base *base = timer->base;
- ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
- WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
- /*
- * CLOCK_REALTIME timer might be requested with an absolute
- * expiry time which is less than base->offset. Set it to 0.
- */
- if (expires < 0)
- expires = 0;
- if (timer->is_soft) {
- /*
- * soft hrtimer could be started on a remote CPU. In this
- * case softirq_expires_next needs to be updated on the
- * remote CPU. The soft hrtimer will not expire before the
- * first hard hrtimer on the remote CPU -
- * hrtimer_check_target() prevents this case.
- */
- struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
- if (timer_cpu_base->softirq_activated)
- return;
- if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
- return;
- timer_cpu_base->softirq_next_timer = timer;
- timer_cpu_base->softirq_expires_next = expires;
- if (!ktime_before(expires, timer_cpu_base->expires_next) ||
- !reprogram)
- return;
- }
- /*
- * If the timer is not on the current cpu, we cannot reprogram
- * the other cpus clock event device.
- */
- if (base->cpu_base != cpu_base)
- return;
- /*
- * If the hrtimer interrupt is running, then it will
- * reevaluate the clock bases and reprogram the clock event
- * device. The callbacks are always executed in hard interrupt
- * context so we don't need an extra check for a running
- * callback.
- */
- if (cpu_base->in_hrtirq)
- return;
- if (expires >= cpu_base->expires_next)
- return;
- /* Update the pointer to the next expiring timer */
- cpu_base->next_timer = timer;
- cpu_base->expires_next = expires;
- /*
- * If hres is not active, hardware does not have to be
- * programmed yet.
- *
- * If a hang was detected in the last timer interrupt then we
- * do not schedule a timer which is earlier than the expiry
- * which we enforced in the hang detection. We want the system
- * to make progress.
- */
- if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
- return;
- /*
- * Program the timer hardware. We enforce the expiry for
- * events which are already in the past.
- */
- tick_program_event(expires, 1);
- }
- /*
- * Clock realtime was set
- *
- * Change the offset of the realtime clock vs. the monotonic
- * clock.
- *
- * We might have to reprogram the high resolution timer interrupt. On
- * SMP we call the architecture specific code to retrigger _all_ high
- * resolution timer interrupts. On UP we just disable interrupts and
- * call the high resolution interrupt code.
- */
- void clock_was_set(void)
- {
- #ifdef CONFIG_HIGH_RES_TIMERS
- /* Retrigger the CPU local events everywhere */
- on_each_cpu(retrigger_next_event, NULL, 1);
- #endif
- timerfd_clock_was_set();
- }
- /*
- * During resume we might have to reprogram the high resolution timer
- * interrupt on all online CPUs. However, all other CPUs will be
- * stopped with IRQs interrupts disabled so the clock_was_set() call
- * must be deferred.
- */
- void hrtimers_resume(void)
- {
- lockdep_assert_irqs_disabled();
- /* Retrigger on the local CPU */
- retrigger_next_event(NULL);
- /* And schedule a retrigger for all others */
- clock_was_set_delayed();
- }
- /*
- * Counterpart to lock_hrtimer_base above:
- */
- static inline
- void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
- {
- raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
- }
- /**
- * hrtimer_forward - forward the timer expiry
- * @timer: hrtimer to forward
- * @now: forward past this time
- * @interval: the interval to forward
- *
- * Forward the timer expiry so it will expire in the future.
- * Returns the number of overruns.
- *
- * Can be safely called from the callback function of @timer. If
- * called from other contexts @timer must neither be enqueued nor
- * running the callback and the caller needs to take care of
- * serialization.
- *
- * Note: This only updates the timer expiry value and does not requeue
- * the timer.
