1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
- *
- * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
- *
- * Interactivity improvements by Mike Galbraith
- * (C) 2007 Mike Galbraith <efault@gmx.de>
- *
- * Various enhancements by Dmitry Adamushko.
- * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
- *
- * Group scheduling enhancements by Srivatsa Vaddagiri
- * Copyright IBM Corporation, 2007
- * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
- *
- * Scaled math optimizations by Thomas Gleixner
- * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
- *
- * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
- */
- #include "sched.h"
- #include <trace/events/sched.h>
- /*
- * Targeted preemption latency for CPU-bound tasks:
- *
- * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length
- * and have no persistent notion like in traditional, time-slice
- * based scheduling concepts.
- *
- * (to see the precise effective timeslice length of your workload,
- * run vmstat and monitor the context-switches (cs) field)
- *
- * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
- */
- unsigned int sysctl_sched_latency = 6000000ULL;
- unsigned int normalized_sysctl_sched_latency = 6000000ULL;
- /*
- * The initial- and re-scaling of tunables is configurable
- *
- * Options are:
- *
- * SCHED_TUNABLESCALING_NONE - unscaled, always *1
- * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
- * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
- *
- * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
- */
- enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
- /*
- * Minimal preemption granularity for CPU-bound tasks:
- *
- * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
- */
- unsigned int sysctl_sched_min_granularity = 750000ULL;
- unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
- /*
- * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
- */
- static unsigned int sched_nr_latency = 8;
- /*
- * After fork, child runs first. If set to 0 (default) then
- * parent will (try to) run first.
- */
- unsigned int sysctl_sched_child_runs_first __read_mostly;
- /*
- * SCHED_OTHER wake-up granularity.
- *
- * This option delays the preemption effects of decoupled workloads
- * and reduces their over-scheduling. Synchronous workloads will still
- * have immediate wakeup/sleep latencies.
- *
- * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
- */
- unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
- unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
- const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
- #ifdef CONFIG_SMP
- /*
- * For asym packing, by default the lower numbered CPU has higher priority.
- */
- int __weak arch_asym_cpu_priority(int cpu)
- {
- return -cpu;
- }
- #endif
- #ifdef CONFIG_CFS_BANDWIDTH
- /*
- * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
- * each time a cfs_rq requests quota.
- *
- * Note: in the case that the slice exceeds the runtime remaining (either due
- * to consumption or the quota being specified to be smaller than the slice)
- * we will always only issue the remaining available time.
- *
- * (default: 5 msec, units: microseconds)
- */
- unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
- #endif
- /*
- * The margin used when comparing utilization with CPU capacity:
- * util * margin < capacity * 1024
- *
- * (default: ~20%)
- */
- unsigned int capacity_margin = 1280;
- static inline void update_load_add(struct load_weight *lw, unsigned long inc)
- {
- lw->weight += inc;
- lw->inv_weight = 0;
- }
- static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
- {
- lw->weight -= dec;
- lw->inv_weight = 0;
- }
- static inline void update_load_set(struct load_weight *lw, unsigned long w)
- {
- lw->weight = w;
- lw->inv_weight = 0;
- }
- /*
- * Increase the granularity value when there are more CPUs,
- * because with more CPUs the 'effective latency' as visible
- * to users decreases. But the relationship is not linear,
- * so pick a second-best guess by going with the log2 of the
- * number of CPUs.
- *
- * This idea comes from the SD scheduler of Con Kolivas:
- */
- static unsigned int get_update_sysctl_factor(void)
- {
- unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
- unsigned int factor;
- switch (sysctl_sched_tunable_scaling) {
- case SCHED_TUNABLESCALING_NONE:
- factor = 1;
- break;
- case SCHED_TUNABLESCALING_LINEAR:
- factor = cpus;
- break;
- case SCHED_TUNABLESCALING_LOG:
- default:
- factor = 1 + ilog2(cpus);
- break;
- }
- return factor;
- }
- static void update_sysctl(void)
- {
- unsigned int factor = get_update_sysctl_factor();
- #define SET_SYSCTL(name) \
- (sysctl_##name = (factor) * normalized_sysctl_##name)
- SET_SYSCTL(sched_min_granularity);
- SET_SYSCTL(sched_latency);
- SET_SYSCTL(sched_wakeup_granularity);
- #undef SET_SYSCTL
- }
- void sched_init_granularity(void)
- {
- update_sysctl();
- }
- #define WMULT_CONST (~0U)
- #define WMULT_SHIFT 32
- static void __update_inv_weight(struct load_weight *lw)
- {
- unsigned long w;
- if (likely(lw->inv_weight))
- return;
- w = scale_load_down(lw->weight);
- if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
- lw->inv_weight = 1;
- else if (unlikely(!w))
- lw->inv_weight = WMULT_CONST;
- else
- lw->inv_weight = WMULT_CONST / w;
- }
- /*
- * delta_exec * weight / lw.weight
- * OR
- * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
- *
- * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
- * we're guaranteed shift stays positive because inv_weight is guaranteed to
- * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
- *
- * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
- * weight/lw.weight <= 1, and therefore our shift will also be positive.
- */
- static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
- {
- u64 fact = scale_load_down(weight);
- int shift = WMULT_SHIFT;
- __update_inv_weight(lw);
- if (unlikely(fact >> 32)) {
- while (fact >> 32) {
- fact >>= 1;
- shift--;
- }
- }
- /* hint to use a 32x32->64 mul */
- fact = (u64)(u32)fact * lw->inv_weight;
- while (fact >> 32) {
- fact >>= 1;
- shift--;
- }
- return mul_u64_u32_shr(delta_exec, fact, shift);
- }
- const struct sched_class fair_sched_class;
- /**************************************************************
- * CFS operations on generic schedulable entities:
- */
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* cpu runqueue to which this cfs_rq is attached */
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->rq;
- }
- static inline struct task_struct *task_of(struct sched_entity *se)
- {
- SCHED_WARN_ON(!entity_is_task(se));
- return container_of(se, struct task_struct, se);
- }
- /* Walk up scheduling entities hierarchy */
- #define for_each_sched_entity(se) \
- for (; se; se = se->parent)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return p->se.cfs_rq;
- }
- /* runqueue on which this entity is (to be) queued */
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- return se->cfs_rq;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return grp->my_q;
- }
- static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- int cpu = cpu_of(rq);
- if (cfs_rq->on_list)
- return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
- cfs_rq->on_list = 1;
- /*
- * Ensure we either appear before our parent (if already
- * enqueued) or force our parent to appear after us when it is
- * enqueued. The fact that we always enqueue bottom-up
- * reduces this to two cases and a special case for the root
- * cfs_rq. Furthermore, it also means that we will always reset
- * tmp_alone_branch either when the branch is connected
- * to a tree or when we reach the top of the tree
- */
- if (cfs_rq->tg->parent &&
- cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
- /*
- * If parent is already on the list, we add the child
- * just before. Thanks to circular linked property of
- * the list, this means to put the child at the tail
- * of the list that starts by parent.
- */
- list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
- /*
- * The branch is now connected to its tree so we can
- * reset tmp_alone_branch to the beginning of the
- * list.
- */
- rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
- return true;
- }
- if (!cfs_rq->tg->parent) {
- /*
- * cfs rq without parent should be put
- * at the tail of the list.
- */
- list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq->leaf_cfs_rq_list);
- /*
- * We have reach the top of a tree so we can reset
- * tmp_alone_branch to the beginning of the list.
- */
- rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
- return true;
- }
- /*
- * The parent has not already been added so we want to
- * make sure that it will be put after us.
- * tmp_alone_branch points to the begin of the branch
- * where we will add parent.
- */
- list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
- /*
- * update tmp_alone_branch to points to the new begin
- * of the branch
- */
- rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
- return false;
- }
- static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- if (cfs_rq->on_list) {
- struct rq *rq = rq_of(cfs_rq);
- /*
- * With cfs_rq being unthrottled/throttled during an enqueue,
- * it can happen the tmp_alone_branch points the a leaf that
- * we finally want to del. In this case, tmp_alone_branch moves
- * to the prev element but it will point to rq->leaf_cfs_rq_list
- * at the end of the enqueue.
- */
- if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
- rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
- list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
- cfs_rq->on_list = 0;
- }
- }
- static inline void assert_list_leaf_cfs_rq(struct rq *rq)
- {
- SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
- }
- /* Iterate thr' all leaf cfs_rq's on a runqueue */
- #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
- list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
- leaf_cfs_rq_list)
- /* Do the two (enqueued) entities belong to the same group ? */
- static inline struct cfs_rq *
- is_same_group(struct sched_entity *se, struct sched_entity *pse)
- {
- if (se->cfs_rq == pse->cfs_rq)
- return se->cfs_rq;
- return NULL;
- }
- static inline struct sched_entity *parent_entity(struct sched_entity *se)
- {
- return se->parent;
- }
- static void
- find_matching_se(struct sched_entity **se, struct sched_entity **pse)
- {
- int se_depth, pse_depth;
- /*
- * preemption test can be made between sibling entities who are in the
- * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
- * both tasks until we find their ancestors who are siblings of common
- * parent.
- */
- /* First walk up until both entities are at same depth */
- se_depth = (*se)->depth;
- pse_depth = (*pse)->depth;
- while (se_depth > pse_depth) {
- se_depth--;
- *se = parent_entity(*se);
- }
- while (pse_depth > se_depth) {
- pse_depth--;
- *pse = parent_entity(*pse);
- }
- while (!is_same_group(*se, *pse)) {
- *se = parent_entity(*se);
- *pse = parent_entity(*pse);
- }
- }
- #else /* !CONFIG_FAIR_GROUP_SCHED */
- static inline struct task_struct *task_of(struct sched_entity *se)
- {
- return container_of(se, struct task_struct, se);
- }
- static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
- {
- return container_of(cfs_rq, struct rq, cfs);
- }
- #define for_each_sched_entity(se) \
- for (; se; se = NULL)
- static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
- {
- return &task_rq(p)->cfs;
- }
- static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
- {
- struct task_struct *p = task_of(se);
- struct rq *rq = task_rq(p);
- return &rq->cfs;
- }
- /* runqueue "owned" by this group */
- static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
- {
- return NULL;
- }
- static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- return true;
- }
- static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
- {
- }
- static inline void assert_list_leaf_cfs_rq(struct rq *rq)
- {
- }
- #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
- for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
- static inline struct sched_entity *parent_entity(struct sched_entity *se)
- {
- return NULL;
- }
- static inline void
- find_matching_se(struct sched_entity **se, struct sched_entity **pse)
- {
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static __always_inline
- void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
- /**************************************************************
- * Scheduling class tree data structure manipulation methods:
- */
- static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
- {
- s64 delta = (s64)(vruntime - max_vruntime);
- if (delta > 0)
- max_vruntime = vruntime;
- return max_vruntime;
- }
- static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
- {
- s64 delta = (s64)(vruntime - min_vruntime);
- if (delta < 0)
- min_vruntime = vruntime;
- return min_vruntime;
- }
- static inline int entity_before(struct sched_entity *a,
- struct sched_entity *b)
- {
- return (s64)(a->vruntime - b->vruntime) < 0;
- }
- static void update_min_vruntime(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *curr = cfs_rq->curr;
- struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
- u64 vruntime = cfs_rq->min_vruntime;
- if (curr) {
- if (curr->on_rq)
- vruntime = curr->vruntime;
- else
- curr = NULL;
- }
- if (leftmost) { /* non-empty tree */
- struct sched_entity *se;
- se = rb_entry(leftmost, struct sched_entity, run_node);
- if (!curr)
- vruntime = se->vruntime;
- else
- vruntime = min_vruntime(vruntime, se->vruntime);
- }
- /* ensure we never gain time by being placed backwards. */
- cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
- #ifndef CONFIG_64BIT
- smp_wmb();
- cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
- #endif
- }
- /*
- * Enqueue an entity into the rb-tree:
- */
- static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct sched_entity *entry;
- bool leftmost = true;
- /*
- * Find the right place in the rbtree:
- */
- while (*link) {
- parent = *link;
- entry = rb_entry(parent, struct sched_entity, run_node);
- /*
- * We dont care about collisions. Nodes with
- * the same key stay together.
- */
- if (entity_before(se, entry)) {
- link = &parent->rb_left;
- } else {
- link = &parent->rb_right;
- leftmost = false;
- }
- }
- rb_link_node(&se->run_node, parent, link);
- rb_insert_color_cached(&se->run_node,
- &cfs_rq->tasks_timeline, leftmost);
- }
- static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
- }
- struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
- {
- struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
- if (!left)
- return NULL;
- return rb_entry(left, struct sched_entity, run_node);
- }
- static struct sched_entity *__pick_next_entity(struct sched_entity *se)
- {
- struct rb_node *next = rb_next(&se->run_node);
- if (!next)
- return NULL;
- return rb_entry(next, struct sched_entity, run_node);
- }
- #ifdef CONFIG_SCHED_DEBUG
- struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
- {
- struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
- if (!last)
- return NULL;
- return rb_entry(last, struct sched_entity, run_node);
- }
- /**************************************************************
- * Scheduling class statistics methods:
- */
- int sched_proc_update_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- unsigned int factor = get_update_sysctl_factor();
- if (ret || !write)
- return ret;
- sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
- sysctl_sched_min_granularity);
- #define WRT_SYSCTL(name) \
- (normalized_sysctl_##name = sysctl_##name / (factor))
- WRT_SYSCTL(sched_min_granularity);
- WRT_SYSCTL(sched_latency);
- WRT_SYSCTL(sched_wakeup_granularity);
- #undef WRT_SYSCTL
- return 0;
- }
- #endif
- /*
- * delta /= w
- */
- static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
- {
- if (unlikely(se->load.weight != NICE_0_LOAD))
- delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
- return delta;
- }
- /*
- * The idea is to set a period in which each task runs once.
- *
- * When there are too many tasks (sched_nr_latency) we have to stretch
- * this period because otherwise the slices get too small.
- *
- * p = (nr <= nl) ? l : l*nr/nl
- */
- static u64 __sched_period(unsigned long nr_running)
- {
- if (unlikely(nr_running > sched_nr_latency))
- return nr_running * sysctl_sched_min_granularity;
- else
- return sysctl_sched_latency;
- }
- /*
- * We calculate the wall-time slice from the period by taking a part
- * proportional to the weight.
- *
- * s = p*P[w/rw]
- */
- static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
- for_each_sched_entity(se) {
- struct load_weight *load;
- struct load_weight lw;
- cfs_rq = cfs_rq_of(se);
- load = &cfs_rq->load;
- if (unlikely(!se->on_rq)) {
- lw = cfs_rq->load;
- update_load_add(&lw, se->load.weight);
- load = &lw;
- }
- slice = __calc_delta(slice, se->load.weight, load);
- }
- return slice;
- }
- /*
- * We calculate the vruntime slice of a to-be-inserted task.
- *
- * vs = s/w
- */
- static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- return calc_delta_fair(sched_slice(cfs_rq, se), se);
- }
- #ifdef CONFIG_SMP
- #include "pelt.h"
- #include "sched-pelt.h"
- static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
- static unsigned long task_h_load(struct task_struct *p);
- /* Give new sched_entity start runnable values to heavy its load in infant time */
- void init_entity_runnable_average(struct sched_entity *se)
- {
- struct sched_avg *sa = &se->avg;
- memset(sa, 0, sizeof(*sa));
- /*
- * Tasks are intialized with full load to be seen as heavy tasks until
- * they get a chance to stabilize to their real load level.
- * Group entities are intialized with zero load to reflect the fact that
- * nothing has been attached to the task group yet.
- */
- if (entity_is_task(se))
- sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
- se->runnable_weight = se->load.weight;
- /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
- }
- static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
- static void attach_entity_cfs_rq(struct sched_entity *se);
- /*
- * With new tasks being created, their initial util_avgs are extrapolated
- * based on the cfs_rq's current util_avg:
- *
- * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
- *
- * However, in many cases, the above util_avg does not give a desired
- * value. Moreover, the sum of the util_avgs may be divergent, such
- * as when the series is a harmonic series.
- *
- * To solve this problem, we also cap the util_avg of successive tasks to
- * only 1/2 of the left utilization budget:
- *
- * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
- *
- * where n denotes the nth task and cpu_scale the CPU capacity.
- *
- * For example, for a CPU with 1024 of capacity, a simplest series from
- * the beginning would be like:
- *
- * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
- * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
- *
- * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
- * if util_avg > util_avg_cap.
- */
- void post_init_entity_util_avg(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- struct sched_avg *sa = &se->avg;
- long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
- long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
- if (cap > 0) {
- if (cfs_rq->avg.util_avg != 0) {
- sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
- sa->util_avg /= (cfs_rq->avg.load_avg + 1);
- if (sa->util_avg > cap)
- sa->util_avg = cap;
- } else {
- sa->util_avg = cap;
- }
- }
- if (entity_is_task(se)) {
- struct task_struct *p = task_of(se);
- if (p->sched_class != &fair_sched_class) {
- /*
- * For !fair tasks do:
- *
- update_cfs_rq_load_avg(now, cfs_rq);
- attach_entity_load_avg(cfs_rq, se, 0);
- switched_from_fair(rq, p);
- *
- * such that the next switched_to_fair() has the
- * expected state.
- */
- se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
- return;
- }
- }
- attach_entity_cfs_rq(se);
- }
- #else /* !CONFIG_SMP */
- void init_entity_runnable_average(struct sched_entity *se)
- {
- }
- void post_init_entity_util_avg(struct sched_entity *se)
- {
- }
- static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
- {
- }
- #endif /* CONFIG_SMP */
- /*
- * Update the current task's runtime statistics.
- */
- static void update_curr(struct cfs_rq *cfs_rq)
- {
- struct sched_entity *curr = cfs_rq->curr;
- u64 now = rq_clock_task(rq_of(cfs_rq));
- u64 delta_exec;
- if (unlikely(!curr))
- return;
- delta_exec = now - curr->exec_start;
- if (unlikely((s64)delta_exec <= 0))
- return;
- curr->exec_start = now;
- schedstat_set(curr->statistics.exec_max,
- max(delta_exec, curr->statistics.exec_max));
- curr->sum_exec_runtime += delta_exec;
- schedstat_add(cfs_rq->exec_clock, delta_exec);
- curr->vruntime += calc_delta_fair(delta_exec, curr);
- update_min_vruntime(cfs_rq);
- if (entity_is_task(curr)) {
- struct task_struct *curtask = task_of(curr);
- trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
- cgroup_account_cputime(curtask, delta_exec);
- account_group_exec_runtime(curtask, delta_exec);
- }
- account_cfs_rq_runtime(cfs_rq, delta_exec);
- }
- static void update_curr_fair(struct rq *rq)
- {
- update_curr(cfs_rq_of(&rq->curr->se));
- }
- static inline void
- update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- u64 wait_start, prev_wait_start;
- if (!schedstat_enabled())
- return;
- wait_start = rq_clock(rq_of(cfs_rq));
- prev_wait_start = schedstat_val(se->statistics.wait_start);
- if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
- likely(wait_start > prev_wait_start))
- wait_start -= prev_wait_start;
- __schedstat_set(se->statistics.wait_start, wait_start);
- }
- static inline void
- update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct task_struct *p;
- u64 delta;
- if (!schedstat_enabled())
- return;
- delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
- if (entity_is_task(se)) {
- p = task_of(se);
- if (task_on_rq_migrating(p)) {
- /*
- * Preserve migrating task's wait time so wait_start
- * time stamp can be adjusted to accumulate wait time
- * prior to migration.
- */
- __schedstat_set(se->statistics.wait_start, delta);
- return;
- }
- trace_sched_stat_wait(p, delta);
- }
- __schedstat_set(se->statistics.wait_max,
- max(schedstat_val(se->statistics.wait_max), delta));
- __schedstat_inc(se->statistics.wait_count);
- __schedstat_add(se->statistics.wait_sum, delta);
- __schedstat_set(se->statistics.wait_start, 0);
- }
- static inline void
- update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- struct task_struct *tsk = NULL;
- u64 sleep_start, block_start;
- if (!schedstat_enabled())
- return;
- sleep_start = schedstat_val(se->statistics.sleep_start);
- block_start = schedstat_val(se->statistics.block_start);
- if (entity_is_task(se))
- tsk = task_of(se);
- if (sleep_start) {
- u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
- __schedstat_set(se->statistics.sleep_max, delta);
- __schedstat_set(se->statistics.sleep_start, 0);
- __schedstat_add(se->statistics.sum_sleep_runtime, delta);
- if (tsk) {
- account_scheduler_latency(tsk, delta >> 10, 1);
- trace_sched_stat_sleep(tsk, delta);
- }
- }
- if (block_start) {
- u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
- if ((s64)delta < 0)
- delta = 0;
- if (unlikely(delta > schedstat_val(se->statistics.block_max)))
- __schedstat_set(se->statistics.block_max, delta);
- __schedstat_set(se->statistics.block_start, 0);
- __schedstat_add(se->statistics.sum_sleep_runtime, delta);
- if (tsk) {
- if (tsk->in_iowait) {
- __schedstat_add(se->statistics.iowait_sum, delta);
- __schedstat_inc(se->statistics.iowait_count);
- trace_sched_stat_iowait(tsk, delta);
- }
- trace_sched_stat_blocked(tsk, delta);
- /*
- * Blocking time is in units of nanosecs, so shift by
- * 20 to get a milliseconds-range estimation of the
- * amount of time that the task spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- profile_hits(SLEEP_PROFILING,
- (void *)get_wchan(tsk),
- delta >> 20);
- }
- account_scheduler_latency(tsk, delta >> 10, 0);
- }
- }
- }
- /*
- * Task is being enqueued - update stats:
- */
- static inline void
- update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- if (!schedstat_enabled())
- return;
- /*
- * Are we enqueueing a waiting task? (for current tasks
- * a dequeue/enqueue event is a NOP)
- */
- if (se != cfs_rq->curr)
- update_stats_wait_start(cfs_rq, se);
- if (flags & ENQUEUE_WAKEUP)
- update_stats_enqueue_sleeper(cfs_rq, se);
- }
- static inline void
- update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- if (!schedstat_enabled())
- return;
- /*
- * Mark the end of the wait period if dequeueing a
- * waiting task:
- */
- if (se != cfs_rq->curr)
- update_stats_wait_end(cfs_rq, se);
- if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
- struct task_struct *tsk = task_of(se);
- if (tsk->state & TASK_INTERRUPTIBLE)
- __schedstat_set(se->statistics.sleep_start,
- rq_clock(rq_of(cfs_rq)));
- if (tsk->state & TASK_UNINTERRUPTIBLE)
- __schedstat_set(se->statistics.block_start,
- rq_clock(rq_of(cfs_rq)));
- }
- }
- /*
- * We are picking a new current task - update its stats:
- */
- static inline void
- update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /*
- * We are starting a new run period:
- */
- se->exec_start = rq_clock_task(rq_of(cfs_rq));
- }
- /**************************************************
- * Scheduling class queueing methods:
- */
- #ifdef CONFIG_NUMA_BALANCING
- /*
- * Approximate time to scan a full NUMA task in ms. The task scan period is
- * calculated based on the tasks virtual memory size and
- * numa_balancing_scan_size.
- */
- unsigned int sysctl_numa_balancing_scan_period_min = 1000;
- unsigned int sysctl_numa_balancing_scan_period_max = 60000;
- /* Portion of address space to scan in MB */
- unsigned int sysctl_numa_balancing_scan_size = 256;
- /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
- unsigned int sysctl_numa_balancing_scan_delay = 1000;
- struct numa_group {
- atomic_t refcount;
- spinlock_t lock; /* nr_tasks, tasks */
- int nr_tasks;
- pid_t gid;
- int active_nodes;
- struct rcu_head rcu;
- unsigned long total_faults;
- unsigned long max_faults_cpu;
- /*
- * Faults_cpu is used to decide whether memory should move
- * towards the CPU. As a consequence, these stats are weighted
- * more by CPU use than by memory faults.
- */
- unsigned long *faults_cpu;
- unsigned long faults[0];
- };
- /*
- * For functions that can be called in multiple contexts that permit reading
- * ->numa_group (see struct task_struct for locking rules).
- */
- static struct numa_group *deref_task_numa_group(struct task_struct *p)
- {
- return rcu_dereference_check(p->numa_group, p == current ||
- (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
- }
- static struct numa_group *deref_curr_numa_group(struct task_struct *p)
- {
- return rcu_dereference_protected(p->numa_group, p == current);
- }
- static inline unsigned long group_faults_priv(struct numa_group *ng);
- static inline unsigned long group_faults_shared(struct numa_group *ng);
- static unsigned int task_nr_scan_windows(struct task_struct *p)
- {
- unsigned long rss = 0;
- unsigned long nr_scan_pages;
- /*
- * Calculations based on RSS as non-present and empty pages are skipped
- * by the PTE scanner and NUMA hinting faults should be trapped based
- * on resident pages
- */
- nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
- rss = get_mm_rss(p->mm);
- if (!rss)
- rss = nr_scan_pages;
- rss = round_up(rss, nr_scan_pages);
- return rss / nr_scan_pages;
- }
- /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
- #define MAX_SCAN_WINDOW 2560
- static unsigned int task_scan_min(struct task_struct *p)
- {
- unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
- unsigned int scan, floor;
- unsigned int windows = 1;
- if (scan_size < MAX_SCAN_WINDOW)
- windows = MAX_SCAN_WINDOW / scan_size;
- floor = 1000 / windows;
- scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
- return max_t(unsigned int, floor, scan);
- }
- static unsigned int task_scan_start(struct task_struct *p)
- {
- unsigned long smin = task_scan_min(p);
- unsigned long period = smin;
- struct numa_group *ng;
- /* Scale the maximum scan period with the amount of shared memory. */
- rcu_read_lock();
- ng = rcu_dereference(p->numa_group);
- if (ng) {
- unsigned long shared = group_faults_shared(ng);
- unsigned long private = group_faults_priv(ng);
- period *= atomic_read(&ng->refcount);
- period *= shared + 1;
- period /= private + shared + 1;
- }
- rcu_read_unlock();
- return max(smin, period);
- }
- static unsigned int task_scan_max(struct task_struct *p)
- {
- unsigned long smin = task_scan_min(p);
- unsigned long smax;
- struct numa_group *ng;
- /* Watch for min being lower than max due to floor calculations */
- smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
- /* Scale the maximum scan period with the amount of shared memory. */
- ng = deref_curr_numa_group(p);
- if (ng) {
- unsigned long shared = group_faults_shared(ng);
- unsigned long private = group_faults_priv(ng);
- unsigned long period = smax;
- period *= atomic_read(&ng->refcount);
- period *= shared + 1;
- period /= private + shared + 1;
- smax = max(smax, period);
- }
- return max(smin, smax);
- }
- void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
- {
- int mm_users = 0;
- struct mm_struct *mm = p->mm;
- if (mm) {
- mm_users = atomic_read(&mm->mm_users);
- if (mm_users == 1) {
- mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
- mm->numa_scan_seq = 0;
- }
- }
- p->node_stamp = 0;
- p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
- p->numa_scan_period = sysctl_numa_balancing_scan_delay;
- p->numa_work.next = &p->numa_work;
- p->numa_faults = NULL;
- RCU_INIT_POINTER(p->numa_group, NULL);
- p->last_task_numa_placement = 0;
- p->last_sum_exec_runtime = 0;
- /* New address space, reset the preferred nid */
- if (!(clone_flags & CLONE_VM)) {
- p->numa_preferred_nid = -1;
- return;
- }
- /*
- * New thread, keep existing numa_preferred_nid which should be copied
- * already by arch_dup_task_struct but stagger when scans start.
- */
- if (mm) {
- unsigned int delay;
- delay = min_t(unsigned int, task_scan_max(current),
- current->numa_scan_period * mm_users * NSEC_PER_MSEC);
- delay += 2 * TICK_NSEC;
- p->node_stamp = delay;
- }
- }
- static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
- {
- rq->nr_numa_running += (p->numa_preferred_nid != -1);
- rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
- }
- static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
- {
- rq->nr_numa_running -= (p->numa_preferred_nid != -1);
- rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
- }
- /* Shared or private faults. */
- #define NR_NUMA_HINT_FAULT_TYPES 2
- /* Memory and CPU locality */
- #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
- /* Averaged statistics, and temporary buffers. */
- #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
- pid_t task_numa_group_id(struct task_struct *p)
- {
- struct numa_group *ng;
- pid_t gid = 0;
- rcu_read_lock();
- ng = rcu_dereference(p->numa_group);
- if (ng)
- gid = ng->gid;
- rcu_read_unlock();
- return gid;
- }
- /*
- * The averaged statistics, shared & private, memory & CPU,
- * occupy the first half of the array. The second half of the
- * array is for current counters, which are averaged into the
- * first set by task_numa_placement.
- */
- static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
- {
- return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
- }
- static inline unsigned long task_faults(struct task_struct *p, int nid)
- {
- if (!p->numa_faults)
- return 0;
- return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
- p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
- }
- static inline unsigned long group_faults(struct task_struct *p, int nid)
- {
- struct numa_group *ng = deref_task_numa_group(p);
- if (!ng)
- return 0;
- return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
- ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
- }
- static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
- {
- return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
- group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
- }
- static inline unsigned long group_faults_priv(struct numa_group *ng)
- {
- unsigned long faults = 0;
- int node;
- for_each_online_node(node) {
- faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- return faults;
- }
- static inline unsigned long group_faults_shared(struct numa_group *ng)
- {
- unsigned long faults = 0;
- int node;
- for_each_online_node(node) {
- faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
- }
- return faults;
- }
- /*
- * A node triggering more than 1/3 as many NUMA faults as the maximum is
- * considered part of a numa group's pseudo-interleaving set. Migrations
- * between these nodes are slowed down, to allow things to settle down.
- */
- #define ACTIVE_NODE_FRACTION 3
- static bool numa_is_active_node(int nid, struct numa_group *ng)
- {
- return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
- }
- /* Handle placement on systems where not all nodes are directly connected. */
- static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
- int maxdist, bool task)
- {
- unsigned long score = 0;
- int node;
- /*
- * All nodes are directly connected, and the same distance
- * from each other. No need for fancy placement algorithms.
- */
- if (sched_numa_topology_type == NUMA_DIRECT)
- return 0;
- /*
- * This code is called for each node, introducing N^2 complexity,
- * which should be ok given the number of nodes rarely exceeds 8.
- */
- for_each_online_node(node) {
- unsigned long faults;
- int dist = node_distance(nid, node);
- /*
- * The furthest away nodes in the system are not interesting
- * for placement; nid was already counted.
- */
- if (dist == sched_max_numa_distance || node == nid)
- continue;
- /*
- * On systems with a backplane NUMA topology, compare groups
- * of nodes, and move tasks towards the group with the most
- * memory accesses. When comparing two nodes at distance
- * "hoplimit", only nodes closer by than "hoplimit" are part
- * of each group. Skip other nodes.
- */
- if (sched_numa_topology_type == NUMA_BACKPLANE &&
- dist >= maxdist)
- continue;
- /* Add up the faults from nearby nodes. */
- if (task)
- faults = task_faults(p, node);
- else
- faults = group_faults(p, node);
- /*
- * On systems with a glueless mesh NUMA topology, there are
- * no fixed "groups of nodes". Instead, nodes that are not
- * directly connected bounce traffic through intermediate
- * nodes; a numa_group can occupy any set of nodes.
- * The further away a node is, the less the faults count.
- * This seems to result in good task placement.
- */
- if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
- faults *= (sched_max_numa_distance - dist);
- faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
- }
- score += faults;
- }
- return score;
- }
- /*
- * These return the fraction of accesses done by a particular task, or
- * task group, on a particular numa node. The group weight is given a
- * larger multiplier, in order to group tasks together that are almost
- * evenly spread out between numa nodes.
- */
- static inline unsigned long task_weight(struct task_struct *p, int nid,
- int dist)
- {
- unsigned long faults, total_faults;
- if (!p->numa_faults)
- return 0;
- total_faults = p->total_numa_faults;
- if (!total_faults)
- return 0;
- faults = task_faults(p, nid);
- faults += score_nearby_nodes(p, nid, dist, true);
- return 1000 * faults / total_faults;
- }
- static inline unsigned long group_weight(struct task_struct *p, int nid,
- int dist)
- {
- struct numa_group *ng = deref_task_numa_group(p);
- unsigned long faults, total_faults;
- if (!ng)
- return 0;
- total_faults = ng->total_faults;
- if (!total_faults)
- return 0;
- faults = group_faults(p, nid);
- faults += score_nearby_nodes(p, nid, dist, false);
- return 1000 * faults / total_faults;
- }
- bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
- int src_nid, int dst_cpu)
- {
- struct numa_group *ng = deref_curr_numa_group(p);
- int dst_nid = cpu_to_node(dst_cpu);
- int last_cpupid, this_cpupid;
- this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
- last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
- /*
- * Allow first faults or private faults to migrate immediately early in
- * the lifetime of a task. The magic number 4 is based on waiting for
- * two full passes of the "multi-stage node selection" test that is
- * executed below.
- */
- if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
- (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
- return true;
- /*
- * Multi-stage node selection is used in conjunction with a periodic
- * migration fault to build a temporal task<->page relation. By using
- * a two-stage filter we remove short/unlikely relations.
- *
- * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
- * a task's usage of a particular page (n_p) per total usage of this
- * page (n_t) (in a given time-span) to a probability.
- *
- * Our periodic faults will sample this probability and getting the
- * same result twice in a row, given these samples are fully
- * independent, is then given by P(n)^2, provided our sample period
- * is sufficiently short compared to the usage pattern.
- *
- * This quadric squishes small probabilities, making it less likely we
- * act on an unlikely task<->page relation.
- */
- if (!cpupid_pid_unset(last_cpupid) &&
- cpupid_to_nid(last_cpupid) != dst_nid)
- return false;
- /* Always allow migrate on private faults */
- if (cpupid_match_pid(p, last_cpupid))
- return true;
- /* A shared fault, but p->numa_group has not been set up yet. */
- if (!ng)
- return true;
- /*
- * Destination node is much more heavily used than the source
- * node? Allow migration.
- */
- if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
- ACTIVE_NODE_FRACTION)
- return true;
- /*
- * Distribute memory according to CPU & memory use on each node,
- * with 3/4 hysteresis to avoid unnecessary memory migrations:
- *
- * faults_cpu(dst) 3 faults_cpu(src)
- * --------------- * - > ---------------
- * faults_mem(dst) 4 faults_mem(src)
- */
- return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
- group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
- }
- static unsigned long weighted_cpuload(struct rq *rq);
- static unsigned long source_load(int cpu, int type);
- static unsigned long target_load(int cpu, int type);
- static unsigned long capacity_of(int cpu);
- /* Cached statistics for all CPUs within a node */
- struct numa_stats {
- unsigned long load;
- /* Total compute capacity of CPUs on a node */
- unsigned long compute_capacity;
- unsigned int nr_running;
- };
- /*
- * XXX borrowed from update_sg_lb_stats
- */
- static void update_numa_stats(struct numa_stats *ns, int nid)
- {
- int smt, cpu, cpus = 0;
- unsigned long capacity;
- memset(ns, 0, sizeof(*ns));
- for_each_cpu(cpu, cpumask_of_node(nid)) {
- struct rq *rq = cpu_rq(cpu);
- ns->nr_running += rq->nr_running;
- ns->load += weighted_cpuload(rq);
- ns->compute_capacity += capacity_of(cpu);
- cpus++;
- }
- /*
- * If we raced with hotplug and there are no CPUs left in our mask
- * the @ns structure is NULL'ed and task_numa_compare() will
- * not find this node attractive.
- *
- * We'll detect a huge imbalance and bail there.
- */
- if (!cpus)
- return;
- /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
- smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
- capacity = cpus / smt; /* cores */
- capacity = min_t(unsigned, capacity,
- DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
- }
- struct task_numa_env {
- struct task_struct *p;
- int src_cpu, src_nid;
- int dst_cpu, dst_nid;
- struct numa_stats src_stats, dst_stats;
- int imbalance_pct;
- int dist;
- struct task_struct *best_task;
- long best_imp;
- int best_cpu;
- };
- static void task_numa_assign(struct task_numa_env *env,
- struct task_struct *p, long imp)
- {
- struct rq *rq = cpu_rq(env->dst_cpu);
- /* Bail out if run-queue part of active NUMA balance. */
- if (xchg(&rq->numa_migrate_on, 1))
- return;
- /*
- * Clear previous best_cpu/rq numa-migrate flag, since task now
- * found a better CPU to move/swap.
- */
- if (env->best_cpu != -1) {
- rq = cpu_rq(env->best_cpu);
- WRITE_ONCE(rq->numa_migrate_on, 0);
- }
- if (env->best_task)
- put_task_struct(env->best_task);
- if (p)
- get_task_struct(p);
- env->best_task = p;
- env->best_imp = imp;
- env->best_cpu = env->dst_cpu;
- }
- static bool load_too_imbalanced(long src_load, long dst_load,
- struct task_numa_env *env)
- {
- long imb, old_imb;
- long orig_src_load, orig_dst_load;
- long src_capacity, dst_capacity;
- /*
- * The load is corrected for the CPU capacity available on each node.
- *
- * src_load dst_load
- * ------------ vs ---------
- * src_capacity dst_capacity
- */
- src_capacity = env->src_stats.compute_capacity;
- dst_capacity = env->dst_stats.compute_capacity;
- imb = abs(dst_load * src_capacity - src_load * dst_capacity);
- orig_src_load = env->src_stats.load;
- orig_dst_load = env->dst_stats.load;
- old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
- /* Would this change make things worse? */
- return (imb > old_imb);
- }
- /*
- * Maximum NUMA importance can be 1998 (2*999);
- * SMALLIMP @ 30 would be close to 1998/64.
- * Used to deter task migration.
- */
- #define SMALLIMP 30
- /*
- * This checks if the overall compute and NUMA accesses of the system would
- * be improved if the source tasks was migrated to the target dst_cpu taking
- * into account that it might be best if task running on the dst_cpu should
- * be exchanged with the source task
- */
- static void task_numa_compare(struct task_numa_env *env,
- long taskimp, long groupimp, bool maymove)
- {
- struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
- struct rq *dst_rq = cpu_rq(env->dst_cpu);
- long imp = p_ng ? groupimp : taskimp;
- struct task_struct *cur;
- long src_load, dst_load;
- int dist = env->dist;
- long moveimp = imp;
- long load;
- if (READ_ONCE(dst_rq->numa_migrate_on))
- return;
- rcu_read_lock();
- cur = task_rcu_dereference(&dst_rq->curr);
- if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
- cur = NULL;
- /*
- * Because we have preemption enabled we can get migrated around and
- * end try selecting ourselves (current == env->p) as a swap candidate.
- */
- if (cur == env->p)
- goto unlock;
- if (!cur) {
- if (maymove && moveimp >= env->best_imp)
- goto assign;
- else
- goto unlock;
- }
- /*
- * "imp" is the fault differential for the source task between the
- * source and destination node. Calculate the total differential for
- * the source task and potential destination task. The more negative
- * the value is, the more remote accesses that would be expected to
- * be incurred if the tasks were swapped.
- */
- /* Skip this swap candidate if cannot move to the source cpu */
- if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
- goto unlock;
- /*
- * If dst and source tasks are in the same NUMA group, or not
- * in any group then look only at task weights.
- */
- cur_ng = rcu_dereference(cur->numa_group);
- if (cur_ng == p_ng) {
- imp = taskimp + task_weight(cur, env->src_nid, dist) -
- task_weight(cur, env->dst_nid, dist);
- /*
- * Add some hysteresis to prevent swapping the
- * tasks within a group over tiny differences.
- */
- if (cur_ng)
- imp -= imp / 16;
- } else {
- /*
- * Compare the group weights. If a task is all by itself
- * (not part of a group), use the task weight instead.
- */
- if (cur_ng && p_ng)
- imp += group_weight(cur, env->src_nid, dist) -
- group_weight(cur, env->dst_nid, dist);
- else
- imp += task_weight(cur, env->src_nid, dist) -
- task_weight(cur, env->dst_nid, dist);
- }
- if (maymove && moveimp > imp && moveimp > env->best_imp) {
- imp = moveimp;
- cur = NULL;
- goto assign;
- }
- /*
- * If the NUMA importance is less than SMALLIMP,
- * task migration might only result in ping pong
- * of tasks and also hurt performance due to cache
- * misses.
- */
- if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
- goto unlock;
- /*
- * In the overloaded case, try and keep the load balanced.
- */
- load = task_h_load(env->p) - task_h_load(cur);
- if (!load)
- goto assign;
- dst_load = env->dst_stats.load + load;
- src_load = env->src_stats.load - load;
- if (load_too_imbalanced(src_load, dst_load, env))
- goto unlock;
- assign:
- /*
- * One idle CPU per node is evaluated for a task numa move.
- * Call select_idle_sibling to maybe find a better one.
- */
- if (!cur) {
- /*
- * select_idle_siblings() uses an per-CPU cpumask that
- * can be used from IRQ context.
- */
- local_irq_disable();
- env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
- env->dst_cpu);
- local_irq_enable();
- }
- task_numa_assign(env, cur, imp);
- unlock:
- rcu_read_unlock();
- }
- static void task_numa_find_cpu(struct task_numa_env *env,
- long taskimp, long groupimp)
- {
- long src_load, dst_load, load;
- bool maymove = false;
- int cpu;
- load = task_h_load(env->p);
- dst_load = env->dst_stats.load + load;
- src_load = env->src_stats.load - load;
- /*
- * If the improvement from just moving env->p direction is better
- * than swapping tasks around, check if a move is possible.
- */
- maymove = !load_too_imbalanced(src_load, dst_load, env);
- for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
- /* Skip this CPU if the source task cannot migrate */
- if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
- continue;
- env->dst_cpu = cpu;
- task_numa_compare(env, taskimp, groupimp, maymove);
- }
- }
- static int task_numa_migrate(struct task_struct *p)
- {
- struct task_numa_env env = {
- .p = p,
- .src_cpu = task_cpu(p),
- .src_nid = task_node(p),
- .imbalance_pct = 112,
- .best_task = NULL,
- .best_imp = 0,
- .best_cpu = -1,
- };
- unsigned long taskweight, groupweight;
- struct sched_domain *sd;
- long taskimp, groupimp;
- struct numa_group *ng;
- struct rq *best_rq;
- int nid, ret, dist;
- /*
- * Pick the lowest SD_NUMA domain, as that would have the smallest
- * imbalance and would be the first to start moving tasks about.
- *
- * And we want to avoid any moving of tasks about, as that would create
- * random movement of tasks -- counter the numa conditions we're trying
- * to satisfy here.
- */
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
- if (sd)
- env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
- rcu_read_unlock();
- /*
- * Cpusets can break the scheduler domain tree into smaller
- * balance domains, some of which do not cross NUMA boundaries.
- * Tasks that are "trapped" in such domains cannot be migrated
- * elsewhere, so there is no point in (re)trying.
- */
- if (unlikely(!sd)) {
- sched_setnuma(p, task_node(p));
- return -EINVAL;
- }
- env.dst_nid = p->numa_preferred_nid;
- dist = env.dist = node_distance(env.src_nid, env.dst_nid);
- taskweight = task_weight(p, env.src_nid, dist);
- groupweight = group_weight(p, env.src_nid, dist);
- update_numa_stats(&env.src_stats, env.src_nid);
- taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
- groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
- update_numa_stats(&env.dst_stats, env.dst_nid);
- /* Try to find a spot on the preferred nid. */
- task_numa_find_cpu(&env, taskimp, groupimp);
- /*
- * Look at other nodes in these cases:
- * - there is no space available on the preferred_nid
- * - the task is part of a numa_group that is interleaved across
- * multiple NUMA nodes; in order to better consolidate the group,
- * we need to check other locations.
- */
- ng = deref_curr_numa_group(p);
- if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
- for_each_online_node(nid) {
- if (nid == env.src_nid || nid == p->numa_preferred_nid)
- continue;
- dist = node_distance(env.src_nid, env.dst_nid);
- if (sched_numa_topology_type == NUMA_BACKPLANE &&
- dist != env.dist) {
- taskweight = task_weight(p, env.src_nid, dist);
- groupweight = group_weight(p, env.src_nid, dist);
- }
- /* Only consider nodes where both task and groups benefit */
- taskimp = task_weight(p, nid, dist) - taskweight;
- groupimp = group_weight(p, nid, dist) - groupweight;
- if (taskimp < 0 && groupimp < 0)
- continue;
- env.dist = dist;
- env.dst_nid = nid;
- update_numa_stats(&env.dst_stats, env.dst_nid);
- task_numa_find_cpu(&env, taskimp, groupimp);
- }
- }
- /*
- * If the task is part of a workload that spans multiple NUMA nodes,
- * and is migrating into one of the workload's active nodes, remember
- * this node as the task's preferred numa node, so the workload can
- * settle down.
- * A task that migrated to a second choice node will be better off
- * trying for a better one later. Do not set the preferred node here.
- */
- if (ng) {
- if (env.best_cpu == -1)
- nid = env.src_nid;
- else
- nid = cpu_to_node(env.best_cpu);
- if (nid != p->numa_preferred_nid)
- sched_setnuma(p, nid);
- }
- /* No better CPU than the current one was found. */
- if (env.best_cpu == -1)
- return -EAGAIN;
- best_rq = cpu_rq(env.best_cpu);
- if (env.best_task == NULL) {
- ret = migrate_task_to(p, env.best_cpu);
- WRITE_ONCE(best_rq->numa_migrate_on, 0);
- if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
- return ret;
- }
- ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
- WRITE_ONCE(best_rq->numa_migrate_on, 0);
- if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
- put_task_struct(env.best_task);
- return ret;
- }
- /* Attempt to migrate a task to a CPU on the preferred node. */
- static void numa_migrate_preferred(struct task_struct *p)
- {
- unsigned long interval = HZ;
- /* This task has no NUMA fault statistics yet */
- if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
- return;
- /* Periodically retry migrating the task to the preferred node */
- interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
- p->numa_migrate_retry = jiffies + interval;
- /* Success if task is already running on preferred CPU */
- if (task_node(p) == p->numa_preferred_nid)
- return;
- /* Otherwise, try migrate to a CPU on the preferred node */
- task_numa_migrate(p);
- }
- /*
- * Find out how many nodes on the workload is actively running on. Do this by
- * tracking the nodes from which NUMA hinting faults are triggered. This can
- * be different from the set of nodes where the workload's memory is currently
- * located.
- */
- static void numa_group_count_active_nodes(struct numa_group *numa_group)
- {
- unsigned long faults, max_faults = 0;
- int nid, active_nodes = 0;
- for_each_online_node(nid) {
- faults = group_faults_cpu(numa_group, nid);
- if (faults > max_faults)
- max_faults = faults;
- }
- for_each_online_node(nid) {
- faults = group_faults_cpu(numa_group, nid);
- if (faults * ACTIVE_NODE_FRACTION > max_faults)
- active_nodes++;
- }
- numa_group->max_faults_cpu = max_faults;
- numa_group->active_nodes = active_nodes;
- }
- /*
- * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
- * increments. The more local the fault statistics are, the higher the scan
- * period will be for the next scan window. If local/(local+remote) ratio is
- * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
- * the scan period will decrease. Aim for 70% local accesses.
- */
- #define NUMA_PERIOD_SLOTS 10
- #define NUMA_PERIOD_THRESHOLD 7
- /*
- * Increase the scan period (slow down scanning) if the majority of
- * our memory is already on our local node, or if the majority of
- * the page accesses are shared with other processes.
- * Otherwise, decrease the scan period.