- */
- u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
- {
- u64 orun = 1;
- ktime_t delta;
- delta = ktime_sub(now, hrtimer_get_expires(timer));
- if (delta < 0)
- return 0;
- if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
- return 0;
- if (interval < hrtimer_resolution)
- interval = hrtimer_resolution;
- if (unlikely(delta >= interval)) {
- s64 incr = ktime_to_ns(interval);
- orun = ktime_divns(delta, incr);
- hrtimer_add_expires_ns(timer, incr * orun);
- if (hrtimer_get_expires_tv64(timer) > now)
- return orun;
- /*
- * This (and the ktime_add() below) is the
- * correction for exact:
- */
- orun++;
- }
- hrtimer_add_expires(timer, interval);
- return orun;
- }
- EXPORT_SYMBOL_GPL(hrtimer_forward);
- /*
- * enqueue_hrtimer - internal function to (re)start a timer
- *
- * The timer is inserted in expiry order. Insertion into the
- * red black tree is O(log(n)). Must hold the base lock.
- *
- * Returns 1 when the new timer is the leftmost timer in the tree.
- */
- static int enqueue_hrtimer(struct hrtimer *timer,
- struct hrtimer_clock_base *base,
- enum hrtimer_mode mode)
- {
- debug_activate(timer, mode);
- base->cpu_base->active_bases |= 1 << base->index;
- /* Pairs with the lockless read in hrtimer_is_queued() */
- WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
- return timerqueue_add(&base->active, &timer->node);
- }
- /*
- * __remove_hrtimer - internal function to remove a timer
- *
- * Caller must hold the base lock.
- *
- * High resolution timer mode reprograms the clock event device when the
- * timer is the one which expires next. The caller can disable this by setting
- * reprogram to zero. This is useful, when the context does a reprogramming
- * anyway (e.g. timer interrupt)
- */
- static void __remove_hrtimer(struct hrtimer *timer,
- struct hrtimer_clock_base *base,
- u8 newstate, int reprogram)
- {
- struct hrtimer_cpu_base *cpu_base = base->cpu_base;
- u8 state = timer->state;
- /* Pairs with the lockless read in hrtimer_is_queued() */
- WRITE_ONCE(timer->state, newstate);
- if (!(state & HRTIMER_STATE_ENQUEUED))
- return;
- if (!timerqueue_del(&base->active, &timer->node))
- cpu_base->active_bases &= ~(1 << base->index);
- /*
- * Note: If reprogram is false we do not update
- * cpu_base->next_timer. This happens when we remove the first
- * timer on a remote cpu. No harm as we never dereference
- * cpu_base->next_timer. So the worst thing what can happen is
- * an superflous call to hrtimer_force_reprogram() on the
- * remote cpu later on if the same timer gets enqueued again.
- */
- if (reprogram && timer == cpu_base->next_timer)
- hrtimer_force_reprogram(cpu_base, 1);
- }
- /*
- * remove hrtimer, called with base lock held
- */
- static inline int
- remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
- {
- u8 state = timer->state;
- if (state & HRTIMER_STATE_ENQUEUED) {
- int reprogram;
- /*
- * Remove the timer and force reprogramming when high
- * resolution mode is active and the timer is on the current
- * CPU. If we remove a timer on another CPU, reprogramming is
- * skipped. The interrupt event on this CPU is fired and
- * reprogramming happens in the interrupt handler. This is a
- * rare case and less expensive than a smp call.
- */
- debug_deactivate(timer);
- reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
- if (!restart)
- state = HRTIMER_STATE_INACTIVE;
- __remove_hrtimer(timer, base, state, reprogram);
- return 1;
- }
- return 0;
- }
- static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
- const enum hrtimer_mode mode)
- {
- #ifdef CONFIG_TIME_LOW_RES
- /*
- * CONFIG_TIME_LOW_RES indicates that the system has no way to return
- * granular time values. For relative timers we add hrtimer_resolution
- * (i.e. one jiffie) to prevent short timeouts.
- */
- timer->is_rel = mode & HRTIMER_MODE_REL;
- if (timer->is_rel)
- tim = ktime_add_safe(tim, hrtimer_resolution);
- #endif
- return tim;
- }
- static void
- hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
- {
- ktime_t expires;
- /*
- * Find the next SOFT expiration.
- */
- expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
- /*
- * reprogramming needs to be triggered, even if the next soft
- * hrtimer expires at the same time than the next hard
- * hrtimer. cpu_base->softirq_expires_next needs to be updated!