- */
- static void update_task_scan_period(struct task_struct *p,
- unsigned long shared, unsigned long private)
- {
- unsigned int period_slot;
- int lr_ratio, ps_ratio;
- int diff;
- unsigned long remote = p->numa_faults_locality[0];
- unsigned long local = p->numa_faults_locality[1];
- /*
- * If there were no record hinting faults then either the task is
- * completely idle or all activity is areas that are not of interest
- * to automatic numa balancing. Related to that, if there were failed
- * migration then it implies we are migrating too quickly or the local
- * node is overloaded. In either case, scan slower
- */
- if (local + shared == 0 || p->numa_faults_locality[2]) {
- p->numa_scan_period = min(p->numa_scan_period_max,
- p->numa_scan_period << 1);
- p->mm->numa_next_scan = jiffies +
- msecs_to_jiffies(p->numa_scan_period);
- return;
- }
- /*
- * Prepare to scale scan period relative to the current period.
- * == NUMA_PERIOD_THRESHOLD scan period stays the same
- * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
- * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
- */
- period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
- lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
- ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
- if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
- /*
- * Most memory accesses are local. There is no need to
- * do fast NUMA scanning, since memory is already local.
- */
- int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
- if (!slot)
- slot = 1;
- diff = slot * period_slot;
- } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
- /*
- * Most memory accesses are shared with other tasks.
- * There is no point in continuing fast NUMA scanning,
- * since other tasks may just move the memory elsewhere.
- */
- int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
- if (!slot)
- slot = 1;
- diff = slot * period_slot;
- } else {
- /*
- * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
- * yet they are not on the local NUMA node. Speed up
- * NUMA scanning to get the memory moved over.
- */
- int ratio = max(lr_ratio, ps_ratio);
- diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
- }
- p->numa_scan_period = clamp(p->numa_scan_period + diff,
- task_scan_min(p), task_scan_max(p));
- memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
- }
- /*
- * Get the fraction of time the task has been running since the last
- * NUMA placement cycle. The scheduler keeps similar statistics, but
- * decays those on a 32ms period, which is orders of magnitude off
- * from the dozens-of-seconds NUMA balancing period. Use the scheduler
- * stats only if the task is so new there are no NUMA statistics yet.
- */
- static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
- {
- u64 runtime, delta, now;
- /* Use the start of this time slice to avoid calculations. */
- now = p->se.exec_start;
- runtime = p->se.sum_exec_runtime;
- if (p->last_task_numa_placement) {
- delta = runtime - p->last_sum_exec_runtime;
- *period = now - p->last_task_numa_placement;
- /* Avoid time going backwards, prevent potential divide error: */
- if (unlikely((s64)*period < 0))
- *period = 0;
- } else {
- delta = p->se.avg.load_sum;
- *period = LOAD_AVG_MAX;
- }
- p->last_sum_exec_runtime = runtime;
- p->last_task_numa_placement = now;
- return delta;
- }
- /*
- * Determine the preferred nid for a task in a numa_group. This needs to
- * be done in a way that produces consistent results with group_weight,
- * otherwise workloads might not converge.
- */
- static int preferred_group_nid(struct task_struct *p, int nid)
- {
- nodemask_t nodes;
- int dist;
- /* Direct connections between all NUMA nodes. */
- if (sched_numa_topology_type == NUMA_DIRECT)
- return nid;
- /*
- * On a system with glueless mesh NUMA topology, group_weight
- * scores nodes according to the number of NUMA hinting faults on
- * both the node itself, and on nearby nodes.
- */
- if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
- unsigned long score, max_score = 0;
- int node, max_node = nid;
- dist = sched_max_numa_distance;
- for_each_online_node(node) {
- score = group_weight(p, node, dist);
- if (score > max_score) {
- max_score = score;
- max_node = node;
- }
- }
- return max_node;
- }
- /*
- * Finding the preferred nid in a system with NUMA backplane
- * interconnect topology is more involved. The goal is to locate
- * tasks from numa_groups near each other in the system, and
- * untangle workloads from different sides of the system. This requires
- * searching down the hierarchy of node groups, recursively searching
- * inside the highest scoring group of nodes. The nodemask tricks
- * keep the complexity of the search down.
- */
- nodes = node_online_map;
- for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
- unsigned long max_faults = 0;
- nodemask_t max_group = NODE_MASK_NONE;
- int a, b;
- /* Are there nodes at this distance from each other? */
- if (!find_numa_distance(dist))
- continue;
- for_each_node_mask(a, nodes) {
- unsigned long faults = 0;
- nodemask_t this_group;
- nodes_clear(this_group);
- /* Sum group's NUMA faults; includes a==b case. */
- for_each_node_mask(b, nodes) {
- if (node_distance(a, b) < dist) {
- faults += group_faults(p, b);
- node_set(b, this_group);
- node_clear(b, nodes);
- }
- }
- /* Remember the top group. */
- if (faults > max_faults) {
- max_faults = faults;
- max_group = this_group;
- /*
- * subtle: at the smallest distance there is
- * just one node left in each "group", the
- * winner is the preferred nid.
- */
- nid = a;
- }
- }
- /* Next round, evaluate the nodes within max_group. */
- if (!max_faults)
- break;
- nodes = max_group;
- }
- return nid;
- }
- static void task_numa_placement(struct task_struct *p)
- {
- int seq, nid, max_nid = -1;
- unsigned long max_faults = 0;
- unsigned long fault_types[2] = { 0, 0 };
- unsigned long total_faults;
- u64 runtime, period;
- spinlock_t *group_lock = NULL;
- struct numa_group *ng;
- /*
- * The p->mm->numa_scan_seq field gets updated without
- * exclusive access. Use READ_ONCE() here to ensure
- * that the field is read in a single access:
- */
- seq = READ_ONCE(p->mm->numa_scan_seq);
- if (p->numa_scan_seq == seq)
- return;
- p->numa_scan_seq = seq;
- p->numa_scan_period_max = task_scan_max(p);
- total_faults = p->numa_faults_locality[0] +
- p->numa_faults_locality[1];
- runtime = numa_get_avg_runtime(p, &period);
- /* If the task is part of a group prevent parallel updates to group stats */
- ng = deref_curr_numa_group(p);
- if (ng) {
- group_lock = &ng->lock;
- spin_lock_irq(group_lock);
- }
- /* Find the node with the highest number of faults */
- for_each_online_node(nid) {
- /* Keep track of the offsets in numa_faults array */
- int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
- unsigned long faults = 0, group_faults = 0;
- int priv;
- for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
- long diff, f_diff, f_weight;
- mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
- membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
- cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
- cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
- /* Decay existing window, copy faults since last scan */
- diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
- fault_types[priv] += p->numa_faults[membuf_idx];
- p->numa_faults[membuf_idx] = 0;
- /*
- * Normalize the faults_from, so all tasks in a group
- * count according to CPU use, instead of by the raw
- * number of faults. Tasks with little runtime have
- * little over-all impact on throughput, and thus their
- * faults are less important.
- */
- f_weight = div64_u64(runtime << 16, period + 1);
- f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
- (total_faults + 1);
- f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
- p->numa_faults[cpubuf_idx] = 0;
- p->numa_faults[mem_idx] += diff;
- p->numa_faults[cpu_idx] += f_diff;
- faults += p->numa_faults[mem_idx];
- p->total_numa_faults += diff;
- if (ng) {
- /*
- * safe because we can only change our own group
- *
- * mem_idx represents the offset for a given
- * nid and priv in a specific region because it
- * is at the beginning of the numa_faults array.
- */
- ng->faults[mem_idx] += diff;
- ng->faults_cpu[mem_idx] += f_diff;
- ng->total_faults += diff;
- group_faults += ng->faults[mem_idx];
- }
- }
- if (!ng) {
- if (faults > max_faults) {
- max_faults = faults;
- max_nid = nid;
- }
- } else if (group_faults > max_faults) {
- max_faults = group_faults;
- max_nid = nid;
- }
- }
- if (ng) {
- numa_group_count_active_nodes(ng);
- spin_unlock_irq(group_lock);
- max_nid = preferred_group_nid(p, max_nid);
- }
- if (max_faults) {
- /* Set the new preferred node */
- if (max_nid != p->numa_preferred_nid)
- sched_setnuma(p, max_nid);
- }
- update_task_scan_period(p, fault_types[0], fault_types[1]);
- }
- static inline int get_numa_group(struct numa_group *grp)
- {
- return atomic_inc_not_zero(&grp->refcount);
- }
- static inline void put_numa_group(struct numa_group *grp)
- {
- if (atomic_dec_and_test(&grp->refcount))
- kfree_rcu(grp, rcu);
- }
- static void task_numa_group(struct task_struct *p, int cpupid, int flags,
- int *priv)
- {
- struct numa_group *grp, *my_grp;
- struct task_struct *tsk;
- bool join = false;
- int cpu = cpupid_to_cpu(cpupid);
- int i;
- if (unlikely(!deref_curr_numa_group(p))) {
- unsigned int size = sizeof(struct numa_group) +
- 4*nr_node_ids*sizeof(unsigned long);
- grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
- if (!grp)
- return;
- atomic_set(&grp->refcount, 1);
- grp->active_nodes = 1;
- grp->max_faults_cpu = 0;
- spin_lock_init(&grp->lock);
- grp->gid = p->pid;
- /* Second half of the array tracks nids where faults happen */
- grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
- nr_node_ids;
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- grp->faults[i] = p->numa_faults[i];
- grp->total_faults = p->total_numa_faults;
- grp->nr_tasks++;
- rcu_assign_pointer(p->numa_group, grp);
- }
- rcu_read_lock();
- tsk = READ_ONCE(cpu_rq(cpu)->curr);
- if (!cpupid_match_pid(tsk, cpupid))
- goto no_join;
- grp = rcu_dereference(tsk->numa_group);
- if (!grp)
- goto no_join;
- my_grp = deref_curr_numa_group(p);
- if (grp == my_grp)
- goto no_join;
- /*
- * Only join the other group if its bigger; if we're the bigger group,
- * the other task will join us.
- */
- if (my_grp->nr_tasks > grp->nr_tasks)
- goto no_join;
- /*
- * Tie-break on the grp address.
- */
- if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
- goto no_join;
- /* Always join threads in the same process. */
- if (tsk->mm == current->mm)
- join = true;
- /* Simple filter to avoid false positives due to PID collisions */
- if (flags & TNF_SHARED)
- join = true;
- /* Update priv based on whether false sharing was detected */
- *priv = !join;
- if (join && !get_numa_group(grp))
- goto no_join;
- rcu_read_unlock();
- if (!join)
- return;
- BUG_ON(irqs_disabled());
- double_lock_irq(&my_grp->lock, &grp->lock);
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
- my_grp->faults[i] -= p->numa_faults[i];
- grp->faults[i] += p->numa_faults[i];
- }
- my_grp->total_faults -= p->total_numa_faults;
- grp->total_faults += p->total_numa_faults;
- my_grp->nr_tasks--;
- grp->nr_tasks++;
- spin_unlock(&my_grp->lock);
- spin_unlock_irq(&grp->lock);
- rcu_assign_pointer(p->numa_group, grp);
- put_numa_group(my_grp);
- return;
- no_join:
- rcu_read_unlock();
- return;
- }
- /*
- * Get rid of NUMA staticstics associated with a task (either current or dead).
- * If @final is set, the task is dead and has reached refcount zero, so we can
- * safely free all relevant data structures. Otherwise, there might be
- * concurrent reads from places like load balancing and procfs, and we should
- * reset the data back to default state without freeing ->numa_faults.
- */
- void task_numa_free(struct task_struct *p, bool final)
- {
- /* safe: p either is current or is being freed by current */
- struct numa_group *grp = rcu_dereference_raw(p->numa_group);
- unsigned long *numa_faults = p->numa_faults;
- unsigned long flags;
- int i;
- if (!numa_faults)
- return;
- if (grp) {
- spin_lock_irqsave(&grp->lock, flags);
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- grp->faults[i] -= p->numa_faults[i];
- grp->total_faults -= p->total_numa_faults;
- grp->nr_tasks--;
- spin_unlock_irqrestore(&grp->lock, flags);
- RCU_INIT_POINTER(p->numa_group, NULL);
- put_numa_group(grp);
- }
- if (final) {
- p->numa_faults = NULL;
- kfree(numa_faults);
- } else {
- p->total_numa_faults = 0;
- for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
- numa_faults[i] = 0;
- }
- }
- /*
- * Got a PROT_NONE fault for a page on @node.
- */
- void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
- {
- struct task_struct *p = current;
- bool migrated = flags & TNF_MIGRATED;
- int cpu_node = task_node(current);
- int local = !!(flags & TNF_FAULT_LOCAL);
- struct numa_group *ng;
- int priv;
- if (!static_branch_likely(&sched_numa_balancing))
- return;
- /* for example, ksmd faulting in a user's mm */
- if (!p->mm)
- return;
- /* Allocate buffer to track faults on a per-node basis */
- if (unlikely(!p->numa_faults)) {
- int size = sizeof(*p->numa_faults) *
- NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
- p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
- if (!p->numa_faults)
- return;
- p->total_numa_faults = 0;
- memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
- }
- /*
- * First accesses are treated as private, otherwise consider accesses
- * to be private if the accessing pid has not changed
- */
- if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
- priv = 1;
- } else {
- priv = cpupid_match_pid(p, last_cpupid);
- if (!priv && !(flags & TNF_NO_GROUP))
- task_numa_group(p, last_cpupid, flags, &priv);
- }
- /*
- * If a workload spans multiple NUMA nodes, a shared fault that
- * occurs wholly within the set of nodes that the workload is
- * actively using should be counted as local. This allows the
- * scan rate to slow down when a workload has settled down.
- */
- ng = deref_curr_numa_group(p);
- if (!priv && !local && ng && ng->active_nodes > 1 &&
- numa_is_active_node(cpu_node, ng) &&
- numa_is_active_node(mem_node, ng))
- local = 1;
- /*
- * Retry task to preferred node migration periodically, in case it
- * case it previously failed, or the scheduler moved us.
- */
- if (time_after(jiffies, p->numa_migrate_retry)) {
- task_numa_placement(p);
- numa_migrate_preferred(p);
- }
- if (migrated)
- p->numa_pages_migrated += pages;
- if (flags & TNF_MIGRATE_FAIL)
- p->numa_faults_locality[2] += pages;
- p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
- p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
- p->numa_faults_locality[local] += pages;
- }
- static void reset_ptenuma_scan(struct task_struct *p)
- {
- /*
- * We only did a read acquisition of the mmap sem, so
- * p->mm->numa_scan_seq is written to without exclusive access
- * and the update is not guaranteed to be atomic. That's not
- * much of an issue though, since this is just used for
- * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
- * expensive, to avoid any form of compiler optimizations:
- */
- WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
- p->mm->numa_scan_offset = 0;
- }
- /*
- * The expensive part of numa migration is done from task_work context.
- * Triggered from task_tick_numa().
- */
- void task_numa_work(struct callback_head *work)
- {
- unsigned long migrate, next_scan, now = jiffies;
- struct task_struct *p = current;
- struct mm_struct *mm = p->mm;
- u64 runtime = p->se.sum_exec_runtime;
- struct vm_area_struct *vma;
- unsigned long start, end;
- unsigned long nr_pte_updates = 0;
- long pages, virtpages;
- SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
- work->next = work; /* protect against double add */
- /*
- * Who cares about NUMA placement when they're dying.
- *
- * NOTE: make sure not to dereference p->mm before this check,
- * exit_task_work() happens _after_ exit_mm() so we could be called
- * without p->mm even though we still had it when we enqueued this
- * work.
- */
- if (p->flags & PF_EXITING)
- return;
- if (!mm->numa_next_scan) {
- mm->numa_next_scan = now +
- msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
- }
- /*
- * Enforce maximal scan/migration frequency..
- */
- migrate = mm->numa_next_scan;
- if (time_before(now, migrate))
- return;
- if (p->numa_scan_period == 0) {
- p->numa_scan_period_max = task_scan_max(p);
- p->numa_scan_period = task_scan_start(p);
- }
- next_scan = now + msecs_to_jiffies(p->numa_scan_period);
- if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
- return;
- /*
- * Delay this task enough that another task of this mm will likely win
- * the next time around.
- */
- p->node_stamp += 2 * TICK_NSEC;
- start = mm->numa_scan_offset;
- pages = sysctl_numa_balancing_scan_size;
- pages <<= 20 - PAGE_SHIFT; /* MB in pages */
- virtpages = pages * 8; /* Scan up to this much virtual space */
- if (!pages)
- return;
- if (!down_read_trylock(&mm->mmap_sem))
- return;
- vma = find_vma(mm, start);
- if (!vma) {
- reset_ptenuma_scan(p);
- start = 0;
- vma = mm->mmap;
- }
- for (; vma; vma = vma->vm_next) {
- if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
- is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
- continue;
- }
- /*
- * Shared library pages mapped by multiple processes are not
- * migrated as it is expected they are cache replicated. Avoid
- * hinting faults in read-only file-backed mappings or the vdso
- * as migrating the pages will be of marginal benefit.
- */
- if (!vma->vm_mm ||
- (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
- continue;
- /*
- * Skip inaccessible VMAs to avoid any confusion between
- * PROT_NONE and NUMA hinting ptes
- */
- if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
- continue;
- do {
- start = max(start, vma->vm_start);
- end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
- end = min(end, vma->vm_end);
- nr_pte_updates = change_prot_numa(vma, start, end);
- /*
- * Try to scan sysctl_numa_balancing_size worth of
- * hpages that have at least one present PTE that
- * is not already pte-numa. If the VMA contains
- * areas that are unused or already full of prot_numa
- * PTEs, scan up to virtpages, to skip through those
- * areas faster.
- */
- if (nr_pte_updates)
- pages -= (end - start) >> PAGE_SHIFT;
- virtpages -= (end - start) >> PAGE_SHIFT;
- start = end;
- if (pages <= 0 || virtpages <= 0)
- goto out;
- cond_resched();
- } while (end != vma->vm_end);
- }
- out:
- /*
- * It is possible to reach the end of the VMA list but the last few
- * VMAs are not guaranteed to the vma_migratable. If they are not, we
- * would find the !migratable VMA on the next scan but not reset the
- * scanner to the start so check it now.
- */
- if (vma)
- mm->numa_scan_offset = start;
- else
- reset_ptenuma_scan(p);
- up_read(&mm->mmap_sem);
- /*
- * Make sure tasks use at least 32x as much time to run other code
- * than they used here, to limit NUMA PTE scanning overhead to 3% max.
- * Usually update_task_scan_period slows down scanning enough; on an
- * overloaded system we need to limit overhead on a per task basis.
- */
- if (unlikely(p->se.sum_exec_runtime != runtime)) {
- u64 diff = p->se.sum_exec_runtime - runtime;
- p->node_stamp += 32 * diff;
- }
- }
- /*
- * Drive the periodic memory faults..
- */
- void task_tick_numa(struct rq *rq, struct task_struct *curr)
- {
- struct callback_head *work = &curr->numa_work;
- u64 period, now;
- /*
- * We don't care about NUMA placement if we don't have memory.
- */
- if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
- return;
- /*
- * Using runtime rather than walltime has the dual advantage that
- * we (mostly) drive the selection from busy threads and that the
- * task needs to have done some actual work before we bother with
- * NUMA placement.
- */
- now = curr->se.sum_exec_runtime;
- period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
- if (now > curr->node_stamp + period) {
- if (!curr->node_stamp)
- curr->numa_scan_period = task_scan_start(curr);
- curr->node_stamp += period;
- if (!time_before(jiffies, curr->mm->numa_next_scan)) {
- init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
- task_work_add(curr, work, true);
- }
- }
- }
- static void update_scan_period(struct task_struct *p, int new_cpu)
- {
- int src_nid = cpu_to_node(task_cpu(p));
- int dst_nid = cpu_to_node(new_cpu);
- if (!static_branch_likely(&sched_numa_balancing))
- return;
- if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
- return;
- if (src_nid == dst_nid)
- return;
- /*
- * Allow resets if faults have been trapped before one scan
- * has completed. This is most likely due to a new task that
- * is pulled cross-node due to wakeups or load balancing.
- */
- if (p->numa_scan_seq) {
- /*
- * Avoid scan adjustments if moving to the preferred
- * node or if the task was not previously running on
- * the preferred node.
- */
- if (dst_nid == p->numa_preferred_nid ||
- (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
- return;
- }
- p->numa_scan_period = task_scan_start(p);
- }
- #else
- static void task_tick_numa(struct rq *rq, struct task_struct *curr)
- {
- }
- static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void update_scan_period(struct task_struct *p, int new_cpu)
- {
- }
- #endif /* CONFIG_NUMA_BALANCING */
- static void
- account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_load_add(&cfs_rq->load, se->load.weight);
- if (!parent_entity(se))
- update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
- #ifdef CONFIG_SMP
- if (entity_is_task(se)) {
- struct rq *rq = rq_of(cfs_rq);
- account_numa_enqueue(rq, task_of(se));
- list_add(&se->group_node, &rq->cfs_tasks);
- }
- #endif
- cfs_rq->nr_running++;
- }
- static void
- account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- update_load_sub(&cfs_rq->load, se->load.weight);
- if (!parent_entity(se))
- update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
- #ifdef CONFIG_SMP
- if (entity_is_task(se)) {
- account_numa_dequeue(rq_of(cfs_rq), task_of(se));
- list_del_init(&se->group_node);
- }
- #endif
- cfs_rq->nr_running--;
- }
- /*
- * Signed add and clamp on underflow.
- *
- * Explicitly do a load-store to ensure the intermediate value never hits
- * memory. This allows lockless observations without ever seeing the negative
- * values.
- */
- #define add_positive(_ptr, _val) do { \
- typeof(_ptr) ptr = (_ptr); \
- typeof(_val) val = (_val); \
- typeof(*ptr) res, var = READ_ONCE(*ptr); \
- \
- res = var + val; \
- \
- if (val < 0 && res > var) \
- res = 0; \
- \
- WRITE_ONCE(*ptr, res); \
- } while (0)
- /*
- * Unsigned subtract and clamp on underflow.
- *
- * Explicitly do a load-store to ensure the intermediate value never hits
- * memory. This allows lockless observations without ever seeing the negative
- * values.
- */
- #define sub_positive(_ptr, _val) do { \
- typeof(_ptr) ptr = (_ptr); \
- typeof(*ptr) val = (_val); \
- typeof(*ptr) res, var = READ_ONCE(*ptr); \
- res = var - val; \
- if (res > var) \
- res = 0; \
- WRITE_ONCE(*ptr, res); \
- } while (0)
- #ifdef CONFIG_SMP
- static inline void
- enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- cfs_rq->runnable_weight += se->runnable_weight;
- cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
- cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
- }
- static inline void
- dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- cfs_rq->runnable_weight -= se->runnable_weight;
- sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
- sub_positive(&cfs_rq->avg.runnable_load_sum,
- se_runnable(se) * se->avg.runnable_load_sum);
- }
- static inline void
- enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- cfs_rq->avg.load_avg += se->avg.load_avg;
- cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
- }
- static inline void
- dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
- sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
- }
- #else
- static inline void
- enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
- static inline void
- dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
- static inline void
- enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
- static inline void
- dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
- #endif
- static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
- unsigned long weight, unsigned long runnable)
- {
- if (se->on_rq) {
- /* commit outstanding execution time */
- if (cfs_rq->curr == se)
- update_curr(cfs_rq);
- account_entity_dequeue(cfs_rq, se);
- dequeue_runnable_load_avg(cfs_rq, se);
- }
- dequeue_load_avg(cfs_rq, se);
- se->runnable_weight = runnable;
- update_load_set(&se->load, weight);
- #ifdef CONFIG_SMP
- do {
- u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
- se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
- se->avg.runnable_load_avg =
- div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
- } while (0);
- #endif
- enqueue_load_avg(cfs_rq, se);
- if (se->on_rq) {
- account_entity_enqueue(cfs_rq, se);
- enqueue_runnable_load_avg(cfs_rq, se);
- }
- }
- void reweight_task(struct task_struct *p, int prio)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- struct load_weight *load = &se->load;
- unsigned long weight = scale_load(sched_prio_to_weight[prio]);
- reweight_entity(cfs_rq, se, weight, weight);
- load->inv_weight = sched_prio_to_wmult[prio];
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- #ifdef CONFIG_SMP
- /*
- * All this does is approximate the hierarchical proportion which includes that
- * global sum we all love to hate.