- */
- if (expires == KTIME_MAX)
- return;
- /*
- * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
- * cpu_base->*expires_next is only set by hrtimer_reprogram()
- */
- hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
- }
- static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
- u64 delta_ns, const enum hrtimer_mode mode,
- struct hrtimer_clock_base *base)
- {
- struct hrtimer_clock_base *new_base;
- /* Remove an active timer from the queue: */
- remove_hrtimer(timer, base, true);
- if (mode & HRTIMER_MODE_REL)
- tim = ktime_add_safe(tim, base->get_time());
- tim = hrtimer_update_lowres(timer, tim, mode);
- hrtimer_set_expires_range_ns(timer, tim, delta_ns);
- /* Switch the timer base, if necessary: */
- new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
- return enqueue_hrtimer(timer, new_base, mode);
- }
- /**
- * hrtimer_start_range_ns - (re)start an hrtimer
- * @timer: the timer to be added
- * @tim: expiry time
- * @delta_ns: "slack" range for the timer
- * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
- * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
- * softirq based mode is considered for debug purpose only!
- */
- void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
- u64 delta_ns, const enum hrtimer_mode mode)
- {
- struct hrtimer_clock_base *base;
- unsigned long flags;
- /*
- * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
- * match.
- */
- WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
- base = lock_hrtimer_base(timer, &flags);
- if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
- hrtimer_reprogram(timer, true);
- unlock_hrtimer_base(timer, &flags);
- }
- EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
- /**
- * hrtimer_try_to_cancel - try to deactivate a timer
- * @timer: hrtimer to stop
- *
- * Returns:
- * 0 when the timer was not active
- * 1 when the timer was active
- * -1 when the timer is currently executing the callback function and
- * cannot be stopped
- */
- int hrtimer_try_to_cancel(struct hrtimer *timer)
- {
- struct hrtimer_clock_base *base;
- unsigned long flags;
- int ret = -1;
- /*
- * Check lockless first. If the timer is not active (neither
- * enqueued nor running the callback, nothing to do here. The
- * base lock does not serialize against a concurrent enqueue,
- * so we can avoid taking it.
- */
- if (!hrtimer_active(timer))
- return 0;
- base = lock_hrtimer_base(timer, &flags);
- if (!hrtimer_callback_running(timer))
- ret = remove_hrtimer(timer, base, false);
- unlock_hrtimer_base(timer, &flags);
- return ret;
- }
- EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
- /**
- * hrtimer_cancel - cancel a timer and wait for the handler to finish.
- * @timer: the timer to be cancelled
- *
- * Returns:
- * 0 when the timer was not active
- * 1 when the timer was active
- */
- int hrtimer_cancel(struct hrtimer *timer)
- {
- for (;;) {
- int ret = hrtimer_try_to_cancel(timer);
- if (ret >= 0)
- return ret;
- cpu_relax();
- }
- }
- EXPORT_SYMBOL_GPL(hrtimer_cancel);
- /**
- * hrtimer_get_remaining - get remaining time for the timer
- * @timer: the timer to read
- * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
- */
- ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
- {
- unsigned long flags;
- ktime_t rem;
- lock_hrtimer_base(timer, &flags);
- if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
- rem = hrtimer_expires_remaining_adjusted(timer);
- else
- rem = hrtimer_expires_remaining(timer);
- unlock_hrtimer_base(timer, &flags);
- return rem;
- }
- EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
- #ifdef CONFIG_NO_HZ_COMMON
- /**
- * hrtimer_get_next_event - get the time until next expiry event
- *
- * Returns the next expiry time or KTIME_MAX if no timer is pending.
- */
- u64 hrtimer_get_next_event(void)
- {
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- u64 expires = KTIME_MAX;
- unsigned long flags;
- raw_spin_lock_irqsave(&cpu_base->lock, flags);
- if (!__hrtimer_hres_active(cpu_base))
- expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- return expires;
- }
- /**
- * hrtimer_next_event_without - time until next expiry event w/o one timer
- * @exclude: timer to exclude
- *
- * Returns the next expiry time over all timers except for the @exclude one or
- * KTIME_MAX if none of them is pending.
- */
- u64 hrtimer_next_event_without(const struct hrtimer *exclude)
- {
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- u64 expires = KTIME_MAX;
- unsigned long flags;
- raw_spin_lock_irqsave(&cpu_base->lock, flags);
- if (__hrtimer_hres_active(cpu_base)) {
- unsigned int active;
- if (!cpu_base->softirq_activated) {
- active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
- expires = __hrtimer_next_event_base(cpu_base, exclude,
- active, KTIME_MAX);
- }
- active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
- expires = __hrtimer_next_event_base(cpu_base, exclude, active,
- expires);
- }
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- return expires;
- }
- #endif
- static inline int hrtimer_clockid_to_base(clockid_t clock_id)
- {
- if (likely(clock_id < MAX_CLOCKS)) {
- int base = hrtimer_clock_to_base_table[clock_id];
- if (likely(base != HRTIMER_MAX_CLOCK_BASES))
- return base;
- }
- WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
- return HRTIMER_BASE_MONOTONIC;
- }
- static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode)
- {
- bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
- int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
- struct hrtimer_cpu_base *cpu_base;
- memset(timer, 0, sizeof(struct hrtimer));
- cpu_base = raw_cpu_ptr(&hrtimer_bases);
- /*
- * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
- * clock modifications, so they needs to become CLOCK_MONOTONIC to
- * ensure POSIX compliance.
- */
- if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
- clock_id = CLOCK_MONOTONIC;
- base += hrtimer_clockid_to_base(clock_id);
- timer->is_soft = softtimer;
- timer->base = &cpu_base->clock_base[base];
- timerqueue_init(&timer->node);
- }
- /**
- * hrtimer_init - initialize a timer to the given clock
- * @timer: the timer to be initialized
- * @clock_id: the clock to be used
- * @mode: The modes which are relevant for intitialization:
- * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
- * HRTIMER_MODE_REL_SOFT
- *
- * The PINNED variants of the above can be handed in,
- * but the PINNED bit is ignored as pinning happens
- * when the hrtimer is started
- */
- void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode)
- {
- debug_init(timer, clock_id, mode);
- __hrtimer_init(timer, clock_id, mode);
- }
- EXPORT_SYMBOL_GPL(hrtimer_init);
- /*
- * A timer is active, when it is enqueued into the rbtree or the
- * callback function is running or it's in the state of being migrated
- * to another cpu.
- *
- * It is important for this function to not return a false negative.
- */
- bool hrtimer_active(const struct hrtimer *timer)
- {
- struct hrtimer_clock_base *base;
- unsigned int seq;
- do {
- base = READ_ONCE(timer->base);
- seq = raw_read_seqcount_begin(&base->seq);
- if (timer->state != HRTIMER_STATE_INACTIVE ||
- base->running == timer)
- return true;
- } while (read_seqcount_retry(&base->seq, seq) ||
- base != READ_ONCE(timer->base));
- return false;
- }
- EXPORT_SYMBOL_GPL(hrtimer_active);
- /*
- * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
- * distinct sections:
- *
- * - queued: the timer is queued
- * - callback: the timer is being ran
- * - post: the timer is inactive or (re)queued
- *
- * On the read side we ensure we observe timer->state and cpu_base->running
- * from the same section, if anything changed while we looked at it, we retry.
- * This includes timer->base changing because sequence numbers alone are
- * insufficient for that.
- *
- * The sequence numbers are required because otherwise we could still observe
- * a false negative if the read side got smeared over multiple consequtive
- * __run_hrtimer() invocations.
- */
- static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
- struct hrtimer_clock_base *base,
- struct hrtimer *timer, ktime_t *now,
- unsigned long flags)
- {
- enum hrtimer_restart (*fn)(struct hrtimer *);
- int restart;
- lockdep_assert_held(&cpu_base->lock);
- debug_deactivate(timer);
- base->running = timer;
- /*
- * Separate the ->running assignment from the ->state assignment.
- *
- * As with a regular write barrier, this ensures the read side in
- * hrtimer_active() cannot observe base->running == NULL &&
- * timer->state == INACTIVE.