- *
- * That is, the weight of a group entity, is the proportional share of the
- * group weight based on the group runqueue weights. That is:
- *
- * tg->weight * grq->load.weight
- * ge->load.weight = ----------------------------- (1)
- * \Sum grq->load.weight
- *
- * Now, because computing that sum is prohibitively expensive to compute (been
- * there, done that) we approximate it with this average stuff. The average
- * moves slower and therefore the approximation is cheaper and more stable.
- *
- * So instead of the above, we substitute:
- *
- * grq->load.weight -> grq->avg.load_avg (2)
- *
- * which yields the following:
- *
- * tg->weight * grq->avg.load_avg
- * ge->load.weight = ------------------------------ (3)
- * tg->load_avg
- *
- * Where: tg->load_avg ~= \Sum grq->avg.load_avg
- *
- * That is shares_avg, and it is right (given the approximation (2)).
- *
- * The problem with it is that because the average is slow -- it was designed
- * to be exactly that of course -- this leads to transients in boundary
- * conditions. In specific, the case where the group was idle and we start the
- * one task. It takes time for our CPU's grq->avg.load_avg to build up,
- * yielding bad latency etc..
- *
- * Now, in that special case (1) reduces to:
- *
- * tg->weight * grq->load.weight
- * ge->load.weight = ----------------------------- = tg->weight (4)
- * grp->load.weight
- *
- * That is, the sum collapses because all other CPUs are idle; the UP scenario.
- *
- * So what we do is modify our approximation (3) to approach (4) in the (near)
- * UP case, like:
- *
- * ge->load.weight =
- *
- * tg->weight * grq->load.weight
- * --------------------------------------------------- (5)
- * tg->load_avg - grq->avg.load_avg + grq->load.weight
- *
- * But because grq->load.weight can drop to 0, resulting in a divide by zero,
- * we need to use grq->avg.load_avg as its lower bound, which then gives:
- *
- *
- * tg->weight * grq->load.weight
- * ge->load.weight = ----------------------------- (6)
- * tg_load_avg'
- *
- * Where:
- *
- * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
- * max(grq->load.weight, grq->avg.load_avg)
- *
- * And that is shares_weight and is icky. In the (near) UP case it approaches
- * (4) while in the normal case it approaches (3). It consistently
- * overestimates the ge->load.weight and therefore:
- *
- * \Sum ge->load.weight >= tg->weight
- *
- * hence icky!
- */
- static long calc_group_shares(struct cfs_rq *cfs_rq)
- {
- long tg_weight, tg_shares, load, shares;
- struct task_group *tg = cfs_rq->tg;
- tg_shares = READ_ONCE(tg->shares);
- load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
- tg_weight = atomic_long_read(&tg->load_avg);
- /* Ensure tg_weight >= load */
- tg_weight -= cfs_rq->tg_load_avg_contrib;
- tg_weight += load;
- shares = (tg_shares * load);
- if (tg_weight)
- shares /= tg_weight;
- /*
- * MIN_SHARES has to be unscaled here to support per-CPU partitioning
- * of a group with small tg->shares value. It is a floor value which is
- * assigned as a minimum load.weight to the sched_entity representing
- * the group on a CPU.
- *
- * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
- * on an 8-core system with 8 tasks each runnable on one CPU shares has
- * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
- * case no task is runnable on a CPU MIN_SHARES=2 should be returned
- * instead of 0.
- */
- return clamp_t(long, shares, MIN_SHARES, tg_shares);
- }
- /*
- * This calculates the effective runnable weight for a group entity based on
- * the group entity weight calculated above.
- *
- * Because of the above approximation (2), our group entity weight is
- * an load_avg based ratio (3). This means that it includes blocked load and
- * does not represent the runnable weight.
- *
- * Approximate the group entity's runnable weight per ratio from the group
- * runqueue:
- *
- * grq->avg.runnable_load_avg
- * ge->runnable_weight = ge->load.weight * -------------------------- (7)
- * grq->avg.load_avg
- *
- * However, analogous to above, since the avg numbers are slow, this leads to
- * transients in the from-idle case. Instead we use:
- *
- * ge->runnable_weight = ge->load.weight *
- *
- * max(grq->avg.runnable_load_avg, grq->runnable_weight)
- * ----------------------------------------------------- (8)
- * max(grq->avg.load_avg, grq->load.weight)
- *
- * Where these max() serve both to use the 'instant' values to fix the slow
- * from-idle and avoid the /0 on to-idle, similar to (6).
- */
- static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
- {
- long runnable, load_avg;
- load_avg = max(cfs_rq->avg.load_avg,
- scale_load_down(cfs_rq->load.weight));
- runnable = max(cfs_rq->avg.runnable_load_avg,
- scale_load_down(cfs_rq->runnable_weight));
- runnable *= shares;
- if (load_avg)
- runnable /= load_avg;
- return clamp_t(long, runnable, MIN_SHARES, shares);
- }
- #endif /* CONFIG_SMP */
- static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
- /*
- * Recomputes the group entity based on the current state of its group
- * runqueue.
- */
- static void update_cfs_group(struct sched_entity *se)
- {
- struct cfs_rq *gcfs_rq = group_cfs_rq(se);
- long shares, runnable;
- if (!gcfs_rq)
- return;
- if (throttled_hierarchy(gcfs_rq))
- return;
- #ifndef CONFIG_SMP
- runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
- if (likely(se->load.weight == shares))
- return;
- #else
- shares = calc_group_shares(gcfs_rq);
- runnable = calc_group_runnable(gcfs_rq, shares);
- #endif
- reweight_entity(cfs_rq_of(se), se, shares, runnable);
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- static inline void update_cfs_group(struct sched_entity *se)
- {
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
- {
- struct rq *rq = rq_of(cfs_rq);
- if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
- /*
- * There are a few boundary cases this might miss but it should
- * get called often enough that that should (hopefully) not be
- * a real problem.
- *
- * It will not get called when we go idle, because the idle
- * thread is a different class (!fair), nor will the utilization
- * number include things like RT tasks.
- *
- * As is, the util number is not freq-invariant (we'd have to
- * implement arch_scale_freq_capacity() for that).
- *
- * See cpu_util().
- */
- cpufreq_update_util(rq, flags);
- }
- }
- #ifdef CONFIG_SMP
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /**
- * update_tg_load_avg - update the tg's load avg
- * @cfs_rq: the cfs_rq whose avg changed
- * @force: update regardless of how small the difference
- *
- * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
- * However, because tg->load_avg is a global value there are performance
- * considerations.
- *
- * In order to avoid having to look at the other cfs_rq's, we use a
- * differential update where we store the last value we propagated. This in
- * turn allows skipping updates if the differential is 'small'.
- *
- * Updating tg's load_avg is necessary before update_cfs_share().
- */
- static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
- {
- long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
- /*
- * No need to update load_avg for root_task_group as it is not used.
- */
- if (cfs_rq->tg == &root_task_group)
- return;
- if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
- atomic_long_add(delta, &cfs_rq->tg->load_avg);
- cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
- }
- }
- /*
- * Called within set_task_rq() right before setting a task's CPU. The
- * caller only guarantees p->pi_lock is held; no other assumptions,
- * including the state of rq->lock, should be made.
- */
- void set_task_rq_fair(struct sched_entity *se,
- struct cfs_rq *prev, struct cfs_rq *next)
- {
- u64 p_last_update_time;
- u64 n_last_update_time;
- if (!sched_feat(ATTACH_AGE_LOAD))
- return;
- /*
- * We are supposed to update the task to "current" time, then its up to
- * date and ready to go to new CPU/cfs_rq. But we have difficulty in
- * getting what current time is, so simply throw away the out-of-date
- * time. This will result in the wakee task is less decayed, but giving
- * the wakee more load sounds not bad.
- */
- if (!(se->avg.last_update_time && prev))
- return;
- #ifndef CONFIG_64BIT
- {
- u64 p_last_update_time_copy;
- u64 n_last_update_time_copy;
- do {
- p_last_update_time_copy = prev->load_last_update_time_copy;
- n_last_update_time_copy = next->load_last_update_time_copy;
- smp_rmb();
- p_last_update_time = prev->avg.last_update_time;
- n_last_update_time = next->avg.last_update_time;
- } while (p_last_update_time != p_last_update_time_copy ||
- n_last_update_time != n_last_update_time_copy);
- }
- #else
- p_last_update_time = prev->avg.last_update_time;
- n_last_update_time = next->avg.last_update_time;
- #endif
- __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
- se->avg.last_update_time = n_last_update_time;
- }
- /*
- * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
- * propagate its contribution. The key to this propagation is the invariant
- * that for each group:
- *
- * ge->avg == grq->avg (1)
- *
- * _IFF_ we look at the pure running and runnable sums. Because they
- * represent the very same entity, just at different points in the hierarchy.
- *
- * Per the above update_tg_cfs_util() is trivial and simply copies the running
- * sum over (but still wrong, because the group entity and group rq do not have
- * their PELT windows aligned).
- *
- * However, update_tg_cfs_runnable() is more complex. So we have:
- *
- * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
- *
- * And since, like util, the runnable part should be directly transferable,
- * the following would _appear_ to be the straight forward approach:
- *
- * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
- *
- * And per (1) we have:
- *
- * ge->avg.runnable_avg == grq->avg.runnable_avg
- *
- * Which gives:
- *
- * ge->load.weight * grq->avg.load_avg
- * ge->avg.load_avg = ----------------------------------- (4)
- * grq->load.weight
- *
- * Except that is wrong!
- *
- * Because while for entities historical weight is not important and we
- * really only care about our future and therefore can consider a pure
- * runnable sum, runqueues can NOT do this.
- *
- * We specifically want runqueues to have a load_avg that includes
- * historical weights. Those represent the blocked load, the load we expect
- * to (shortly) return to us. This only works by keeping the weights as
- * integral part of the sum. We therefore cannot decompose as per (3).
- *
- * Another reason this doesn't work is that runnable isn't a 0-sum entity.
- * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
- * rq itself is runnable anywhere between 2/3 and 1 depending on how the
- * runnable section of these tasks overlap (or not). If they were to perfectly
- * align the rq as a whole would be runnable 2/3 of the time. If however we
- * always have at least 1 runnable task, the rq as a whole is always runnable.
- *
- * So we'll have to approximate.. :/
- *
- * Given the constraint:
- *
- * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
- *
- * We can construct a rule that adds runnable to a rq by assuming minimal
- * overlap.
- *
- * On removal, we'll assume each task is equally runnable; which yields:
- *
- * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
- *
- * XXX: only do this for the part of runnable > running ?
- *
- */
- static inline void
- update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
- {
- long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
- /* Nothing to update */
- if (!delta)
- return;
- /*
- * The relation between sum and avg is:
- *
- * LOAD_AVG_MAX - 1024 + sa->period_contrib
- *
- * however, the PELT windows are not aligned between grq and gse.
- */
- /* Set new sched_entity's utilization */
- se->avg.util_avg = gcfs_rq->avg.util_avg;
- se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
- /* Update parent cfs_rq utilization */
- add_positive(&cfs_rq->avg.util_avg, delta);
- cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
- }
- static inline void
- update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
- {
- long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
- unsigned long runnable_load_avg, load_avg;
- u64 runnable_load_sum, load_sum = 0;
- s64 delta_sum;
- if (!runnable_sum)
- return;
- gcfs_rq->prop_runnable_sum = 0;
- if (runnable_sum >= 0) {
- /*
- * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
- * the CPU is saturated running == runnable.
- */
- runnable_sum += se->avg.load_sum;
- runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
- } else {
- /*
- * Estimate the new unweighted runnable_sum of the gcfs_rq by
- * assuming all tasks are equally runnable.
- */
- if (scale_load_down(gcfs_rq->load.weight)) {
- load_sum = div_s64(gcfs_rq->avg.load_sum,
- scale_load_down(gcfs_rq->load.weight));
- }
- /* But make sure to not inflate se's runnable */
- runnable_sum = min(se->avg.load_sum, load_sum);
- }
- /*
- * runnable_sum can't be lower than running_sum
- * As running sum is scale with CPU capacity wehreas the runnable sum
- * is not we rescale running_sum 1st
- */
- running_sum = se->avg.util_sum /
- arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
- runnable_sum = max(runnable_sum, running_sum);
- load_sum = (s64)se_weight(se) * runnable_sum;
- load_avg = div_s64(load_sum, LOAD_AVG_MAX);
- delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
- delta_avg = load_avg - se->avg.load_avg;
- se->avg.load_sum = runnable_sum;
- se->avg.load_avg = load_avg;
- add_positive(&cfs_rq->avg.load_avg, delta_avg);
- add_positive(&cfs_rq->avg.load_sum, delta_sum);
- runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
- runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
- delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
- delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
- se->avg.runnable_load_sum = runnable_sum;
- se->avg.runnable_load_avg = runnable_load_avg;
- if (se->on_rq) {
- add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
- add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
- }
- }
- static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
- {
- cfs_rq->propagate = 1;
- cfs_rq->prop_runnable_sum += runnable_sum;
- }
- /* Update task and its cfs_rq load average */
- static inline int propagate_entity_load_avg(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq, *gcfs_rq;
- if (entity_is_task(se))
- return 0;
- gcfs_rq = group_cfs_rq(se);
- if (!gcfs_rq->propagate)
- return 0;
- gcfs_rq->propagate = 0;
- cfs_rq = cfs_rq_of(se);
- add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
- update_tg_cfs_util(cfs_rq, se, gcfs_rq);
- update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
- return 1;
- }
- /*
- * Check if we need to update the load and the utilization of a blocked
- * group_entity:
- */
- static inline bool skip_blocked_update(struct sched_entity *se)
- {
- struct cfs_rq *gcfs_rq = group_cfs_rq(se);
- /*
- * If sched_entity still have not zero load or utilization, we have to
- * decay it:
- */
- if (se->avg.load_avg || se->avg.util_avg)
- return false;
- /*
- * If there is a pending propagation, we have to update the load and
- * the utilization of the sched_entity:
- */
- if (gcfs_rq->propagate)
- return false;
- /*
- * Otherwise, the load and the utilization of the sched_entity is
- * already zero and there is no pending propagation, so it will be a
- * waste of time to try to decay it:
- */
- return true;
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
- static inline int propagate_entity_load_avg(struct sched_entity *se)
- {
- return 0;
- }
- static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- /**
- * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
- * @now: current time, as per cfs_rq_clock_task()
- * @cfs_rq: cfs_rq to update
- *
- * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
- * avg. The immediate corollary is that all (fair) tasks must be attached, see
- * post_init_entity_util_avg().
- *
- * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
- *
- * Returns true if the load decayed or we removed load.
- *
- * Since both these conditions indicate a changed cfs_rq->avg.load we should
- * call update_tg_load_avg() when this function returns true.
- */
- static inline int
- update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
- {
- unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
- struct sched_avg *sa = &cfs_rq->avg;
- int decayed = 0;
- if (cfs_rq->removed.nr) {
- unsigned long r;
- u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
- raw_spin_lock(&cfs_rq->removed.lock);
- swap(cfs_rq->removed.util_avg, removed_util);
- swap(cfs_rq->removed.load_avg, removed_load);
- swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
- cfs_rq->removed.nr = 0;
- raw_spin_unlock(&cfs_rq->removed.lock);
- r = removed_load;
- sub_positive(&sa->load_avg, r);
- sub_positive(&sa->load_sum, r * divider);
- r = removed_util;
- sub_positive(&sa->util_avg, r);
- sub_positive(&sa->util_sum, r * divider);
- add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
- decayed = 1;
- }
- decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
- #ifndef CONFIG_64BIT
- smp_wmb();
- cfs_rq->load_last_update_time_copy = sa->last_update_time;
- #endif
- if (decayed)
- cfs_rq_util_change(cfs_rq, 0);
- return decayed;
- }
- /**
- * attach_entity_load_avg - attach this entity to its cfs_rq load avg
- * @cfs_rq: cfs_rq to attach to
- * @se: sched_entity to attach
- * @flags: migration hints
- *
- * Must call update_cfs_rq_load_avg() before this, since we rely on
- * cfs_rq->avg.last_update_time being current.
- */
- static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
- /*
- * When we attach the @se to the @cfs_rq, we must align the decay
- * window because without that, really weird and wonderful things can
- * happen.
- *
- * XXX illustrate
- */
- se->avg.last_update_time = cfs_rq->avg.last_update_time;
- se->avg.period_contrib = cfs_rq->avg.period_contrib;
- /*
- * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
- * period_contrib. This isn't strictly correct, but since we're
- * entirely outside of the PELT hierarchy, nobody cares if we truncate
- * _sum a little.
- */
- se->avg.util_sum = se->avg.util_avg * divider;
- se->avg.load_sum = divider;
- if (se_weight(se)) {
- se->avg.load_sum =
- div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
- }
- se->avg.runnable_load_sum = se->avg.load_sum;
- enqueue_load_avg(cfs_rq, se);
- cfs_rq->avg.util_avg += se->avg.util_avg;
- cfs_rq->avg.util_sum += se->avg.util_sum;
- add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
- cfs_rq_util_change(cfs_rq, flags);
- }
- /**
- * detach_entity_load_avg - detach this entity from its cfs_rq load avg
- * @cfs_rq: cfs_rq to detach from
- * @se: sched_entity to detach
- *
- * Must call update_cfs_rq_load_avg() before this, since we rely on
- * cfs_rq->avg.last_update_time being current.
- */
- static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- dequeue_load_avg(cfs_rq, se);
- sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
- sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
- add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
- cfs_rq_util_change(cfs_rq, 0);
- }
- /*
- * Optional action to be done while updating the load average
- */
- #define UPDATE_TG 0x1
- #define SKIP_AGE_LOAD 0x2
- #define DO_ATTACH 0x4
- /* Update task and its cfs_rq load average */
- static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- u64 now = cfs_rq_clock_task(cfs_rq);
- struct rq *rq = rq_of(cfs_rq);
- int cpu = cpu_of(rq);
- int decayed;
- /*
- * Track task load average for carrying it to new CPU after migrated, and
- * track group sched_entity load average for task_h_load calc in migration
- */
- if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
- __update_load_avg_se(now, cpu, cfs_rq, se);
- decayed = update_cfs_rq_load_avg(now, cfs_rq);
- decayed |= propagate_entity_load_avg(se);
- if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
- /*
- * DO_ATTACH means we're here from enqueue_entity().
- * !last_update_time means we've passed through
- * migrate_task_rq_fair() indicating we migrated.
- *
- * IOW we're enqueueing a task on a new CPU.
- */
- attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
- update_tg_load_avg(cfs_rq, 0);
- } else if (decayed && (flags & UPDATE_TG))
- update_tg_load_avg(cfs_rq, 0);
- }
- #ifndef CONFIG_64BIT
- static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
- {
- u64 last_update_time_copy;
- u64 last_update_time;
- do {
- last_update_time_copy = cfs_rq->load_last_update_time_copy;
- smp_rmb();
- last_update_time = cfs_rq->avg.last_update_time;
- } while (last_update_time != last_update_time_copy);
- return last_update_time;
- }
- #else
- static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->avg.last_update_time;
- }
- #endif
- /*
- * Synchronize entity load avg of dequeued entity without locking
- * the previous rq.
- */
- void sync_entity_load_avg(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 last_update_time;
- last_update_time = cfs_rq_last_update_time(cfs_rq);
- __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
- }
- /*
- * Task first catches up with cfs_rq, and then subtract
- * itself from the cfs_rq (task must be off the queue now).
- */
- void remove_entity_load_avg(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- unsigned long flags;
- /*
- * tasks cannot exit without having gone through wake_up_new_task() ->
- * post_init_entity_util_avg() which will have added things to the
- * cfs_rq, so we can remove unconditionally.
- *
- * Similarly for groups, they will have passed through
- * post_init_entity_util_avg() before unregister_sched_fair_group()
- * calls this.
- */
- sync_entity_load_avg(se);
- raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
- ++cfs_rq->removed.nr;
- cfs_rq->removed.util_avg += se->avg.util_avg;
- cfs_rq->removed.load_avg += se->avg.load_avg;
- cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
- raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
- }
- static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->avg.runnable_load_avg;
- }
- static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
- {
- return cfs_rq->avg.load_avg;
- }
- static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
- static inline unsigned long task_util(struct task_struct *p)
- {
- return READ_ONCE(p->se.avg.util_avg);
- }
- static inline unsigned long _task_util_est(struct task_struct *p)
- {
- struct util_est ue = READ_ONCE(p->se.avg.util_est);
- return max(ue.ewma, ue.enqueued);
- }
- static inline unsigned long task_util_est(struct task_struct *p)
- {
- return max(task_util(p), _task_util_est(p));
- }
- static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
- struct task_struct *p)
- {
- unsigned int enqueued;
- if (!sched_feat(UTIL_EST))
- return;
- /* Update root cfs_rq's estimated utilization */
- enqueued = cfs_rq->avg.util_est.enqueued;
- enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
- WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
- }
- /*
- * Check if a (signed) value is within a specified (unsigned) margin,
- * based on the observation that:
- *
- * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
- *
- * NOTE: this only works when value + maring < INT_MAX.
- */
- static inline bool within_margin(int value, int margin)
- {
- return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
- }
- static void
- util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
- {
- long last_ewma_diff;
- struct util_est ue;
- if (!sched_feat(UTIL_EST))
- return;
- /* Update root cfs_rq's estimated utilization */
- ue.enqueued = cfs_rq->avg.util_est.enqueued;
- ue.enqueued -= min_t(unsigned int, ue.enqueued,
- (_task_util_est(p) | UTIL_AVG_UNCHANGED));
- WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
- /*
- * Skip update of task's estimated utilization when the task has not
- * yet completed an activation, e.g. being migrated.
- */
- if (!task_sleep)
- return;
- /*
- * If the PELT values haven't changed since enqueue time,
- * skip the util_est update.
- */
- ue = p->se.avg.util_est;
- if (ue.enqueued & UTIL_AVG_UNCHANGED)
- return;
- /*
- * Skip update of task's estimated utilization when its EWMA is
- * already ~1% close to its last activation value.
- */
- ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
- last_ewma_diff = ue.enqueued - ue.ewma;
- if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
- return;
- /*
- * Update Task's estimated utilization
- *
- * When *p completes an activation we can consolidate another sample
- * of the task size. This is done by storing the current PELT value
- * as ue.enqueued and by using this value to update the Exponential
- * Weighted Moving Average (EWMA):
- *
- * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
- * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
- * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
- * = w * ( last_ewma_diff ) + ewma(t-1)
- * = w * (last_ewma_diff + ewma(t-1) / w)
- *
- * Where 'w' is the weight of new samples, which is configured to be
- * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
- */
- ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
- ue.ewma += last_ewma_diff;
- ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
- WRITE_ONCE(p->se.avg.util_est, ue);
- }
- #else /* CONFIG_SMP */
- #define UPDATE_TG 0x0
- #define SKIP_AGE_LOAD 0x0
- #define DO_ATTACH 0x0
- static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
- {
- cfs_rq_util_change(cfs_rq, 0);
- }
- static inline void remove_entity_load_avg(struct sched_entity *se) {}
- static inline void
- attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
- static inline void
- detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
- static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
- {
- return 0;
- }
- static inline void
- util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
- static inline void
- util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
- bool task_sleep) {}
- #endif /* CONFIG_SMP */
- static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- #ifdef CONFIG_SCHED_DEBUG
- s64 d = se->vruntime - cfs_rq->min_vruntime;
- if (d < 0)
- d = -d;
- if (d > 3*sysctl_sched_latency)
- schedstat_inc(cfs_rq->nr_spread_over);
- #endif
- }
- static void
- place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
- {
- u64 vruntime = cfs_rq->min_vruntime;
- /*
- * The 'current' period is already promised to the current tasks,
- * however the extra weight of the new task will slow them down a
- * little, place the new task so that it fits in the slot that
- * stays open at the end.
- */
- if (initial && sched_feat(START_DEBIT))
- vruntime += sched_vslice(cfs_rq, se);
- /* sleeps up to a single latency don't count. */
- if (!initial) {
- unsigned long thresh = sysctl_sched_latency;
- /*
- * Halve their sleep time's effect, to allow
- * for a gentler effect of sleepers:
- */
- if (sched_feat(GENTLE_FAIR_SLEEPERS))
- thresh >>= 1;
- vruntime -= thresh;
- }
- /* ensure we never gain time by being placed backwards. */
- se->vruntime = max_vruntime(se->vruntime, vruntime);
- }
- static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
- static inline void check_schedstat_required(void)
- {
- #ifdef CONFIG_SCHEDSTATS
- if (schedstat_enabled())
- return;
- /* Force schedstat enabled if a dependent tracepoint is active */
- if (trace_sched_stat_wait_enabled() ||
- trace_sched_stat_sleep_enabled() ||
- trace_sched_stat_iowait_enabled() ||
- trace_sched_stat_blocked_enabled() ||
- trace_sched_stat_runtime_enabled()) {
- printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
- "stat_blocked and stat_runtime require the "
- "kernel parameter schedstats=enable or "
- "kernel.sched_schedstats=1\n");
- }
- #endif
- }
- /*
- * MIGRATION
- *
- * dequeue
- * update_curr()
- * update_min_vruntime()
- * vruntime -= min_vruntime
- *
- * enqueue
- * update_curr()
- * update_min_vruntime()
- * vruntime += min_vruntime
- *
- * this way the vruntime transition between RQs is done when both
- * min_vruntime are up-to-date.
- *
- * WAKEUP (remote)
- *
- * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
- * vruntime -= min_vruntime
- *
- * enqueue
- * update_curr()
- * update_min_vruntime()
- * vruntime += min_vruntime
- *
- * this way we don't have the most up-to-date min_vruntime on the originating
- * CPU and an up-to-date min_vruntime on the destination CPU.
- */
- static void
- enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
- bool curr = cfs_rq->curr == se;
- /*
- * If we're the current task, we must renormalise before calling
- * update_curr().
- */
- if (renorm && curr)
- se->vruntime += cfs_rq->min_vruntime;
- update_curr(cfs_rq);
- /*
- * Otherwise, renormalise after, such that we're placed at the current
- * moment in time, instead of some random moment in the past. Being
- * placed in the past could significantly boost this task to the
- * fairness detriment of existing tasks.
- */
- if (renorm && !curr)
- se->vruntime += cfs_rq->min_vruntime;
- /*
- * When enqueuing a sched_entity, we must:
- * - Update loads to have both entity and cfs_rq synced with now.
- * - Add its load to cfs_rq->runnable_avg
- * - For group_entity, update its weight to reflect the new share of
- * its group cfs_rq
- * - Add its new weight to cfs_rq->load.weight
- */
- update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
- update_cfs_group(se);
- enqueue_runnable_load_avg(cfs_rq, se);
- account_entity_enqueue(cfs_rq, se);
- if (flags & ENQUEUE_WAKEUP)
- place_entity(cfs_rq, se, 0);
- check_schedstat_required();
- update_stats_enqueue(cfs_rq, se, flags);
- check_spread(cfs_rq, se);
- if (!curr)
- __enqueue_entity(cfs_rq, se);
- se->on_rq = 1;
- if (cfs_rq->nr_running == 1) {
- list_add_leaf_cfs_rq(cfs_rq);
- check_enqueue_throttle(cfs_rq);
- }
- }
- static void __clear_buddies_last(struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq->last != se)
- break;
- cfs_rq->last = NULL;
- }
- }
- static void __clear_buddies_next(struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq->next != se)
- break;
- cfs_rq->next = NULL;
- }
- }
- static void __clear_buddies_skip(struct sched_entity *se)
- {
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq->skip != se)
- break;
- cfs_rq->skip = NULL;
- }
- }
- static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- if (cfs_rq->last == se)
- __clear_buddies_last(se);
- if (cfs_rq->next == se)
- __clear_buddies_next(se);
- if (cfs_rq->skip == se)
- __clear_buddies_skip(se);
- }
- static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
- static void
- dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- /*
- * When dequeuing a sched_entity, we must:
- * - Update loads to have both entity and cfs_rq synced with now.
- * - Substract its load from the cfs_rq->runnable_avg.
- * - Substract its previous weight from cfs_rq->load.weight.
- * - For group entity, update its weight to reflect the new share
- * of its group cfs_rq.
- */
- update_load_avg(cfs_rq, se, UPDATE_TG);
- dequeue_runnable_load_avg(cfs_rq, se);
- update_stats_dequeue(cfs_rq, se, flags);
- clear_buddies(cfs_rq, se);
- if (se != cfs_rq->curr)
- __dequeue_entity(cfs_rq, se);
- se->on_rq = 0;
- account_entity_dequeue(cfs_rq, se);
- /*
- * Normalize after update_curr(); which will also have moved
- * min_vruntime if @se is the one holding it back. But before doing
- * update_min_vruntime() again, which will discount @se's position and
- * can move min_vruntime forward still more.
- */
- if (!(flags & DEQUEUE_SLEEP))
- se->vruntime -= cfs_rq->min_vruntime;
- /* return excess runtime on last dequeue */
- return_cfs_rq_runtime(cfs_rq);
- update_cfs_group(se);
- /*
- * Now advance min_vruntime if @se was the entity holding it back,
- * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
- * put back on, and if we advance min_vruntime, we'll be placed back
- * further than we started -- ie. we'll be penalized.
- */
- if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
- update_min_vruntime(cfs_rq);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void
- check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- unsigned long ideal_runtime, delta_exec;
- struct sched_entity *se;
- s64 delta;
- ideal_runtime = sched_slice(cfs_rq, curr);
- delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
- if (delta_exec > ideal_runtime) {
- resched_curr(rq_of(cfs_rq));
- /*
- * The current task ran long enough, ensure it doesn't get
- * re-elected due to buddy favours.
- */
- clear_buddies(cfs_rq, curr);
- return;
- }
- /*
- * Ensure that a task that missed wakeup preemption by a
- * narrow margin doesn't have to wait for a full slice.
- * This also mitigates buddy induced latencies under load.
- */
- if (delta_exec < sysctl_sched_min_granularity)
- return;
- se = __pick_first_entity(cfs_rq);
- delta = curr->vruntime - se->vruntime;
- if (delta < 0)
- return;
- if (delta > ideal_runtime)
- resched_curr(rq_of(cfs_rq));
- }
- static void
- set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
- {
- /* 'current' is not kept within the tree. */
- if (se->on_rq) {
- /*
- * Any task has to be enqueued before it get to execute on
- * a CPU. So account for the time it spent waiting on the
- * runqueue.
- */
- update_stats_wait_end(cfs_rq, se);
- __dequeue_entity(cfs_rq, se);
- update_load_avg(cfs_rq, se, UPDATE_TG);
- }
- update_stats_curr_start(cfs_rq, se);
- cfs_rq->curr = se;
- /*
- * Track our maximum slice length, if the CPU's load is at
- * least twice that of our own weight (i.e. dont track it
- * when there are only lesser-weight tasks around):
- */
- if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
- schedstat_set(se->statistics.slice_max,
- max((u64)schedstat_val(se->statistics.slice_max),
- se->sum_exec_runtime - se->prev_sum_exec_runtime));
- }
- se->prev_sum_exec_runtime = se->sum_exec_runtime;
- }
- static int
- wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
- /*
- * Pick the next process, keeping these things in mind, in this order:
- * 1) keep things fair between processes/task groups
- * 2) pick the "next" process, since someone really wants that to run
- * 3) pick the "last" process, for cache locality
- * 4) do not run the "skip" process, if something else is available
- */
- static struct sched_entity *
- pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
- {
- struct sched_entity *left = __pick_first_entity(cfs_rq);
- struct sched_entity *se;
- /*
- * If curr is set we have to see if its left of the leftmost entity
- * still in the tree, provided there was anything in the tree at all.
- */
- if (!left || (curr && entity_before(curr, left)))
- left = curr;
- se = left; /* ideally we run the leftmost entity */
- /*
- * Avoid running the skip buddy, if running something else can
- * be done without getting too unfair.
- */
- if (cfs_rq->skip == se) {
- struct sched_entity *second;
- if (se == curr) {
- second = __pick_first_entity(cfs_rq);
- } else {
- second = __pick_next_entity(se);
- if (!second || (curr && entity_before(curr, second)))
- second = curr;
- }
- if (second && wakeup_preempt_entity(second, left) < 1)
- se = second;
- }
- /*
- * Prefer last buddy, try to return the CPU to a preempted task.
- */
- if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
- se = cfs_rq->last;
- /*
- * Someone really wants this to run. If it's not unfair, run it.
- */
- if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
- se = cfs_rq->next;
- clear_buddies(cfs_rq, se);
- return se;
- }
- static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
- static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
- {
- /*
- * If still on the runqueue then deactivate_task()
- * was not called and update_curr() has to be done:
- */
- if (prev->on_rq)
- update_curr(cfs_rq);
- /* throttle cfs_rqs exceeding runtime */
- check_cfs_rq_runtime(cfs_rq);
- check_spread(cfs_rq, prev);
- if (prev->on_rq) {
- update_stats_wait_start(cfs_rq, prev);
- /* Put 'current' back into the tree. */
- __enqueue_entity(cfs_rq, prev);
- /* in !on_rq case, update occurred at dequeue */
- update_load_avg(cfs_rq, prev, 0);
- }
- cfs_rq->curr = NULL;
- }
- static void
- entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
- {
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- /*
- * Ensure that runnable average is periodically updated.
- */
- update_load_avg(cfs_rq, curr, UPDATE_TG);
- update_cfs_group(curr);
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * queued ticks are scheduled to match the slice, so don't bother
- * validating it and just reschedule.
- */
- if (queued) {
- resched_curr(rq_of(cfs_rq));
- return;
- }
- /*
- * don't let the period tick interfere with the hrtick preemption
- */
- if (!sched_feat(DOUBLE_TICK) &&
- hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
- return;
- #endif
- if (cfs_rq->nr_running > 1)
- check_preempt_tick(cfs_rq, curr);
- }
- /**************************************************
- * CFS bandwidth control machinery
- */
- #ifdef CONFIG_CFS_BANDWIDTH
- #ifdef CONFIG_JUMP_LABEL
- static struct static_key __cfs_bandwidth_used;
- static inline bool cfs_bandwidth_used(void)
- {
- return static_key_false(&__cfs_bandwidth_used);
- }
- void cfs_bandwidth_usage_inc(void)
- {
- static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
- }
- void cfs_bandwidth_usage_dec(void)
- {
- static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
- }
- #else /* CONFIG_JUMP_LABEL */
- static bool cfs_bandwidth_used(void)
- {
- return true;
- }
- void cfs_bandwidth_usage_inc(void) {}
- void cfs_bandwidth_usage_dec(void) {}
- #endif /* CONFIG_JUMP_LABEL */
- /*
- * default period for cfs group bandwidth.
- * default: 0.1s, units: nanoseconds
- */
- static inline u64 default_cfs_period(void)
- {
- return 100000000ULL;
- }
- static inline u64 sched_cfs_bandwidth_slice(void)
- {
- return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
- }
- /*
- * Replenish runtime according to assigned quota. We use sched_clock_cpu
- * directly instead of rq->clock to avoid adding additional synchronization
- * around rq->lock.
- *
- * requires cfs_b->lock
- */
- void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
- {
- if (cfs_b->quota != RUNTIME_INF)
- cfs_b->runtime = cfs_b->quota;
- }
- static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
- {
- return &tg->cfs_bandwidth;
- }
- /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
- static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
- {
- if (unlikely(cfs_rq->throttle_count))
- return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
- return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
- }
- /* returns 0 on failure to allocate runtime */
- static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- struct task_group *tg = cfs_rq->tg;
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
- u64 amount = 0, min_amount;
- /* note: this is a positive sum as runtime_remaining <= 0 */
- min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
- raw_spin_lock(&cfs_b->lock);
- if (cfs_b->quota == RUNTIME_INF)
- amount = min_amount;
- else {
- start_cfs_bandwidth(cfs_b);
- if (cfs_b->runtime > 0) {
- amount = min(cfs_b->runtime, min_amount);
- cfs_b->runtime -= amount;
- cfs_b->idle = 0;
- }
- }
- raw_spin_unlock(&cfs_b->lock);
- cfs_rq->runtime_remaining += amount;
- return cfs_rq->runtime_remaining > 0;
- }
- static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
- {
- /* dock delta_exec before expiring quota (as it could span periods) */
- cfs_rq->runtime_remaining -= delta_exec;
- if (likely(cfs_rq->runtime_remaining > 0))
- return;
- if (cfs_rq->throttled)
- return;
- /*
- * if we're unable to extend our runtime we resched so that the active
- * hierarchy can be throttled
- */
- if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
- resched_curr(rq_of(cfs_rq));
- }
- static __always_inline
- void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
- {
- if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
- return;
- __account_cfs_rq_runtime(cfs_rq, delta_exec);
- }
- static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
- {
- return cfs_bandwidth_used() && cfs_rq->throttled;
- }
- /* check whether cfs_rq, or any parent, is throttled */
- static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
- {
- return cfs_bandwidth_used() && cfs_rq->throttle_count;
- }
- /*
- * Ensure that neither of the group entities corresponding to src_cpu or
- * dest_cpu are members of a throttled hierarchy when performing group
- * load-balance operations.
- */
- static inline int throttled_lb_pair(struct task_group *tg,
- int src_cpu, int dest_cpu)
- {
- struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
- src_cfs_rq = tg->cfs_rq[src_cpu];
- dest_cfs_rq = tg->cfs_rq[dest_cpu];
- return throttled_hierarchy(src_cfs_rq) ||
- throttled_hierarchy(dest_cfs_rq);
- }
- static int tg_unthrottle_up(struct task_group *tg, void *data)
- {
- struct rq *rq = data;
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- cfs_rq->throttle_count--;
- if (!cfs_rq->throttle_count) {
- /* adjust cfs_rq_clock_task() */
- cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
- cfs_rq->throttled_clock_task;
- /* Add cfs_rq with already running entity in the list */
- if (cfs_rq->nr_running >= 1)
- list_add_leaf_cfs_rq(cfs_rq);
- }
- return 0;
- }
- static int tg_throttle_down(struct task_group *tg, void *data)
- {
- struct rq *rq = data;
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- /* group is entering throttled state, stop time */
- if (!cfs_rq->throttle_count) {
- cfs_rq->throttled_clock_task = rq_clock_task(rq);
- list_del_leaf_cfs_rq(cfs_rq);
- }
- cfs_rq->throttle_count++;
- return 0;
- }
- static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- long task_delta, dequeue = 1;
- bool empty;
- se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
- /* freeze hierarchy runnable averages while throttled */
- rcu_read_lock();
- walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
- rcu_read_unlock();
- task_delta = cfs_rq->h_nr_running;
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- /* throttled entity or throttle-on-deactivate */
- if (!se->on_rq)
- break;
- if (dequeue)
- dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
- qcfs_rq->h_nr_running -= task_delta;
- if (qcfs_rq->load.weight)
- dequeue = 0;
- }
- if (!se)
- sub_nr_running(rq, task_delta);
- cfs_rq->throttled = 1;
- cfs_rq->throttled_clock = rq_clock(rq);
- raw_spin_lock(&cfs_b->lock);
- empty = list_empty(&cfs_b->throttled_cfs_rq);
- /*
- * Add to the _head_ of the list, so that an already-started
- * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
- * not running add to the tail so that later runqueues don't get starved.
- */
- if (cfs_b->distribute_running)
- list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
- else
- list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
- /*
- * If we're the first throttled task, make sure the bandwidth
- * timer is running.
- */
- if (empty)
- start_cfs_bandwidth(cfs_b);
- raw_spin_unlock(&cfs_b->lock);
- }
- void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- int enqueue = 1;
- long task_delta;
- se = cfs_rq->tg->se[cpu_of(rq)];
- cfs_rq->throttled = 0;
- update_rq_clock(rq);
- raw_spin_lock(&cfs_b->lock);
- cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
- list_del_rcu(&cfs_rq->throttled_list);
- raw_spin_unlock(&cfs_b->lock);
- /* update hierarchical throttle state */
- walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
- if (!cfs_rq->load.weight)
- return;
- task_delta = cfs_rq->h_nr_running;
- for_each_sched_entity(se) {
- if (se->on_rq)
- enqueue = 0;
- cfs_rq = cfs_rq_of(se);
- if (enqueue)
- enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
- cfs_rq->h_nr_running += task_delta;
- if (cfs_rq_throttled(cfs_rq))
- break;
- }
- assert_list_leaf_cfs_rq(rq);
- if (!se)
- add_nr_running(rq, task_delta);
- /* Determine whether we need to wake up potentially idle CPU: */
- if (rq->curr == rq->idle && rq->cfs.nr_running)
- resched_curr(rq);
- }
- static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
- {
- struct cfs_rq *cfs_rq;
- u64 runtime;
- u64 starting_runtime = remaining;
- rcu_read_lock();
- list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
- throttled_list) {
- struct rq *rq = rq_of(cfs_rq);
- struct rq_flags rf;
- rq_lock(rq, &rf);
- if (!cfs_rq_throttled(cfs_rq))
- goto next;
- /* By the above check, this should never be true */
- SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
- runtime = -cfs_rq->runtime_remaining + 1;
- if (runtime > remaining)
- runtime = remaining;
- remaining -= runtime;
- cfs_rq->runtime_remaining += runtime;
- /* we check whether we're throttled above */
- if (cfs_rq->runtime_remaining > 0)
- unthrottle_cfs_rq(cfs_rq);
- next:
- rq_unlock(rq, &rf);
- if (!remaining)
- break;
- }
- rcu_read_unlock();
- return starting_runtime - remaining;
- }
- /*
- * Responsible for refilling a task_group's bandwidth and unthrottling its
- * cfs_rqs as appropriate. If there has been no activity within the last
- * period the timer is deactivated until scheduling resumes; cfs_b->idle is
- * used to track this state.
- */
- static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
- {
- u64 runtime;
- int throttled;
- /* no need to continue the timer with no bandwidth constraint */
- if (cfs_b->quota == RUNTIME_INF)
- goto out_deactivate;
- throttled = !list_empty(&cfs_b->throttled_cfs_rq);
- cfs_b->nr_periods += overrun;
- /*
- * idle depends on !throttled (for the case of a large deficit), and if
- * we're going inactive then everything else can be deferred
- */
- if (cfs_b->idle && !throttled)
- goto out_deactivate;
- __refill_cfs_bandwidth_runtime(cfs_b);
- if (!throttled) {
- /* mark as potentially idle for the upcoming period */
- cfs_b->idle = 1;
- return 0;
- }
- /* account preceding periods in which throttling occurred */
- cfs_b->nr_throttled += overrun;
- /*
- * This check is repeated as we are holding onto the new bandwidth while
- * we unthrottle. This can potentially race with an unthrottled group
- * trying to acquire new bandwidth from the global pool. This can result
- * in us over-using our runtime if it is all used during this loop, but
- * only by limited amounts in that extreme case.
- */
- while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
- runtime = cfs_b->runtime;
- cfs_b->distribute_running = 1;
- raw_spin_unlock(&cfs_b->lock);
- /* we can't nest cfs_b->lock while distributing bandwidth */
- runtime = distribute_cfs_runtime(cfs_b, runtime);
- raw_spin_lock(&cfs_b->lock);
- cfs_b->distribute_running = 0;
- throttled = !list_empty(&cfs_b->throttled_cfs_rq);
- cfs_b->runtime -= min(runtime, cfs_b->runtime);
- }
- /*
- * While we are ensured activity in the period following an
- * unthrottle, this also covers the case in which the new bandwidth is
- * insufficient to cover the existing bandwidth deficit. (Forcing the
- * timer to remain active while there are any throttled entities.)
- */
- cfs_b->idle = 0;
- return 0;
- out_deactivate:
- return 1;
- }
- /* a cfs_rq won't donate quota below this amount */
- static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
- /* minimum remaining period time to redistribute slack quota */
- static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
- /* how long we wait to gather additional slack before distributing */
- static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
- /*
- * Are we near the end of the current quota period?
- *
- * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
- * hrtimer base being cleared by hrtimer_start. In the case of
- * migrate_hrtimers, base is never cleared, so we are fine.
- */
- static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
- {
- struct hrtimer *refresh_timer = &cfs_b->period_timer;
- u64 remaining;
- /* if the call-back is running a quota refresh is already occurring */
- if (hrtimer_callback_running(refresh_timer))
- return 1;
- /* is a quota refresh about to occur? */
- remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
- if (remaining < min_expire)
- return 1;
- return 0;
- }
- static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
- /* if there's a quota refresh soon don't bother with slack */
- if (runtime_refresh_within(cfs_b, min_left))
- return;
- hrtimer_start(&cfs_b->slack_timer,
- ns_to_ktime(cfs_bandwidth_slack_period),
- HRTIMER_MODE_REL);
- }
- /* we know any runtime found here is valid as update_curr() precedes return */
- static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
- if (slack_runtime <= 0)
- return;
- raw_spin_lock(&cfs_b->lock);
- if (cfs_b->quota != RUNTIME_INF) {
- cfs_b->runtime += slack_runtime;
- /* we are under rq->lock, defer unthrottling using a timer */
- if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
- !list_empty(&cfs_b->throttled_cfs_rq))
- start_cfs_slack_bandwidth(cfs_b);
- }
- raw_spin_unlock(&cfs_b->lock);
- /* even if it's not valid for return we don't want to try again */
- cfs_rq->runtime_remaining -= slack_runtime;
- }
- static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- if (!cfs_bandwidth_used())
- return;
- if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
- return;
- __return_cfs_rq_runtime(cfs_rq);
- }
- /*
- * This is done with a timer (instead of inline with bandwidth return) since
- * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
- */
- static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
- {
- u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
- /* confirm we're still not at a refresh boundary */
- raw_spin_lock(&cfs_b->lock);
- if (cfs_b->distribute_running) {
- raw_spin_unlock(&cfs_b->lock);
- return;
- }
- if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
- raw_spin_unlock(&cfs_b->lock);
- return;
- }
- if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
- runtime = cfs_b->runtime;
- if (runtime)
- cfs_b->distribute_running = 1;
- raw_spin_unlock(&cfs_b->lock);
- if (!runtime)
- return;
- runtime = distribute_cfs_runtime(cfs_b, runtime);
- raw_spin_lock(&cfs_b->lock);
- cfs_b->runtime -= min(runtime, cfs_b->runtime);
- cfs_b->distribute_running = 0;
- raw_spin_unlock(&cfs_b->lock);
- }
- /*
- * When a group wakes up we want to make sure that its quota is not already
- * expired/exceeded, otherwise it may be allowed to steal additional ticks of
- * runtime as update_curr() throttling can not not trigger until it's on-rq.
- */
- static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
- {
- if (!cfs_bandwidth_used())
- return;
- /* an active group must be handled by the update_curr()->put() path */
- if (!cfs_rq->runtime_enabled || cfs_rq->curr)
- return;
- /* ensure the group is not already throttled */
- if (cfs_rq_throttled(cfs_rq))
- return;
- /* update runtime allocation */
- account_cfs_rq_runtime(cfs_rq, 0);
- if (cfs_rq->runtime_remaining <= 0)
- throttle_cfs_rq(cfs_rq);
- }
- static void sync_throttle(struct task_group *tg, int cpu)
- {
- struct cfs_rq *pcfs_rq, *cfs_rq;
- if (!cfs_bandwidth_used())
- return;
- if (!tg->parent)
- return;
- cfs_rq = tg->cfs_rq[cpu];
- pcfs_rq = tg->parent->cfs_rq[cpu];
- cfs_rq->throttle_count = pcfs_rq->throttle_count;
- cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
- }
- /* conditionally throttle active cfs_rq's from put_prev_entity() */
- static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- if (!cfs_bandwidth_used())
- return false;
- if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
- return false;
- /*
- * it's possible for a throttled entity to be forced into a running
- * state (e.g. set_curr_task), in this case we're finished.