- */
- raw_write_seqcount_barrier(&base->seq);
- __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
- fn = timer->function;
- /*
- * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
- * timer is restarted with a period then it becomes an absolute
- * timer. If its not restarted it does not matter.
- */
- if (IS_ENABLED(CONFIG_TIME_LOW_RES))
- timer->is_rel = false;
- /*
- * The timer is marked as running in the CPU base, so it is
- * protected against migration to a different CPU even if the lock
- * is dropped.
- */
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- trace_hrtimer_expire_entry(timer, now);
- restart = fn(timer);
- trace_hrtimer_expire_exit(timer);
- raw_spin_lock_irq(&cpu_base->lock);
- /*
- * Note: We clear the running state after enqueue_hrtimer and
- * we do not reprogram the event hardware. Happens either in
- * hrtimer_start_range_ns() or in hrtimer_interrupt()
- *
- * Note: Because we dropped the cpu_base->lock above,
- * hrtimer_start_range_ns() can have popped in and enqueued the timer
- * for us already.
- */
- if (restart != HRTIMER_NORESTART &&
- !(timer->state & HRTIMER_STATE_ENQUEUED))
- enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
- /*
- * Separate the ->running assignment from the ->state assignment.
- *
- * As with a regular write barrier, this ensures the read side in
- * hrtimer_active() cannot observe base->running.timer == NULL &&
- * timer->state == INACTIVE.
- */
- raw_write_seqcount_barrier(&base->seq);
- WARN_ON_ONCE(base->running != timer);
- base->running = NULL;
- }
- static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
- unsigned long flags, unsigned int active_mask)
- {
- struct hrtimer_clock_base *base;
- unsigned int active = cpu_base->active_bases & active_mask;
- for_each_active_base(base, cpu_base, active) {
- struct timerqueue_node *node;
- ktime_t basenow;
- basenow = ktime_add(now, base->offset);
- while ((node = timerqueue_getnext(&base->active))) {
- struct hrtimer *timer;
- timer = container_of(node, struct hrtimer, node);
- /*
- * The immediate goal for using the softexpires is
- * minimizing wakeups, not running timers at the
- * earliest interrupt after their soft expiration.
- * This allows us to avoid using a Priority Search
- * Tree, which can answer a stabbing querry for
- * overlapping intervals and instead use the simple
- * BST we already have.
- * We don't add extra wakeups by delaying timers that
- * are right-of a not yet expired timer, because that
- * timer will have to trigger a wakeup anyway.
- */
- if (basenow < hrtimer_get_softexpires_tv64(timer))
- break;
- __run_hrtimer(cpu_base, base, timer, &basenow, flags);
- }
- }
- }
- static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
- {
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- unsigned long flags;
- ktime_t now;
- raw_spin_lock_irqsave(&cpu_base->lock, flags);
- now = hrtimer_update_base(cpu_base);
- __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
- cpu_base->softirq_activated = 0;
- hrtimer_update_softirq_timer(cpu_base, true);
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- }
- #ifdef CONFIG_HIGH_RES_TIMERS
- /*
- * High resolution timer interrupt
- * Called with interrupts disabled
- */
- void hrtimer_interrupt(struct clock_event_device *dev)
- {
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- ktime_t expires_next, now, entry_time, delta;
- unsigned long flags;
- int retries = 0;
- BUG_ON(!cpu_base->hres_active);
- cpu_base->nr_events++;
- dev->next_event = KTIME_MAX;
- raw_spin_lock_irqsave(&cpu_base->lock, flags);
- entry_time = now = hrtimer_update_base(cpu_base);
- retry:
- cpu_base->in_hrtirq = 1;
- /*
- * We set expires_next to KTIME_MAX here with cpu_base->lock
- * held to prevent that a timer is enqueued in our queue via
- * the migration code. This does not affect enqueueing of
- * timers which run their callback and need to be requeued on
- * this CPU.