- */
- if (cfs_rq_throttled(cfs_rq))
- return true;
- throttle_cfs_rq(cfs_rq);
- return true;
- }
- static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
- {
- struct cfs_bandwidth *cfs_b =
- container_of(timer, struct cfs_bandwidth, slack_timer);
- do_sched_cfs_slack_timer(cfs_b);
- return HRTIMER_NORESTART;
- }
- extern const u64 max_cfs_quota_period;
- static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
- {
- struct cfs_bandwidth *cfs_b =
- container_of(timer, struct cfs_bandwidth, period_timer);
- int overrun;
- int idle = 0;
- int count = 0;
- raw_spin_lock(&cfs_b->lock);
- for (;;) {
- overrun = hrtimer_forward_now(timer, cfs_b->period);
- if (!overrun)
- break;
- if (++count > 3) {
- u64 new, old = ktime_to_ns(cfs_b->period);
- /*
- * Grow period by a factor of 2 to avoid losing precision.
- * Precision loss in the quota/period ratio can cause __cfs_schedulable
- * to fail.
- */
- new = old * 2;
- if (new < max_cfs_quota_period) {
- cfs_b->period = ns_to_ktime(new);
- cfs_b->quota *= 2;
- pr_warn_ratelimited(
- "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
- smp_processor_id(),
- div_u64(new, NSEC_PER_USEC),
- div_u64(cfs_b->quota, NSEC_PER_USEC));
- } else {
- pr_warn_ratelimited(
- "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
- smp_processor_id(),
- div_u64(old, NSEC_PER_USEC),
- div_u64(cfs_b->quota, NSEC_PER_USEC));
- }
- /* reset count so we don't come right back in here */
- count = 0;
- }
- idle = do_sched_cfs_period_timer(cfs_b, overrun);
- }
- if (idle)
- cfs_b->period_active = 0;
- raw_spin_unlock(&cfs_b->lock);
- return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
- }
- void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- raw_spin_lock_init(&cfs_b->lock);
- cfs_b->runtime = 0;
- cfs_b->quota = RUNTIME_INF;
- cfs_b->period = ns_to_ktime(default_cfs_period());
- INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
- hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
- cfs_b->period_timer.function = sched_cfs_period_timer;
- hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- cfs_b->slack_timer.function = sched_cfs_slack_timer;
- cfs_b->distribute_running = 0;
- }
- static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
- {
- cfs_rq->runtime_enabled = 0;
- INIT_LIST_HEAD(&cfs_rq->throttled_list);
- }
- void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- lockdep_assert_held(&cfs_b->lock);
- if (cfs_b->period_active)
- return;
- cfs_b->period_active = 1;
- hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
- hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
- }
- static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
- {
- /* init_cfs_bandwidth() was not called */
- if (!cfs_b->throttled_cfs_rq.next)
- return;
- hrtimer_cancel(&cfs_b->period_timer);
- hrtimer_cancel(&cfs_b->slack_timer);
- }
- /*
- * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
- *
- * The race is harmless, since modifying bandwidth settings of unhooked group
- * bits doesn't do much.
- */
- /* cpu online calback */
- static void __maybe_unused update_runtime_enabled(struct rq *rq)
- {
- struct task_group *tg;
- lockdep_assert_held(&rq->lock);
- rcu_read_lock();
- list_for_each_entry_rcu(tg, &task_groups, list) {
- struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- raw_spin_lock(&cfs_b->lock);
- cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
- raw_spin_unlock(&cfs_b->lock);
- }
- rcu_read_unlock();
- }
- /* cpu offline callback */
- static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
- {
- struct task_group *tg;
- lockdep_assert_held(&rq->lock);
- rcu_read_lock();
- list_for_each_entry_rcu(tg, &task_groups, list) {
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- if (!cfs_rq->runtime_enabled)
- continue;
- /*
- * clock_task is not advancing so we just need to make sure
- * there's some valid quota amount
- */
- cfs_rq->runtime_remaining = 1;
- /*
- * Offline rq is schedulable till CPU is completely disabled
- * in take_cpu_down(), so we prevent new cfs throttling here.
- */
- cfs_rq->runtime_enabled = 0;
- if (cfs_rq_throttled(cfs_rq))
- unthrottle_cfs_rq(cfs_rq);
- }
- rcu_read_unlock();
- }
- #else /* CONFIG_CFS_BANDWIDTH */
- static inline bool cfs_bandwidth_used(void)
- {
- return false;
- }
- static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
- {
- return rq_clock_task(rq_of(cfs_rq));
- }
- static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
- static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
- static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
- static inline void sync_throttle(struct task_group *tg, int cpu) {}
- static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
- static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
- {
- return 0;
- }
- static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
- {
- return 0;
- }
- static inline int throttled_lb_pair(struct task_group *tg,
- int src_cpu, int dest_cpu)
- {
- return 0;
- }
- void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
- #endif
- static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
- {
- return NULL;
- }
- static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
- static inline void update_runtime_enabled(struct rq *rq) {}
- static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
- #endif /* CONFIG_CFS_BANDWIDTH */
- /**************************************************
- * CFS operations on tasks:
- */
- #ifdef CONFIG_SCHED_HRTICK
- static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- SCHED_WARN_ON(task_rq(p) != rq);
- if (rq->cfs.h_nr_running > 1) {
- u64 slice = sched_slice(cfs_rq, se);
- u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
- s64 delta = slice - ran;
- if (delta < 0) {
- if (rq->curr == p)
- resched_curr(rq);
- return;
- }
- hrtick_start(rq, delta);
- }
- }
- /*
- * called from enqueue/dequeue and updates the hrtick when the
- * current task is from our class and nr_running is low enough
- * to matter.
- */
- static void hrtick_update(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
- return;
- if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
- hrtick_start_fair(rq, curr);
- }
- #else /* !CONFIG_SCHED_HRTICK */
- static inline void
- hrtick_start_fair(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void hrtick_update(struct rq *rq)
- {
- }
- #endif
- /*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
- static void
- enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- /*
- * The code below (indirectly) updates schedutil which looks at
- * the cfs_rq utilization to select a frequency.
- * Let's add the task's estimated utilization to the cfs_rq's
- * estimated utilization, before we update schedutil.
- */
- util_est_enqueue(&rq->cfs, p);
- /*
- * If in_iowait is set, the code below may not trigger any cpufreq
- * utilization updates, so do it here explicitly with the IOWAIT flag
- * passed.
- */
- if (p->in_iowait)
- cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
- for_each_sched_entity(se) {
- if (se->on_rq)
- break;
- cfs_rq = cfs_rq_of(se);
- enqueue_entity(cfs_rq, se, flags);
- /*
- * end evaluation on encountering a throttled cfs_rq
- *
- * note: in the case of encountering a throttled cfs_rq we will
- * post the final h_nr_running increment below.
- */
- if (cfs_rq_throttled(cfs_rq))
- break;
- cfs_rq->h_nr_running++;
- flags = ENQUEUE_WAKEUP;
- }
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- cfs_rq->h_nr_running++;
- if (cfs_rq_throttled(cfs_rq))
- break;
- update_load_avg(cfs_rq, se, UPDATE_TG);
- update_cfs_group(se);
- }
- if (!se)
- add_nr_running(rq, 1);
- if (cfs_bandwidth_used()) {
- /*
- * When bandwidth control is enabled; the cfs_rq_throttled()
- * breaks in the above iteration can result in incomplete
- * leaf list maintenance, resulting in triggering the assertion
- * below.
- */
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- if (list_add_leaf_cfs_rq(cfs_rq))
- break;
- }
- }
- assert_list_leaf_cfs_rq(rq);
- hrtick_update(rq);
- }
- static void set_next_buddy(struct sched_entity *se);
- /*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
- */
- static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- int task_sleep = flags & DEQUEUE_SLEEP;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- dequeue_entity(cfs_rq, se, flags);
- /*
- * end evaluation on encountering a throttled cfs_rq
- *
- * note: in the case of encountering a throttled cfs_rq we will
- * post the final h_nr_running decrement below.
- */
- if (cfs_rq_throttled(cfs_rq))
- break;
- cfs_rq->h_nr_running--;
- /* Don't dequeue parent if it has other entities besides us */
- if (cfs_rq->load.weight) {
- /* Avoid re-evaluating load for this entity: */
- se = parent_entity(se);
- /*
- * Bias pick_next to pick a task from this cfs_rq, as
- * p is sleeping when it is within its sched_slice.
- */
- if (task_sleep && se && !throttled_hierarchy(cfs_rq))
- set_next_buddy(se);
- break;
- }
- flags |= DEQUEUE_SLEEP;
- }
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- cfs_rq->h_nr_running--;
- if (cfs_rq_throttled(cfs_rq))
- break;
- update_load_avg(cfs_rq, se, UPDATE_TG);
- update_cfs_group(se);
- }
- if (!se)
- sub_nr_running(rq, 1);
- util_est_dequeue(&rq->cfs, p, task_sleep);
- hrtick_update(rq);
- }
- #ifdef CONFIG_SMP
- /* Working cpumask for: load_balance, load_balance_newidle. */
- DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
- DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * per rq 'load' arrray crap; XXX kill this.
- */
- /*
- * The exact cpuload calculated at every tick would be:
- *
- * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
- *
- * If a CPU misses updates for n ticks (as it was idle) and update gets
- * called on the n+1-th tick when CPU may be busy, then we have:
- *
- * load_n = (1 - 1/2^i)^n * load_0
- * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
- *
- * decay_load_missed() below does efficient calculation of
- *
- * load' = (1 - 1/2^i)^n * load
- *
- * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
- * This allows us to precompute the above in said factors, thereby allowing the
- * reduction of an arbitrary n in O(log_2 n) steps. (See also
- * fixed_power_int())
- *
- * The calculation is approximated on a 128 point scale.
- */
- #define DEGRADE_SHIFT 7
- static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
- static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
- { 0, 0, 0, 0, 0, 0, 0, 0 },
- { 64, 32, 8, 0, 0, 0, 0, 0 },
- { 96, 72, 40, 12, 1, 0, 0, 0 },
- { 112, 98, 75, 43, 15, 1, 0, 0 },
- { 120, 112, 98, 76, 45, 16, 2, 0 }
- };
- /*
- * Update cpu_load for any missed ticks, due to tickless idle. The backlog
- * would be when CPU is idle and so we just decay the old load without
- * adding any new load.
- */
- static unsigned long
- decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
- {
- int j = 0;
- if (!missed_updates)
- return load;
- if (missed_updates >= degrade_zero_ticks[idx])
- return 0;
- if (idx == 1)
- return load >> missed_updates;
- while (missed_updates) {
- if (missed_updates % 2)
- load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
- missed_updates >>= 1;
- j++;
- }
- return load;
- }
- static struct {
- cpumask_var_t idle_cpus_mask;
- atomic_t nr_cpus;
- int has_blocked; /* Idle CPUS has blocked load */
- unsigned long next_balance; /* in jiffy units */
- unsigned long next_blocked; /* Next update of blocked load in jiffies */
- } nohz ____cacheline_aligned;
- #endif /* CONFIG_NO_HZ_COMMON */
- /**
- * __cpu_load_update - update the rq->cpu_load[] statistics
- * @this_rq: The rq to update statistics for
- * @this_load: The current load
- * @pending_updates: The number of missed updates
- *
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC).
- *
- * This function computes a decaying average:
- *
- * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
- *
- * Because of NOHZ it might not get called on every tick which gives need for
- * the @pending_updates argument.
- *
- * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
- * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
- * = A * (A * load[i]_n-2 + B) + B
- * = A * (A * (A * load[i]_n-3 + B) + B) + B
- * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
- * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
- * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
- * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
- *
- * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
- * any change in load would have resulted in the tick being turned back on.
- *
- * For regular NOHZ, this reduces to:
- *
- * load[i]_n = (1 - 1/2^i)^n * load[i]_0
- *
- * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
- * term.
- */
- static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
- unsigned long pending_updates)
- {
- unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
- int i, scale;
- this_rq->nr_load_updates++;
- /* Update our load: */
- this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
- for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
- unsigned long old_load, new_load;
- /* scale is effectively 1 << i now, and >> i divides by scale */
- old_load = this_rq->cpu_load[i];
- #ifdef CONFIG_NO_HZ_COMMON
- old_load = decay_load_missed(old_load, pending_updates - 1, i);
- if (tickless_load) {
- old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
- /*
- * old_load can never be a negative value because a
- * decayed tickless_load cannot be greater than the
- * original tickless_load.
- */
- old_load += tickless_load;
- }
- #endif
- new_load = this_load;
- /*
- * Round up the averaging division if load is increasing. This
- * prevents us from getting stuck on 9 if the load is 10, for
- * example.
- */
- if (new_load > old_load)
- new_load += scale - 1;
- this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
- }
- }
- /* Used instead of source_load when we know the type == 0 */
- static unsigned long weighted_cpuload(struct rq *rq)
- {
- return cfs_rq_runnable_load_avg(&rq->cfs);
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * There is no sane way to deal with nohz on smp when using jiffies because the
- * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
- * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
- *
- * Therefore we need to avoid the delta approach from the regular tick when
- * possible since that would seriously skew the load calculation. This is why we
- * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
- * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
- * loop exit, nohz_idle_balance, nohz full exit...)
- *
- * This means we might still be one tick off for nohz periods.
- */
- static void cpu_load_update_nohz(struct rq *this_rq,
- unsigned long curr_jiffies,
- unsigned long load)
- {
- unsigned long pending_updates;
- pending_updates = curr_jiffies - this_rq->last_load_update_tick;
- if (pending_updates) {
- this_rq->last_load_update_tick = curr_jiffies;
- /*
- * In the regular NOHZ case, we were idle, this means load 0.
- * In the NOHZ_FULL case, we were non-idle, we should consider
- * its weighted load.
- */
- cpu_load_update(this_rq, load, pending_updates);
- }
- }
- /*
- * Called from nohz_idle_balance() to update the load ratings before doing the
- * idle balance.
- */
- static void cpu_load_update_idle(struct rq *this_rq)
- {
- /*
- * bail if there's load or we're actually up-to-date.
- */
- if (weighted_cpuload(this_rq))
- return;
- cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
- }
- /*
- * Record CPU load on nohz entry so we know the tickless load to account
- * on nohz exit. cpu_load[0] happens then to be updated more frequently
- * than other cpu_load[idx] but it should be fine as cpu_load readers
- * shouldn't rely into synchronized cpu_load[*] updates.
- */
- void cpu_load_update_nohz_start(void)
- {
- struct rq *this_rq = this_rq();
- /*
- * This is all lockless but should be fine. If weighted_cpuload changes
- * concurrently we'll exit nohz. And cpu_load write can race with
- * cpu_load_update_idle() but both updater would be writing the same.
- */
- this_rq->cpu_load[0] = weighted_cpuload(this_rq);
- }
- /*
- * Account the tickless load in the end of a nohz frame.
- */
- void cpu_load_update_nohz_stop(void)
- {
- unsigned long curr_jiffies = READ_ONCE(jiffies);
- struct rq *this_rq = this_rq();
- unsigned long load;
- struct rq_flags rf;
- if (curr_jiffies == this_rq->last_load_update_tick)
- return;
- load = weighted_cpuload(this_rq);
- rq_lock(this_rq, &rf);
- update_rq_clock(this_rq);
- cpu_load_update_nohz(this_rq, curr_jiffies, load);
- rq_unlock(this_rq, &rf);
- }
- #else /* !CONFIG_NO_HZ_COMMON */
- static inline void cpu_load_update_nohz(struct rq *this_rq,
- unsigned long curr_jiffies,
- unsigned long load) { }
- #endif /* CONFIG_NO_HZ_COMMON */
- static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
- {
- #ifdef CONFIG_NO_HZ_COMMON
- /* See the mess around cpu_load_update_nohz(). */
- this_rq->last_load_update_tick = READ_ONCE(jiffies);
- #endif
- cpu_load_update(this_rq, load, 1);
- }
- /*
- * Called from scheduler_tick()
- */
- void cpu_load_update_active(struct rq *this_rq)
- {
- unsigned long load = weighted_cpuload(this_rq);
- if (tick_nohz_tick_stopped())
- cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
- else
- cpu_load_update_periodic(this_rq, load);
- }
- /*
- * Return a low guess at the load of a migration-source CPU weighted
- * according to the scheduling class and "nice" value.
- *
- * We want to under-estimate the load of migration sources, to
- * balance conservatively.
- */
- static unsigned long source_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long total = weighted_cpuload(rq);
- if (type == 0 || !sched_feat(LB_BIAS))
- return total;
- return min(rq->cpu_load[type-1], total);
- }
- /*
- * Return a high guess at the load of a migration-target CPU weighted
- * according to the scheduling class and "nice" value.
- */
- static unsigned long target_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long total = weighted_cpuload(rq);
- if (type == 0 || !sched_feat(LB_BIAS))
- return total;
- return max(rq->cpu_load[type-1], total);
- }
- static unsigned long capacity_of(int cpu)
- {
- return cpu_rq(cpu)->cpu_capacity;
- }
- static unsigned long capacity_orig_of(int cpu)
- {
- return cpu_rq(cpu)->cpu_capacity_orig;
- }
- static unsigned long cpu_avg_load_per_task(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
- unsigned long load_avg = weighted_cpuload(rq);
- if (nr_running)
- return load_avg / nr_running;
- return 0;
- }
- static void record_wakee(struct task_struct *p)
- {
- /*
- * Only decay a single time; tasks that have less then 1 wakeup per
- * jiffy will not have built up many flips.
- */
- if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
- current->wakee_flips >>= 1;
- current->wakee_flip_decay_ts = jiffies;
- }
- if (current->last_wakee != p) {
- current->last_wakee = p;
- current->wakee_flips++;
- }
- }
- /*
- * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
- *
- * A waker of many should wake a different task than the one last awakened
- * at a frequency roughly N times higher than one of its wakees.
- *
- * In order to determine whether we should let the load spread vs consolidating
- * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
- * partner, and a factor of lls_size higher frequency in the other.
- *
- * With both conditions met, we can be relatively sure that the relationship is
- * non-monogamous, with partner count exceeding socket size.
- *
- * Waker/wakee being client/server, worker/dispatcher, interrupt source or
- * whatever is irrelevant, spread criteria is apparent partner count exceeds
- * socket size.
- */
- static int wake_wide(struct task_struct *p)
- {
- unsigned int master = current->wakee_flips;
- unsigned int slave = p->wakee_flips;
- int factor = this_cpu_read(sd_llc_size);
- if (master < slave)
- swap(master, slave);
- if (slave < factor || master < slave * factor)
- return 0;
- return 1;
- }
- /*
- * The purpose of wake_affine() is to quickly determine on which CPU we can run
- * soonest. For the purpose of speed we only consider the waking and previous
- * CPU.
- *
- * wake_affine_idle() - only considers 'now', it check if the waking CPU is
- * cache-affine and is (or will be) idle.
- *
- * wake_affine_weight() - considers the weight to reflect the average
- * scheduling latency of the CPUs. This seems to work
- * for the overloaded case.
- */
- static int
- wake_affine_idle(int this_cpu, int prev_cpu, int sync)
- {
- /*
- * If this_cpu is idle, it implies the wakeup is from interrupt
- * context. Only allow the move if cache is shared. Otherwise an
- * interrupt intensive workload could force all tasks onto one
- * node depending on the IO topology or IRQ affinity settings.
- *
- * If the prev_cpu is idle and cache affine then avoid a migration.
- * There is no guarantee that the cache hot data from an interrupt
- * is more important than cache hot data on the prev_cpu and from
- * a cpufreq perspective, it's better to have higher utilisation
- * on one CPU.
- */
- if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
- return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
- if (sync && cpu_rq(this_cpu)->nr_running == 1)
- return this_cpu;
- return nr_cpumask_bits;
- }
- static int
- wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
- int this_cpu, int prev_cpu, int sync)
- {
- s64 this_eff_load, prev_eff_load;
- unsigned long task_load;
- this_eff_load = target_load(this_cpu, sd->wake_idx);
- if (sync) {
- unsigned long current_load = task_h_load(current);
- if (current_load > this_eff_load)
- return this_cpu;
- this_eff_load -= current_load;
- }
- task_load = task_h_load(p);
- this_eff_load += task_load;
- if (sched_feat(WA_BIAS))
- this_eff_load *= 100;
- this_eff_load *= capacity_of(prev_cpu);
- prev_eff_load = source_load(prev_cpu, sd->wake_idx);
- prev_eff_load -= task_load;
- if (sched_feat(WA_BIAS))
- prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
- prev_eff_load *= capacity_of(this_cpu);
- /*
- * If sync, adjust the weight of prev_eff_load such that if
- * prev_eff == this_eff that select_idle_sibling() will consider
- * stacking the wakee on top of the waker if no other CPU is
- * idle.
- */
- if (sync)
- prev_eff_load += 1;
- return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
- }
- static int wake_affine(struct sched_domain *sd, struct task_struct *p,
- int this_cpu, int prev_cpu, int sync)
- {
- int target = nr_cpumask_bits;
- if (sched_feat(WA_IDLE))
- target = wake_affine_idle(this_cpu, prev_cpu, sync);
- if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
- target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
- schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
- if (target == nr_cpumask_bits)
- return prev_cpu;
- schedstat_inc(sd->ttwu_move_affine);
- schedstat_inc(p->se.statistics.nr_wakeups_affine);
- return target;
- }
- static unsigned long cpu_util_without(int cpu, struct task_struct *p);
- static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
- {
- return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
- }
- /*
- * find_idlest_group finds and returns the least busy CPU group within the
- * domain.
- *
- * Assumes p is allowed on at least one CPU in sd.
- */
- static struct sched_group *
- find_idlest_group(struct sched_domain *sd, struct task_struct *p,
- int this_cpu, int sd_flag)
- {
- struct sched_group *idlest = NULL, *group = sd->groups;
- struct sched_group *most_spare_sg = NULL;
- unsigned long min_runnable_load = ULONG_MAX;
- unsigned long this_runnable_load = ULONG_MAX;
- unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
- unsigned long most_spare = 0, this_spare = 0;
- int load_idx = sd->forkexec_idx;
- int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
- unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
- (sd->imbalance_pct-100) / 100;
- if (sd_flag & SD_BALANCE_WAKE)
- load_idx = sd->wake_idx;
- do {
- unsigned long load, avg_load, runnable_load;
- unsigned long spare_cap, max_spare_cap;
- int local_group;
- int i;
- /* Skip over this group if it has no CPUs allowed */
- if (!cpumask_intersects(sched_group_span(group),
- &p->cpus_allowed))
- continue;
- local_group = cpumask_test_cpu(this_cpu,
- sched_group_span(group));
- /*
- * Tally up the load of all CPUs in the group and find
- * the group containing the CPU with most spare capacity.
- */
- avg_load = 0;
- runnable_load = 0;
- max_spare_cap = 0;
- for_each_cpu(i, sched_group_span(group)) {
- /* Bias balancing toward CPUs of our domain */
- if (local_group)
- load = source_load(i, load_idx);
- else
- load = target_load(i, load_idx);
- runnable_load += load;
- avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
- spare_cap = capacity_spare_without(i, p);
- if (spare_cap > max_spare_cap)
- max_spare_cap = spare_cap;
- }
- /* Adjust by relative CPU capacity of the group */
- avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
- group->sgc->capacity;
- runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
- group->sgc->capacity;
- if (local_group) {
- this_runnable_load = runnable_load;
- this_avg_load = avg_load;
- this_spare = max_spare_cap;
- } else {
- if (min_runnable_load > (runnable_load + imbalance)) {
- /*
- * The runnable load is significantly smaller
- * so we can pick this new CPU:
- */
- min_runnable_load = runnable_load;
- min_avg_load = avg_load;
- idlest = group;
- } else if ((runnable_load < (min_runnable_load + imbalance)) &&
- (100*min_avg_load > imbalance_scale*avg_load)) {
- /*
- * The runnable loads are close so take the
- * blocked load into account through avg_load:
- */
- min_avg_load = avg_load;
- idlest = group;
- }
- if (most_spare < max_spare_cap) {
- most_spare = max_spare_cap;
- most_spare_sg = group;
- }
- }
- } while (group = group->next, group != sd->groups);
- /*
- * The cross-over point between using spare capacity or least load
- * is too conservative for high utilization tasks on partially
- * utilized systems if we require spare_capacity > task_util(p),
- * so we allow for some task stuffing by using
- * spare_capacity > task_util(p)/2.