- */
- cpu_base->expires_next = KTIME_MAX;
- if (!ktime_before(now, cpu_base->softirq_expires_next)) {
- cpu_base->softirq_expires_next = KTIME_MAX;
- cpu_base->softirq_activated = 1;
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
- }
- __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
- /* Reevaluate the clock bases for the next expiry */
- expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
- /*
- * Store the new expiry value so the migration code can verify
- * against it.
- */
- cpu_base->expires_next = expires_next;
- cpu_base->in_hrtirq = 0;
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- /* Reprogramming necessary ? */
- if (!tick_program_event(expires_next, 0)) {
- cpu_base->hang_detected = 0;
- return;
- }
- /*
- * The next timer was already expired due to:
- * - tracing
- * - long lasting callbacks
- * - being scheduled away when running in a VM
- *
- * We need to prevent that we loop forever in the hrtimer
- * interrupt routine. We give it 3 attempts to avoid
- * overreacting on some spurious event.
- *
- * Acquire base lock for updating the offsets and retrieving
- * the current time.
- */
- raw_spin_lock_irqsave(&cpu_base->lock, flags);
- now = hrtimer_update_base(cpu_base);
- cpu_base->nr_retries++;
- if (++retries < 3)
- goto retry;
- /*
- * Give the system a chance to do something else than looping
- * here. We stored the entry time, so we know exactly how long
- * we spent here. We schedule the next event this amount of
- * time away.
- */
- cpu_base->nr_hangs++;
- cpu_base->hang_detected = 1;
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- delta = ktime_sub(now, entry_time);
- if ((unsigned int)delta > cpu_base->max_hang_time)
- cpu_base->max_hang_time = (unsigned int) delta;
- /*
- * Limit it to a sensible value as we enforce a longer
- * delay. Give the CPU at least 100ms to catch up.
- */
- if (delta > 100 * NSEC_PER_MSEC)
- expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
- else
- expires_next = ktime_add(now, delta);
- tick_program_event(expires_next, 1);
- pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
- }
- /* called with interrupts disabled */
- static inline void __hrtimer_peek_ahead_timers(void)
- {
- struct tick_device *td;
- if (!hrtimer_hres_active())
- return;
- td = this_cpu_ptr(&tick_cpu_device);
- if (td && td->evtdev)
- hrtimer_interrupt(td->evtdev);
- }
- #else /* CONFIG_HIGH_RES_TIMERS */
- static inline void __hrtimer_peek_ahead_timers(void) { }
- #endif /* !CONFIG_HIGH_RES_TIMERS */
- /*
- * Called from run_local_timers in hardirq context every jiffy
- */
- void hrtimer_run_queues(void)
- {
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
- unsigned long flags;
- ktime_t now;
- if (__hrtimer_hres_active(cpu_base))
- return;
- /*
- * This _is_ ugly: We have to check periodically, whether we
- * can switch to highres and / or nohz mode. The clocksource
- * switch happens with xtime_lock held. Notification from
- * there only sets the check bit in the tick_oneshot code,
- * otherwise we might deadlock vs. xtime_lock.