- *
- * Spare capacity can't be used for fork because the utilization has
- * not been set yet, we must first select a rq to compute the initial
- * utilization.
- */
- if (sd_flag & SD_BALANCE_FORK)
- goto skip_spare;
- if (this_spare > task_util(p) / 2 &&
- imbalance_scale*this_spare > 100*most_spare)
- return NULL;
- if (most_spare > task_util(p) / 2)
- return most_spare_sg;
- skip_spare:
- if (!idlest)
- return NULL;
- /*
- * When comparing groups across NUMA domains, it's possible for the
- * local domain to be very lightly loaded relative to the remote
- * domains but "imbalance" skews the comparison making remote CPUs
- * look much more favourable. When considering cross-domain, add
- * imbalance to the runnable load on the remote node and consider
- * staying local.
- */
- if ((sd->flags & SD_NUMA) &&
- min_runnable_load + imbalance >= this_runnable_load)
- return NULL;
- if (min_runnable_load > (this_runnable_load + imbalance))
- return NULL;
- if ((this_runnable_load < (min_runnable_load + imbalance)) &&
- (100*this_avg_load < imbalance_scale*min_avg_load))
- return NULL;
- return idlest;
- }
- /*
- * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
- */
- static int
- find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
- {
- unsigned long load, min_load = ULONG_MAX;
- unsigned int min_exit_latency = UINT_MAX;
- u64 latest_idle_timestamp = 0;
- int least_loaded_cpu = this_cpu;
- int shallowest_idle_cpu = -1;
- int i;
- /* Check if we have any choice: */
- if (group->group_weight == 1)
- return cpumask_first(sched_group_span(group));
- /* Traverse only the allowed CPUs */
- for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
- if (available_idle_cpu(i)) {
- struct rq *rq = cpu_rq(i);
- struct cpuidle_state *idle = idle_get_state(rq);
- if (idle && idle->exit_latency < min_exit_latency) {
- /*
- * We give priority to a CPU whose idle state
- * has the smallest exit latency irrespective
- * of any idle timestamp.
- */
- min_exit_latency = idle->exit_latency;
- latest_idle_timestamp = rq->idle_stamp;
- shallowest_idle_cpu = i;
- } else if ((!idle || idle->exit_latency == min_exit_latency) &&
- rq->idle_stamp > latest_idle_timestamp) {
- /*
- * If equal or no active idle state, then
- * the most recently idled CPU might have
- * a warmer cache.
- */
- latest_idle_timestamp = rq->idle_stamp;
- shallowest_idle_cpu = i;
- }
- } else if (shallowest_idle_cpu == -1) {
- load = weighted_cpuload(cpu_rq(i));
- if (load < min_load) {
- min_load = load;
- least_loaded_cpu = i;
- }
- }
- }
- return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
- }
- static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
- int cpu, int prev_cpu, int sd_flag)
- {
- int new_cpu = cpu;
- if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
- return prev_cpu;
- /*
- * We need task's util for capacity_spare_without, sync it up to
- * prev_cpu's last_update_time.
- */
- if (!(sd_flag & SD_BALANCE_FORK))
- sync_entity_load_avg(&p->se);
- while (sd) {
- struct sched_group *group;
- struct sched_domain *tmp;
- int weight;
- if (!(sd->flags & sd_flag)) {
- sd = sd->child;
- continue;
- }
- group = find_idlest_group(sd, p, cpu, sd_flag);
- if (!group) {
- sd = sd->child;
- continue;
- }
- new_cpu = find_idlest_group_cpu(group, p, cpu);
- if (new_cpu == cpu) {
- /* Now try balancing at a lower domain level of 'cpu': */
- sd = sd->child;
- continue;
- }
- /* Now try balancing at a lower domain level of 'new_cpu': */
- cpu = new_cpu;
- weight = sd->span_weight;
- sd = NULL;
- for_each_domain(cpu, tmp) {
- if (weight <= tmp->span_weight)
- break;
- if (tmp->flags & sd_flag)
- sd = tmp;
- }
- }
- return new_cpu;
- }
- #ifdef CONFIG_SCHED_SMT
- DEFINE_STATIC_KEY_FALSE(sched_smt_present);
- EXPORT_SYMBOL_GPL(sched_smt_present);
- static inline void set_idle_cores(int cpu, int val)
- {
- struct sched_domain_shared *sds;
- sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
- if (sds)
- WRITE_ONCE(sds->has_idle_cores, val);
- }
- static inline bool test_idle_cores(int cpu, bool def)
- {
- struct sched_domain_shared *sds;
- sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
- if (sds)
- return READ_ONCE(sds->has_idle_cores);
- return def;
- }
- /*
- * Scans the local SMT mask to see if the entire core is idle, and records this
- * information in sd_llc_shared->has_idle_cores.
- *
- * Since SMT siblings share all cache levels, inspecting this limited remote
- * state should be fairly cheap.
- */
- void __update_idle_core(struct rq *rq)
- {
- int core = cpu_of(rq);
- int cpu;
- rcu_read_lock();
- if (test_idle_cores(core, true))
- goto unlock;
- for_each_cpu(cpu, cpu_smt_mask(core)) {
- if (cpu == core)
- continue;
- if (!available_idle_cpu(cpu))
- goto unlock;
- }
- set_idle_cores(core, 1);
- unlock:
- rcu_read_unlock();
- }
- /*
- * Scan the entire LLC domain for idle cores; this dynamically switches off if
- * there are no idle cores left in the system; tracked through
- * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
- */
- static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
- {
- struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
- int core, cpu;
- if (!static_branch_likely(&sched_smt_present))
- return -1;
- if (!test_idle_cores(target, false))
- return -1;
- cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
- for_each_cpu_wrap(core, cpus, target) {
- bool idle = true;
- for_each_cpu(cpu, cpu_smt_mask(core)) {
- cpumask_clear_cpu(cpu, cpus);
- if (!available_idle_cpu(cpu))
- idle = false;
- }
- if (idle)
- return core;
- }
- /*
- * Failed to find an idle core; stop looking for one.
- */
- set_idle_cores(target, 0);
- return -1;
- }
- /*
- * Scan the local SMT mask for idle CPUs.
- */
- static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
- {
- int cpu;
- if (!static_branch_likely(&sched_smt_present))
- return -1;
- for_each_cpu(cpu, cpu_smt_mask(target)) {
- if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
- continue;
- if (available_idle_cpu(cpu))
- return cpu;
- }
- return -1;
- }
- #else /* CONFIG_SCHED_SMT */
- static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
- {
- return -1;
- }
- static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
- {
- return -1;
- }
- #endif /* CONFIG_SCHED_SMT */
- /*
- * Scan the LLC domain for idle CPUs; this is dynamically regulated by
- * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
- * average idle time for this rq (as found in rq->avg_idle).
- */
- static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
- {
- struct sched_domain *this_sd;
- u64 avg_cost, avg_idle;
- u64 time, cost;
- s64 delta;
- int cpu, nr = INT_MAX;
- this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
- if (!this_sd)
- return -1;
- /*
- * Due to large variance we need a large fuzz factor; hackbench in
- * particularly is sensitive here.
- */
- avg_idle = this_rq()->avg_idle / 512;
- avg_cost = this_sd->avg_scan_cost + 1;
- if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
- return -1;
- if (sched_feat(SIS_PROP)) {
- u64 span_avg = sd->span_weight * avg_idle;
- if (span_avg > 4*avg_cost)
- nr = div_u64(span_avg, avg_cost);
- else
- nr = 4;
- }
- time = local_clock();
- for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
- if (!--nr)
- return -1;
- if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
- continue;
- if (available_idle_cpu(cpu))
- break;
- }
- time = local_clock() - time;
- cost = this_sd->avg_scan_cost;
- delta = (s64)(time - cost) / 8;
- this_sd->avg_scan_cost += delta;
- return cpu;
- }
- /*
- * Try and locate an idle core/thread in the LLC cache domain.
- */
- static int select_idle_sibling(struct task_struct *p, int prev, int target)
- {
- struct sched_domain *sd;
- int i, recent_used_cpu;
- if (available_idle_cpu(target))
- return target;
- /*
- * If the previous CPU is cache affine and idle, don't be stupid:
- */
- if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
- return prev;
- /* Check a recently used CPU as a potential idle candidate: */
- recent_used_cpu = p->recent_used_cpu;
- if (recent_used_cpu != prev &&
- recent_used_cpu != target &&
- cpus_share_cache(recent_used_cpu, target) &&
- available_idle_cpu(recent_used_cpu) &&
- cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
- /*
- * Replace recent_used_cpu with prev as it is a potential
- * candidate for the next wake:
- */
- p->recent_used_cpu = prev;
- return recent_used_cpu;
- }
- sd = rcu_dereference(per_cpu(sd_llc, target));
- if (!sd)
- return target;
- i = select_idle_core(p, sd, target);
- if ((unsigned)i < nr_cpumask_bits)
- return i;
- i = select_idle_cpu(p, sd, target);
- if ((unsigned)i < nr_cpumask_bits)
- return i;
- i = select_idle_smt(p, sd, target);
- if ((unsigned)i < nr_cpumask_bits)
- return i;
- return target;
- }
- /**
- * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
- * @cpu: the CPU to get the utilization of
- *
- * The unit of the return value must be the one of capacity so we can compare
- * the utilization with the capacity of the CPU that is available for CFS task
- * (ie cpu_capacity).
- *
- * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
- * recent utilization of currently non-runnable tasks on a CPU. It represents
- * the amount of utilization of a CPU in the range [0..capacity_orig] where
- * capacity_orig is the cpu_capacity available at the highest frequency
- * (arch_scale_freq_capacity()).
- * The utilization of a CPU converges towards a sum equal to or less than the
- * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
- * the running time on this CPU scaled by capacity_curr.
- *
- * The estimated utilization of a CPU is defined to be the maximum between its
- * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
- * currently RUNNABLE on that CPU.
- * This allows to properly represent the expected utilization of a CPU which
- * has just got a big task running since a long sleep period. At the same time
- * however it preserves the benefits of the "blocked utilization" in
- * describing the potential for other tasks waking up on the same CPU.
- *
- * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
- * higher than capacity_orig because of unfortunate rounding in
- * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
- * the average stabilizes with the new running time. We need to check that the
- * utilization stays within the range of [0..capacity_orig] and cap it if
- * necessary. Without utilization capping, a group could be seen as overloaded
- * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
- * available capacity. We allow utilization to overshoot capacity_curr (but not
- * capacity_orig) as it useful for predicting the capacity required after task
- * migrations (scheduler-driven DVFS).
- *
- * Return: the (estimated) utilization for the specified CPU
- */
- static inline unsigned long cpu_util(int cpu)
- {
- struct cfs_rq *cfs_rq;
- unsigned int util;
- cfs_rq = &cpu_rq(cpu)->cfs;
- util = READ_ONCE(cfs_rq->avg.util_avg);
- if (sched_feat(UTIL_EST))
- util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
- return min_t(unsigned long, util, capacity_orig_of(cpu));
- }
- /*
- * cpu_util_without: compute cpu utilization without any contributions from *p
- * @cpu: the CPU which utilization is requested
- * @p: the task which utilization should be discounted
- *
- * The utilization of a CPU is defined by the utilization of tasks currently
- * enqueued on that CPU as well as tasks which are currently sleeping after an
- * execution on that CPU.
- *
- * This method returns the utilization of the specified CPU by discounting the
- * utilization of the specified task, whenever the task is currently
- * contributing to the CPU utilization.
- */
- static unsigned long cpu_util_without(int cpu, struct task_struct *p)
- {
- struct cfs_rq *cfs_rq;
- unsigned int util;
- /* Task has no contribution or is new */
- if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
- return cpu_util(cpu);
- cfs_rq = &cpu_rq(cpu)->cfs;
- util = READ_ONCE(cfs_rq->avg.util_avg);
- /* Discount task's util from CPU's util */
- util -= min_t(unsigned int, util, task_util(p));
- /*
- * Covered cases:
- *
- * a) if *p is the only task sleeping on this CPU, then:
- * cpu_util (== task_util) > util_est (== 0)
- * and thus we return:
- * cpu_util_without = (cpu_util - task_util) = 0
- *
- * b) if other tasks are SLEEPING on this CPU, which is now exiting
- * IDLE, then:
- * cpu_util >= task_util
- * cpu_util > util_est (== 0)
- * and thus we discount *p's blocked utilization to return:
- * cpu_util_without = (cpu_util - task_util) >= 0
- *
- * c) if other tasks are RUNNABLE on that CPU and
- * util_est > cpu_util
- * then we use util_est since it returns a more restrictive
- * estimation of the spare capacity on that CPU, by just
- * considering the expected utilization of tasks already
- * runnable on that CPU.
- *
- * Cases a) and b) are covered by the above code, while case c) is
- * covered by the following code when estimated utilization is
- * enabled.
- */
- if (sched_feat(UTIL_EST)) {
- unsigned int estimated =
- READ_ONCE(cfs_rq->avg.util_est.enqueued);
- /*
- * Despite the following checks we still have a small window
- * for a possible race, when an execl's select_task_rq_fair()
- * races with LB's detach_task():
- *
- * detach_task()
- * p->on_rq = TASK_ON_RQ_MIGRATING;
- * ---------------------------------- A
- * deactivate_task() \
- * dequeue_task() + RaceTime
- * util_est_dequeue() /
- * ---------------------------------- B
- *
- * The additional check on "current == p" it's required to
- * properly fix the execl regression and it helps in further
- * reducing the chances for the above race.
- */
- if (unlikely(task_on_rq_queued(p) || current == p)) {
- estimated -= min_t(unsigned int, estimated,
- (_task_util_est(p) | UTIL_AVG_UNCHANGED));
- }
- util = max(util, estimated);
- }
- /*
- * Utilization (estimated) can exceed the CPU capacity, thus let's
- * clamp to the maximum CPU capacity to ensure consistency with
- * the cpu_util call.
- */
- return min_t(unsigned long, util, capacity_orig_of(cpu));
- }
- /*
- * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
- * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
- *
- * In that case WAKE_AFFINE doesn't make sense and we'll let
- * BALANCE_WAKE sort things out.
- */
- static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
- {
- long min_cap, max_cap;
- min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
- max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
- /* Minimum capacity is close to max, no need to abort wake_affine */
- if (max_cap - min_cap < max_cap >> 3)
- return 0;
- /* Bring task utilization in sync with prev_cpu */
- sync_entity_load_avg(&p->se);
- return min_cap * 1024 < task_util(p) * capacity_margin;
- }
- /*
- * select_task_rq_fair: Select target runqueue for the waking task in domains
- * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
- * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
- *
- * Balances load by selecting the idlest CPU in the idlest group, or under
- * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
- *
- * Returns the target CPU number.
- *
- * preempt must be disabled.
- */
- static int
- select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
- {
- struct sched_domain *tmp, *sd = NULL;
- int cpu = smp_processor_id();
- int new_cpu = prev_cpu;
- int want_affine = 0;
- int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
- if (sd_flag & SD_BALANCE_WAKE) {
- record_wakee(p);
- want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
- && cpumask_test_cpu(cpu, &p->cpus_allowed);
- }
- rcu_read_lock();
- for_each_domain(cpu, tmp) {
- if (!(tmp->flags & SD_LOAD_BALANCE))
- break;
- /*
- * If both 'cpu' and 'prev_cpu' are part of this domain,
- * cpu is a valid SD_WAKE_AFFINE target.
- */
- if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
- cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
- if (cpu != prev_cpu)
- new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
- sd = NULL; /* Prefer wake_affine over balance flags */
- break;
- }
- if (tmp->flags & sd_flag)
- sd = tmp;
- else if (!want_affine)
- break;
- }
- if (unlikely(sd)) {
- /* Slow path */
- new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
- } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
- /* Fast path */
- new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
- if (want_affine)
- current->recent_used_cpu = cpu;
- }
- rcu_read_unlock();
- return new_cpu;
- }
- static void detach_entity_cfs_rq(struct sched_entity *se);
- /*
- * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
- * cfs_rq_of(p) references at time of call are still valid and identify the
- * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
- */
- static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
- {
- /*
- * As blocked tasks retain absolute vruntime the migration needs to
- * deal with this by subtracting the old and adding the new
- * min_vruntime -- the latter is done by enqueue_entity() when placing
- * the task on the new runqueue.
- */
- if (p->state == TASK_WAKING) {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 min_vruntime;
- #ifndef CONFIG_64BIT
- u64 min_vruntime_copy;
- do {
- min_vruntime_copy = cfs_rq->min_vruntime_copy;
- smp_rmb();
- min_vruntime = cfs_rq->min_vruntime;
- } while (min_vruntime != min_vruntime_copy);
- #else
- min_vruntime = cfs_rq->min_vruntime;
- #endif
- se->vruntime -= min_vruntime;
- }
- if (p->on_rq == TASK_ON_RQ_MIGRATING) {
- /*
- * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
- * rq->lock and can modify state directly.
- */
- lockdep_assert_held(&task_rq(p)->lock);
- detach_entity_cfs_rq(&p->se);
- } else {
- /*
- * We are supposed to update the task to "current" time, then
- * its up to date and ready to go to new CPU/cfs_rq. But we
- * have difficulty in getting what current time is, so simply
- * throw away the out-of-date time. This will result in the
- * wakee task is less decayed, but giving the wakee more load
- * sounds not bad.
- */
- remove_entity_load_avg(&p->se);
- }
- /* Tell new CPU we are migrated */
- p->se.avg.last_update_time = 0;
- /* We have migrated, no longer consider this task hot */
- p->se.exec_start = 0;
- update_scan_period(p, new_cpu);
- }
- static void task_dead_fair(struct task_struct *p)
- {
- remove_entity_load_avg(&p->se);
- }
- #endif /* CONFIG_SMP */
- static unsigned long wakeup_gran(struct sched_entity *se)
- {
- unsigned long gran = sysctl_sched_wakeup_granularity;
- /*
- * Since its curr running now, convert the gran from real-time
- * to virtual-time in his units.
- *
- * By using 'se' instead of 'curr' we penalize light tasks, so
- * they get preempted easier. That is, if 'se' < 'curr' then
- * the resulting gran will be larger, therefore penalizing the
- * lighter, if otoh 'se' > 'curr' then the resulting gran will
- * be smaller, again penalizing the lighter task.
- *
- * This is especially important for buddies when the leftmost
- * task is higher priority than the buddy.
- */
- return calc_delta_fair(gran, se);
- }
- /*
- * Should 'se' preempt 'curr'.
- *
- * |s1
- * |s2
- * |s3
- * g
- * |<--->|c
- *
- * w(c, s1) = -1
- * w(c, s2) = 0
- * w(c, s3) = 1
- *
- */
- static int
- wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
- {
- s64 gran, vdiff = curr->vruntime - se->vruntime;
- if (vdiff <= 0)
- return -1;
- gran = wakeup_gran(se);
- if (vdiff > gran)
- return 1;
- return 0;
- }
- static void set_last_buddy(struct sched_entity *se)
- {
- if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
- return;
- for_each_sched_entity(se) {
- if (SCHED_WARN_ON(!se->on_rq))
- return;
- cfs_rq_of(se)->last = se;
- }
- }
- static void set_next_buddy(struct sched_entity *se)
- {
- if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
- return;
- for_each_sched_entity(se) {
- if (SCHED_WARN_ON(!se->on_rq))
- return;
- cfs_rq_of(se)->next = se;
- }
- }
- static void set_skip_buddy(struct sched_entity *se)
- {
- for_each_sched_entity(se)
- cfs_rq_of(se)->skip = se;
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
- {
- struct task_struct *curr = rq->curr;
- struct sched_entity *se = &curr->se, *pse = &p->se;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- int scale = cfs_rq->nr_running >= sched_nr_latency;
- int next_buddy_marked = 0;
- if (unlikely(se == pse))
- return;
- /*
- * This is possible from callers such as attach_tasks(), in which we
- * unconditionally check_prempt_curr() after an enqueue (which may have
- * lead to a throttle). This both saves work and prevents false
- * next-buddy nomination below.
- */
- if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
- return;
- if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
- set_next_buddy(pse);
- next_buddy_marked = 1;
- }
- /*
- * We can come here with TIF_NEED_RESCHED already set from new task
- * wake up path.
- *
- * Note: this also catches the edge-case of curr being in a throttled
- * group (e.g. via set_curr_task), since update_curr() (in the
- * enqueue of curr) will have resulted in resched being set. This
- * prevents us from potentially nominating it as a false LAST_BUDDY
- * below.
- */
- if (test_tsk_need_resched(curr))
- return;
- /* Idle tasks are by definition preempted by non-idle tasks. */
- if (unlikely(curr->policy == SCHED_IDLE) &&
- likely(p->policy != SCHED_IDLE))
- goto preempt;
- /*
- * Batch and idle tasks do not preempt non-idle tasks (their preemption
- * is driven by the tick):
- */
- if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
- return;
- find_matching_se(&se, &pse);
- update_curr(cfs_rq_of(se));
- BUG_ON(!pse);
- if (wakeup_preempt_entity(se, pse) == 1) {
- /*
- * Bias pick_next to pick the sched entity that is
- * triggering this preemption.
- */
- if (!next_buddy_marked)
- set_next_buddy(pse);
- goto preempt;
- }
- return;
- preempt:
- resched_curr(rq);
- /*
- * Only set the backward buddy when the current task is still
- * on the rq. This can happen when a wakeup gets interleaved
- * with schedule on the ->pre_schedule() or idle_balance()
- * point, either of which can * drop the rq lock.
- *
- * Also, during early boot the idle thread is in the fair class,
- * for obvious reasons its a bad idea to schedule back to it.
- */
- if (unlikely(!se->on_rq || curr == rq->idle))
- return;
- if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
- set_last_buddy(se);
- }
- static struct task_struct *
- pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
- {
- struct cfs_rq *cfs_rq = &rq->cfs;
- struct sched_entity *se;
- struct task_struct *p;
- int new_tasks;
- again:
- if (!cfs_rq->nr_running)
- goto idle;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- if (prev->sched_class != &fair_sched_class)
- goto simple;
- /*
- * Because of the set_next_buddy() in dequeue_task_fair() it is rather
- * likely that a next task is from the same cgroup as the current.
- *
- * Therefore attempt to avoid putting and setting the entire cgroup
- * hierarchy, only change the part that actually changes.
- */
- do {
- struct sched_entity *curr = cfs_rq->curr;
- /*
- * Since we got here without doing put_prev_entity() we also
- * have to consider cfs_rq->curr. If it is still a runnable
- * entity, update_curr() will update its vruntime, otherwise
- * forget we've ever seen it.
- */
- if (curr) {
- if (curr->on_rq)
- update_curr(cfs_rq);
- else
- curr = NULL;
- /*
- * This call to check_cfs_rq_runtime() will do the
- * throttle and dequeue its entity in the parent(s).
- * Therefore the nr_running test will indeed
- * be correct.
- */
- if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
- cfs_rq = &rq->cfs;
- if (!cfs_rq->nr_running)
- goto idle;
- goto simple;
- }
- }
- se = pick_next_entity(cfs_rq, curr);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
- p = task_of(se);
- /*
- * Since we haven't yet done put_prev_entity and if the selected task
- * is a different task than we started out with, try and touch the
- * least amount of cfs_rqs.
- */
- if (prev != p) {
- struct sched_entity *pse = &prev->se;
- while (!(cfs_rq = is_same_group(se, pse))) {
- int se_depth = se->depth;
- int pse_depth = pse->depth;
- if (se_depth <= pse_depth) {
- put_prev_entity(cfs_rq_of(pse), pse);
- pse = parent_entity(pse);
- }
- if (se_depth >= pse_depth) {
- set_next_entity(cfs_rq_of(se), se);
- se = parent_entity(se);
- }
- }
- put_prev_entity(cfs_rq, pse);
- set_next_entity(cfs_rq, se);
- }
- goto done;
- simple:
- #endif
- put_prev_task(rq, prev);
- do {
- se = pick_next_entity(cfs_rq, NULL);
- set_next_entity(cfs_rq, se);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
- p = task_of(se);
- done: __maybe_unused;
- #ifdef CONFIG_SMP
- /*
- * Move the next running task to the front of
- * the list, so our cfs_tasks list becomes MRU
- * one.