- */
- if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
- hrtimer_switch_to_hres();
- return;
- }
- raw_spin_lock_irqsave(&cpu_base->lock, flags);
- now = hrtimer_update_base(cpu_base);
- if (!ktime_before(now, cpu_base->softirq_expires_next)) {
- cpu_base->softirq_expires_next = KTIME_MAX;
- cpu_base->softirq_activated = 1;
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
- }
- __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
- raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
- }
- /*
- * Sleep related functions:
- */
- static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
- {
- struct hrtimer_sleeper *t =
- container_of(timer, struct hrtimer_sleeper, timer);
- struct task_struct *task = t->task;
- t->task = NULL;
- if (task)
- wake_up_process(task);
- return HRTIMER_NORESTART;
- }
- void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
- {
- sl->timer.function = hrtimer_wakeup;
- sl->task = task;
- }
- EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
- int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
- {
- switch(restart->nanosleep.type) {
- #ifdef CONFIG_COMPAT_32BIT_TIME
- case TT_COMPAT:
- if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
- return -EFAULT;
- break;
- #endif
- case TT_NATIVE:
- if (put_timespec64(ts, restart->nanosleep.rmtp))
- return -EFAULT;
- break;
- default:
- BUG();
- }
- return -ERESTART_RESTARTBLOCK;
- }
- static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
- {
- struct restart_block *restart;
- hrtimer_init_sleeper(t, current);
- do {
- set_current_state(TASK_INTERRUPTIBLE);
- hrtimer_start_expires(&t->timer, mode);
- if (likely(t->task))
- freezable_schedule();
- hrtimer_cancel(&t->timer);
- mode = HRTIMER_MODE_ABS;
- } while (t->task && !signal_pending(current));
- __set_current_state(TASK_RUNNING);
- if (!t->task)
- return 0;
- restart = ¤t->restart_block;
- if (restart->nanosleep.type != TT_NONE) {
- ktime_t rem = hrtimer_expires_remaining(&t->timer);
- struct timespec64 rmt;
- if (rem <= 0)
- return 0;
- rmt = ktime_to_timespec64(rem);
- return nanosleep_copyout(restart, &rmt);
- }
- return -ERESTART_RESTARTBLOCK;
- }
- static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
- {
- struct hrtimer_sleeper t;
- int ret;
- hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
- HRTIMER_MODE_ABS);
- hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
- ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
- destroy_hrtimer_on_stack(&t.timer);
- return ret;
- }
- long hrtimer_nanosleep(const struct timespec64 *rqtp,
- const enum hrtimer_mode mode, const clockid_t clockid)
- {
- struct restart_block *restart;
- struct hrtimer_sleeper t;
- int ret = 0;
- u64 slack;
- slack = current->timer_slack_ns;
- if (dl_task(current) || rt_task(current))
- slack = 0;
- hrtimer_init_on_stack(&t.timer, clockid, mode);
- hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
- ret = do_nanosleep(&t, mode);
- if (ret != -ERESTART_RESTARTBLOCK)
- goto out;
- /* Absolute timers do not update the rmtp value and restart: */
- if (mode == HRTIMER_MODE_ABS) {
- ret = -ERESTARTNOHAND;
- goto out;
- }
- restart = ¤t->restart_block;
- restart->fn = hrtimer_nanosleep_restart;
- restart->nanosleep.clockid = t.timer.base->clockid;
- restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
- out:
- destroy_hrtimer_on_stack(&t.timer);
- return ret;
- }
- #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
- SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
- struct __kernel_timespec __user *, rmtp)
- {
- struct timespec64 tu;
- if (get_timespec64(&tu, rqtp))
- return -EFAULT;
- if (!timespec64_valid(&tu))
- return -EINVAL;
- current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
- current->restart_block.nanosleep.rmtp = rmtp;
- return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
- }
- #endif
- #ifdef CONFIG_COMPAT_32BIT_TIME
- COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
- struct compat_timespec __user *, rmtp)
- {
- struct timespec64 tu;
- if (compat_get_timespec64(&tu, rqtp))
- return -EFAULT;
- if (!timespec64_valid(&tu))
- return -EINVAL;
- current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
- current->restart_block.nanosleep.compat_rmtp = rmtp;
- return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
- }
- #endif
- /*
- * Functions related to boot-time initialization:
- */
- int hrtimers_prepare_cpu(unsigned int cpu)
- {
- struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
- int i;
- for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
- cpu_base->clock_base[i].cpu_base = cpu_base;
- timerqueue_init_head(&cpu_base->clock_base[i].active);
- }
- cpu_base->cpu = cpu;
- cpu_base->active_bases = 0;
- cpu_base->hres_active = 0;
- cpu_base->hang_detected = 0;
- cpu_base->next_timer = NULL;
- cpu_base->softirq_next_timer = NULL;
- cpu_base->expires_next = KTIME_MAX;
- cpu_base->softirq_expires_next = KTIME_MAX;
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
- struct hrtimer_clock_base *new_base)
- {
- struct hrtimer *timer;
- struct timerqueue_node *node;
- while ((node = timerqueue_getnext(&old_base->active))) {
- timer = container_of(node, struct hrtimer, node);
- BUG_ON(hrtimer_callback_running(timer));
- debug_deactivate(timer);
- /*
- * Mark it as ENQUEUED not INACTIVE otherwise the
- * timer could be seen as !active and just vanish away
- * under us on another CPU
- */
- __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
- timer->base = new_base;
- /*
- * Enqueue the timers on the new cpu. This does not
- * reprogram the event device in case the timer
- * expires before the earliest on this CPU, but we run
- * hrtimer_interrupt after we migrated everything to
- * sort out already expired timers and reprogram the
- * event device.
- */
- enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
- }
- }
- int hrtimers_dead_cpu(unsigned int scpu)
- {
- struct hrtimer_cpu_base *old_base, *new_base;
- int i;
- BUG_ON(cpu_online(scpu));
- tick_cancel_sched_timer(scpu);
- /*
- * this BH disable ensures that raise_softirq_irqoff() does
- * not wakeup ksoftirqd (and acquire the pi-lock) while
- * holding the cpu_base lock
- */
- local_bh_disable();
- local_irq_disable();
- old_base = &per_cpu(hrtimer_bases, scpu);
- new_base = this_cpu_ptr(&hrtimer_bases);
- /*
- * The caller is globally serialized and nobody else
- * takes two locks at once, deadlock is not possible.
- */
- raw_spin_lock(&new_base->lock);
- raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
- for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
- migrate_hrtimer_list(&old_base->clock_base[i],
- &new_base->clock_base[i]);
- }
- /*
- * The migration might have changed the first expiring softirq
- * timer on this CPU. Update it.
- */
- hrtimer_update_softirq_timer(new_base, false);
- raw_spin_unlock(&old_base->lock);
- raw_spin_unlock(&new_base->lock);
- /* Check, if we got expired work to do */
- __hrtimer_peek_ahead_timers();
- local_irq_enable();
- local_bh_enable();
- return 0;
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- void __init hrtimers_init(void)
- {
- hrtimers_prepare_cpu(smp_processor_id());
- open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
- }
- /**
- * schedule_hrtimeout_range_clock - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode
- * @clock_id: timer clock to be used
- */
- int __sched
- schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode, clockid_t clock_id)
- {
- struct hrtimer_sleeper t;
- /*
- * Optimize when a zero timeout value is given. It does not
- * matter whether this is an absolute or a relative time.
- */
- if (expires && *expires == 0) {
- __set_current_state(TASK_RUNNING);
- return 0;
- }
- /*
- * A NULL parameter means "infinite"
- */
- if (!expires) {
- schedule();
- return -EINTR;
- }
- hrtimer_init_on_stack(&t.timer, clock_id, mode);
- hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
- hrtimer_init_sleeper(&t, current);
- hrtimer_start_expires(&t.timer, mode);
- if (likely(t.task))
- schedule();
- hrtimer_cancel(&t.timer);
- destroy_hrtimer_on_stack(&t.timer);
- __set_current_state(TASK_RUNNING);
- return !t.task ? 0 : -EINTR;
- }
- /**
- * schedule_hrtimeout_range - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode
- *
- * Make the current task sleep until the given expiry time has
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * The @delta argument gives the kernel the freedom to schedule the
- * actual wakeup to a time that is both power and performance friendly.
- * The kernel give the normal best effort behavior for "@expires+@delta",
- * but may decide to fire the timer earlier, but no earlier than @expires.
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Returns 0 when the timer has expired. If the task was woken before the
- * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
- * by an explicit wakeup, it returns -EINTR.
- */
- int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode)
- {
- return schedule_hrtimeout_range_clock(expires, delta, mode,
- CLOCK_MONOTONIC);
- }
- EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
- /**
- * schedule_hrtimeout - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @mode: timer mode
- *
- * Make the current task sleep until the given expiry time has
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Returns 0 when the timer has expired. If the task was woken before the
- * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
- * by an explicit wakeup, it returns -EINTR.
- */
- int __sched schedule_hrtimeout(ktime_t *expires,
- const enum hrtimer_mode mode)
- {
- return schedule_hrtimeout_range(expires, 0, mode);
- }
- EXPORT_SYMBOL_GPL(schedule_hrtimeout);
|