- */
- list_move(&p->se.group_node, &rq->cfs_tasks);
- #endif
- if (hrtick_enabled(rq))
- hrtick_start_fair(rq, p);
- return p;
- idle:
- new_tasks = idle_balance(rq, rf);
- /*
- * Because idle_balance() releases (and re-acquires) rq->lock, it is
- * possible for any higher priority task to appear. In that case we
- * must re-start the pick_next_entity() loop.
- */
- if (new_tasks < 0)
- return RETRY_TASK;
- if (new_tasks > 0)
- goto again;
- return NULL;
- }
- /*
- * Account for a descheduled task:
- */
- static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
- {
- struct sched_entity *se = &prev->se;
- struct cfs_rq *cfs_rq;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- put_prev_entity(cfs_rq, se);
- }
- }
- /*
- * sched_yield() is very simple
- *
- * The magic of dealing with the ->skip buddy is in pick_next_entity.
- */
- static void yield_task_fair(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
- struct sched_entity *se = &curr->se;
- /*
- * Are we the only task in the tree?
- */
- if (unlikely(rq->nr_running == 1))
- return;
- clear_buddies(cfs_rq, se);
- if (curr->policy != SCHED_BATCH) {
- update_rq_clock(rq);
- /*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
- /*
- * Tell update_rq_clock() that we've just updated,
- * so we don't do microscopic update in schedule()
- * and double the fastpath cost.
- */
- rq_clock_skip_update(rq);
- }
- set_skip_buddy(se);
- }
- static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
- {
- struct sched_entity *se = &p->se;
- /* throttled hierarchies are not runnable */
- if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
- return false;
- /* Tell the scheduler that we'd really like pse to run next. */
- set_next_buddy(se);
- yield_task_fair(rq);
- return true;
- }
- #ifdef CONFIG_SMP
- /**************************************************
- * Fair scheduling class load-balancing methods.
- *
- * BASICS
- *
- * The purpose of load-balancing is to achieve the same basic fairness the
- * per-CPU scheduler provides, namely provide a proportional amount of compute
- * time to each task. This is expressed in the following equation:
- *
- * W_i,n/P_i == W_j,n/P_j for all i,j (1)
- *
- * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
- * W_i,0 is defined as:
- *
- * W_i,0 = \Sum_j w_i,j (2)
- *
- * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
- * is derived from the nice value as per sched_prio_to_weight[].
- *
- * The weight average is an exponential decay average of the instantaneous
- * weight:
- *
- * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
- *
- * C_i is the compute capacity of CPU i, typically it is the
- * fraction of 'recent' time available for SCHED_OTHER task execution. But it
- * can also include other factors [XXX].
- *
- * To achieve this balance we define a measure of imbalance which follows
- * directly from (1):
- *
- * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
- *
- * We them move tasks around to minimize the imbalance. In the continuous
- * function space it is obvious this converges, in the discrete case we get
- * a few fun cases generally called infeasible weight scenarios.
- *
- * [XXX expand on:
- * - infeasible weights;
- * - local vs global optima in the discrete case. ]
- *
- *
- * SCHED DOMAINS
- *
- * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
- * for all i,j solution, we create a tree of CPUs that follows the hardware
- * topology where each level pairs two lower groups (or better). This results
- * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
- * tree to only the first of the previous level and we decrease the frequency
- * of load-balance at each level inv. proportional to the number of CPUs in
- * the groups.
- *
- * This yields:
- *
- * log_2 n 1 n
- * \Sum { --- * --- * 2^i } = O(n) (5)
- * i = 0 2^i 2^i
- * `- size of each group
- * | | `- number of CPUs doing load-balance
- * | `- freq
- * `- sum over all levels
- *
- * Coupled with a limit on how many tasks we can migrate every balance pass,
- * this makes (5) the runtime complexity of the balancer.
- *
- * An important property here is that each CPU is still (indirectly) connected
- * to every other CPU in at most O(log n) steps:
- *
- * The adjacency matrix of the resulting graph is given by:
- *
- * log_2 n
- * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
- * k = 0
- *
- * And you'll find that:
- *
- * A^(log_2 n)_i,j != 0 for all i,j (7)
- *
- * Showing there's indeed a path between every CPU in at most O(log n) steps.
- * The task movement gives a factor of O(m), giving a convergence complexity
- * of:
- *
- * O(nm log n), n := nr_cpus, m := nr_tasks (8)
- *
- *
- * WORK CONSERVING
- *
- * In order to avoid CPUs going idle while there's still work to do, new idle
- * balancing is more aggressive and has the newly idle CPU iterate up the domain
- * tree itself instead of relying on other CPUs to bring it work.
- *
- * This adds some complexity to both (5) and (8) but it reduces the total idle
- * time.
- *
- * [XXX more?]
- *
- *
- * CGROUPS
- *
- * Cgroups make a horror show out of (2), instead of a simple sum we get:
- *
- * s_k,i
- * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
- * S_k
- *
- * Where
- *
- * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
- *
- * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
- *
- * The big problem is S_k, its a global sum needed to compute a local (W_i)
- * property.
- *
- * [XXX write more on how we solve this.. _after_ merging pjt's patches that
- * rewrite all of this once again.]
- */
- static unsigned long __read_mostly max_load_balance_interval = HZ/10;
- enum fbq_type { regular, remote, all };
- #define LBF_ALL_PINNED 0x01
- #define LBF_NEED_BREAK 0x02
- #define LBF_DST_PINNED 0x04
- #define LBF_SOME_PINNED 0x08
- #define LBF_NOHZ_STATS 0x10
- #define LBF_NOHZ_AGAIN 0x20
- struct lb_env {
- struct sched_domain *sd;
- struct rq *src_rq;
- int src_cpu;
- int dst_cpu;
- struct rq *dst_rq;
- struct cpumask *dst_grpmask;
- int new_dst_cpu;
- enum cpu_idle_type idle;
- long imbalance;
- /* The set of CPUs under consideration for load-balancing */
- struct cpumask *cpus;
- unsigned int flags;
- unsigned int loop;
- unsigned int loop_break;
- unsigned int loop_max;
- enum fbq_type fbq_type;
- struct list_head tasks;
- };
- /*
- * Is this task likely cache-hot:
- */
- static int task_hot(struct task_struct *p, struct lb_env *env)
- {
- s64 delta;
- lockdep_assert_held(&env->src_rq->lock);
- if (p->sched_class != &fair_sched_class)
- return 0;
- if (unlikely(p->policy == SCHED_IDLE))
- return 0;
- /*
- * Buddy candidates are cache hot:
- */
- if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
- (&p->se == cfs_rq_of(&p->se)->next ||
- &p->se == cfs_rq_of(&p->se)->last))
- return 1;
- if (sysctl_sched_migration_cost == -1)
- return 1;
- if (sysctl_sched_migration_cost == 0)
- return 0;
- delta = rq_clock_task(env->src_rq) - p->se.exec_start;
- return delta < (s64)sysctl_sched_migration_cost;
- }
- #ifdef CONFIG_NUMA_BALANCING
- /*
- * Returns 1, if task migration degrades locality
- * Returns 0, if task migration improves locality i.e migration preferred.
- * Returns -1, if task migration is not affected by locality.
- */
- static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
- {
- struct numa_group *numa_group = rcu_dereference(p->numa_group);
- unsigned long src_weight, dst_weight;
- int src_nid, dst_nid, dist;
- if (!static_branch_likely(&sched_numa_balancing))
- return -1;
- if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
- return -1;
- src_nid = cpu_to_node(env->src_cpu);
- dst_nid = cpu_to_node(env->dst_cpu);
- if (src_nid == dst_nid)
- return -1;
- /* Migrating away from the preferred node is always bad. */
- if (src_nid == p->numa_preferred_nid) {
- if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
- return 1;
- else
- return -1;
- }
- /* Encourage migration to the preferred node. */
- if (dst_nid == p->numa_preferred_nid)
- return 0;
- /* Leaving a core idle is often worse than degrading locality. */
- if (env->idle == CPU_IDLE)
- return -1;
- dist = node_distance(src_nid, dst_nid);
- if (numa_group) {
- src_weight = group_weight(p, src_nid, dist);
- dst_weight = group_weight(p, dst_nid, dist);
- } else {
- src_weight = task_weight(p, src_nid, dist);
- dst_weight = task_weight(p, dst_nid, dist);
- }
- return dst_weight < src_weight;
- }
- #else
- static inline int migrate_degrades_locality(struct task_struct *p,
- struct lb_env *env)
- {
- return -1;
- }
- #endif
- /*
- * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
- */
- static
- int can_migrate_task(struct task_struct *p, struct lb_env *env)
- {
- int tsk_cache_hot;
- lockdep_assert_held(&env->src_rq->lock);
- /*
- * We do not migrate tasks that are:
- * 1) throttled_lb_pair, or
- * 2) cannot be migrated to this CPU due to cpus_allowed, or
- * 3) running (obviously), or
- * 4) are cache-hot on their current CPU.
- */
- if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
- return 0;
- if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
- int cpu;
- schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
- env->flags |= LBF_SOME_PINNED;
- /*
- * Remember if this task can be migrated to any other CPU in
- * our sched_group. We may want to revisit it if we couldn't
- * meet load balance goals by pulling other tasks on src_cpu.
- *
- * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
- * already computed one in current iteration.
- */
- if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
- return 0;
- /* Prevent to re-select dst_cpu via env's CPUs: */
- for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
- if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
- env->flags |= LBF_DST_PINNED;
- env->new_dst_cpu = cpu;
- break;
- }
- }
- return 0;
- }
- /* Record that we found atleast one task that could run on dst_cpu */
- env->flags &= ~LBF_ALL_PINNED;
- if (task_running(env->src_rq, p)) {
- schedstat_inc(p->se.statistics.nr_failed_migrations_running);
- return 0;
- }
- /*
- * Aggressive migration if:
- * 1) destination numa is preferred
- * 2) task is cache cold, or
- * 3) too many balance attempts have failed.
- */
- tsk_cache_hot = migrate_degrades_locality(p, env);
- if (tsk_cache_hot == -1)
- tsk_cache_hot = task_hot(p, env);
- if (tsk_cache_hot <= 0 ||
- env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
- if (tsk_cache_hot == 1) {
- schedstat_inc(env->sd->lb_hot_gained[env->idle]);
- schedstat_inc(p->se.statistics.nr_forced_migrations);
- }
- return 1;
- }
- schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
- return 0;
- }
- /*
- * detach_task() -- detach the task for the migration specified in env
- */
- static void detach_task(struct task_struct *p, struct lb_env *env)
- {
- lockdep_assert_held(&env->src_rq->lock);
- p->on_rq = TASK_ON_RQ_MIGRATING;
- deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
- set_task_cpu(p, env->dst_cpu);
- }
- /*
- * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
- * part of active balancing operations within "domain".
- *
- * Returns a task if successful and NULL otherwise.
- */
- static struct task_struct *detach_one_task(struct lb_env *env)
- {
- struct task_struct *p;
- lockdep_assert_held(&env->src_rq->lock);
- list_for_each_entry_reverse(p,
- &env->src_rq->cfs_tasks, se.group_node) {
- if (!can_migrate_task(p, env))
- continue;
- detach_task(p, env);
- /*
- * Right now, this is only the second place where
- * lb_gained[env->idle] is updated (other is detach_tasks)
- * so we can safely collect stats here rather than
- * inside detach_tasks().
- */
- schedstat_inc(env->sd->lb_gained[env->idle]);
- return p;
- }
- return NULL;
- }
- static const unsigned int sched_nr_migrate_break = 32;
- /*
- * detach_tasks() -- tries to detach up to imbalance weighted load from
- * busiest_rq, as part of a balancing operation within domain "sd".
- *
- * Returns number of detached tasks if successful and 0 otherwise.
- */
- static int detach_tasks(struct lb_env *env)
- {
- struct list_head *tasks = &env->src_rq->cfs_tasks;
- struct task_struct *p;
- unsigned long load;
- int detached = 0;
- lockdep_assert_held(&env->src_rq->lock);
- if (env->imbalance <= 0)
- return 0;
- while (!list_empty(tasks)) {
- /*
- * We don't want to steal all, otherwise we may be treated likewise,
- * which could at worst lead to a livelock crash.
- */
- if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
- break;
- p = list_last_entry(tasks, struct task_struct, se.group_node);
- env->loop++;
- /* We've more or less seen every task there is, call it quits */
- if (env->loop > env->loop_max)
- break;
- /* take a breather every nr_migrate tasks */
- if (env->loop > env->loop_break) {
- env->loop_break += sched_nr_migrate_break;
- env->flags |= LBF_NEED_BREAK;
- break;
- }
- if (!can_migrate_task(p, env))
- goto next;
- load = task_h_load(p);
- if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
- goto next;
- if ((load / 2) > env->imbalance)
- goto next;
- detach_task(p, env);
- list_add(&p->se.group_node, &env->tasks);
- detached++;
- env->imbalance -= load;
- #ifdef CONFIG_PREEMPT
- /*
- * NEWIDLE balancing is a source of latency, so preemptible
- * kernels will stop after the first task is detached to minimize
- * the critical section.
- */
- if (env->idle == CPU_NEWLY_IDLE)
- break;
- #endif
- /*
- * We only want to steal up to the prescribed amount of
- * weighted load.
- */
- if (env->imbalance <= 0)
- break;
- continue;
- next:
- list_move(&p->se.group_node, tasks);
- }
- /*
- * Right now, this is one of only two places we collect this stat
- * so we can safely collect detach_one_task() stats here rather
- * than inside detach_one_task().
- */
- schedstat_add(env->sd->lb_gained[env->idle], detached);
- return detached;
- }
- /*
- * attach_task() -- attach the task detached by detach_task() to its new rq.
- */
- static void attach_task(struct rq *rq, struct task_struct *p)
- {
- lockdep_assert_held(&rq->lock);
- BUG_ON(task_rq(p) != rq);
- activate_task(rq, p, ENQUEUE_NOCLOCK);
- p->on_rq = TASK_ON_RQ_QUEUED;
- check_preempt_curr(rq, p, 0);
- }
- /*
- * attach_one_task() -- attaches the task returned from detach_one_task() to
- * its new rq.
- */
- static void attach_one_task(struct rq *rq, struct task_struct *p)
- {
- struct rq_flags rf;
- rq_lock(rq, &rf);
- update_rq_clock(rq);
- attach_task(rq, p);
- rq_unlock(rq, &rf);
- }
- /*
- * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
- * new rq.
- */
- static void attach_tasks(struct lb_env *env)
- {
- struct list_head *tasks = &env->tasks;
- struct task_struct *p;
- struct rq_flags rf;
- rq_lock(env->dst_rq, &rf);
- update_rq_clock(env->dst_rq);
- while (!list_empty(tasks)) {
- p = list_first_entry(tasks, struct task_struct, se.group_node);
- list_del_init(&p->se.group_node);
- attach_task(env->dst_rq, p);
- }
- rq_unlock(env->dst_rq, &rf);
- }
- static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
- {
- if (cfs_rq->avg.load_avg)
- return true;
- if (cfs_rq->avg.util_avg)
- return true;
- return false;
- }
- static inline bool others_have_blocked(struct rq *rq)
- {
- if (READ_ONCE(rq->avg_rt.util_avg))
- return true;
- if (READ_ONCE(rq->avg_dl.util_avg))
- return true;
- #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
- if (READ_ONCE(rq->avg_irq.util_avg))
- return true;
- #endif
- return false;
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
- {
- if (cfs_rq->load.weight)
- return false;
- if (cfs_rq->avg.load_sum)
- return false;
- if (cfs_rq->avg.util_sum)
- return false;
- if (cfs_rq->avg.runnable_load_sum)
- return false;
- return true;
- }
- static void update_blocked_averages(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct cfs_rq *cfs_rq, *pos;
- const struct sched_class *curr_class;
- struct rq_flags rf;
- bool done = true;
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
- /*
- * Iterates the task_group tree in a bottom up fashion, see
- * list_add_leaf_cfs_rq() for details.
- */
- for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
- struct sched_entity *se;
- if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
- update_tg_load_avg(cfs_rq, 0);
- /* Propagate pending load changes to the parent, if any: */
- se = cfs_rq->tg->se[cpu];
- if (se && !skip_blocked_update(se))
- update_load_avg(cfs_rq_of(se), se, 0);
- /*
- * There can be a lot of idle CPU cgroups. Don't let fully
- * decayed cfs_rqs linger on the list.
- */
- if (cfs_rq_is_decayed(cfs_rq))
- list_del_leaf_cfs_rq(cfs_rq);
- /* Don't need periodic decay once load/util_avg are null */
- if (cfs_rq_has_blocked(cfs_rq))
- done = false;
- }
- curr_class = rq->curr->sched_class;
- update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
- update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
- update_irq_load_avg(rq, 0);
- /* Don't need periodic decay once load/util_avg are null */
- if (others_have_blocked(rq))
- done = false;
- #ifdef CONFIG_NO_HZ_COMMON
- rq->last_blocked_load_update_tick = jiffies;
- if (done)
- rq->has_blocked_load = 0;
- #endif
- rq_unlock_irqrestore(rq, &rf);
- }
- /*
- * Compute the hierarchical load factor for cfs_rq and all its ascendants.
- * This needs to be done in a top-down fashion because the load of a child
- * group is a fraction of its parents load.
- */
- static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
- {
- struct rq *rq = rq_of(cfs_rq);
- struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
- unsigned long now = jiffies;
- unsigned long load;
- if (cfs_rq->last_h_load_update == now)
- return;
- WRITE_ONCE(cfs_rq->h_load_next, NULL);
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- WRITE_ONCE(cfs_rq->h_load_next, se);
- if (cfs_rq->last_h_load_update == now)
- break;
- }
- if (!se) {
- cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
- cfs_rq->last_h_load_update = now;
- }
- while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
- load = cfs_rq->h_load;
- load = div64_ul(load * se->avg.load_avg,
- cfs_rq_load_avg(cfs_rq) + 1);
- cfs_rq = group_cfs_rq(se);
- cfs_rq->h_load = load;
- cfs_rq->last_h_load_update = now;
- }
- }
- static unsigned long task_h_load(struct task_struct *p)
- {
- struct cfs_rq *cfs_rq = task_cfs_rq(p);
- update_cfs_rq_h_load(cfs_rq);
- return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
- cfs_rq_load_avg(cfs_rq) + 1);
- }
- #else
- static inline void update_blocked_averages(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct cfs_rq *cfs_rq = &rq->cfs;
- const struct sched_class *curr_class;
- struct rq_flags rf;
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
- update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
- curr_class = rq->curr->sched_class;
- update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
- update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
- update_irq_load_avg(rq, 0);
- #ifdef CONFIG_NO_HZ_COMMON
- rq->last_blocked_load_update_tick = jiffies;
- if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
- rq->has_blocked_load = 0;
- #endif
- rq_unlock_irqrestore(rq, &rf);
- }
- static unsigned long task_h_load(struct task_struct *p)
- {
- return p->se.avg.load_avg;
- }
- #endif
- /********** Helpers for find_busiest_group ************************/
- enum group_type {
- group_other = 0,
- group_imbalanced,
- group_overloaded,
- };
- /*
- * sg_lb_stats - stats of a sched_group required for load_balancing
- */
- struct sg_lb_stats {
- unsigned long avg_load; /*Avg load across the CPUs of the group */
- unsigned long group_load; /* Total load over the CPUs of the group */
- unsigned long sum_weighted_load; /* Weighted load of group's tasks */
- unsigned long load_per_task;
- unsigned long group_capacity;
- unsigned long group_util; /* Total utilization of the group */
- unsigned int sum_nr_running; /* Nr tasks running in the group */
- unsigned int idle_cpus;
- unsigned int group_weight;
- enum group_type group_type;
- int group_no_capacity;
- #ifdef CONFIG_NUMA_BALANCING
- unsigned int nr_numa_running;
- unsigned int nr_preferred_running;
- #endif
- };
- /*
- * sd_lb_stats - Structure to store the statistics of a sched_domain
- * during load balancing.
- */
- struct sd_lb_stats {
- struct sched_group *busiest; /* Busiest group in this sd */
- struct sched_group *local; /* Local group in this sd */
- unsigned long total_running;
- unsigned long total_load; /* Total load of all groups in sd */
- unsigned long total_capacity; /* Total capacity of all groups in sd */
- unsigned long avg_load; /* Average load across all groups in sd */
- struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
- struct sg_lb_stats local_stat; /* Statistics of the local group */
- };
- static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
- {
- /*
- * Skimp on the clearing to avoid duplicate work. We can avoid clearing
- * local_stat because update_sg_lb_stats() does a full clear/assignment.
- * We must however clear busiest_stat::avg_load because
- * update_sd_pick_busiest() reads this before assignment.
- */
- *sds = (struct sd_lb_stats){
- .busiest = NULL,
- .local = NULL,
- .total_running = 0UL,
- .total_load = 0UL,
- .total_capacity = 0UL,
- .busiest_stat = {
- .avg_load = 0UL,
- .sum_nr_running = 0,
- .group_type = group_other,
- },
- };
- }
- /**
- * get_sd_load_idx - Obtain the load index for a given sched domain.
- * @sd: The sched_domain whose load_idx is to be obtained.
- * @idle: The idle status of the CPU for whose sd load_idx is obtained.
- *
- * Return: The load index.
- */
- static inline int get_sd_load_idx(struct sched_domain *sd,
- enum cpu_idle_type idle)
- {
- int load_idx;
- switch (idle) {
- case CPU_NOT_IDLE:
- load_idx = sd->busy_idx;
- break;
- case CPU_NEWLY_IDLE:
- load_idx = sd->newidle_idx;
- break;
- default:
- load_idx = sd->idle_idx;
- break;
- }
- return load_idx;
- }
- static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long max = arch_scale_cpu_capacity(sd, cpu);
- unsigned long used, free;
- unsigned long irq;
- irq = cpu_util_irq(rq);
- if (unlikely(irq >= max))
- return 1;
- used = READ_ONCE(rq->avg_rt.util_avg);
- used += READ_ONCE(rq->avg_dl.util_avg);
- if (unlikely(used >= max))
- return 1;
- free = max - used;
- return scale_irq_capacity(free, irq, max);
- }
- static void update_cpu_capacity(struct sched_domain *sd, int cpu)
- {
- unsigned long capacity = scale_rt_capacity(sd, cpu);
- struct sched_group *sdg = sd->groups;
- cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
- if (!capacity)
- capacity = 1;
- cpu_rq(cpu)->cpu_capacity = capacity;
- sdg->sgc->capacity = capacity;
- sdg->sgc->min_capacity = capacity;
- }
- void update_group_capacity(struct sched_domain *sd, int cpu)
- {
- struct sched_domain *child = sd->child;
- struct sched_group *group, *sdg = sd->groups;
- unsigned long capacity, min_capacity;
- unsigned long interval;
- interval = msecs_to_jiffies(sd->balance_interval);
- interval = clamp(interval, 1UL, max_load_balance_interval);
- sdg->sgc->next_update = jiffies + interval;
- if (!child) {
- update_cpu_capacity(sd, cpu);
- return;
- }
- capacity = 0;
- min_capacity = ULONG_MAX;
- if (child->flags & SD_OVERLAP) {
- /*
- * SD_OVERLAP domains cannot assume that child groups
- * span the current group.
- */
- for_each_cpu(cpu, sched_group_span(sdg)) {
- struct sched_group_capacity *sgc;
- struct rq *rq = cpu_rq(cpu);
- /*
- * build_sched_domains() -> init_sched_groups_capacity()
- * gets here before we've attached the domains to the
- * runqueues.
- *
- * Use capacity_of(), which is set irrespective of domains
- * in update_cpu_capacity().
- *
- * This avoids capacity from being 0 and
- * causing divide-by-zero issues on boot.
- */
- if (unlikely(!rq->sd)) {
- capacity += capacity_of(cpu);
- } else {
- sgc = rq->sd->groups->sgc;
- capacity += sgc->capacity;
- }
- min_capacity = min(capacity, min_capacity);
- }
- } else {
- /*
- * !SD_OVERLAP domains can assume that child groups
- * span the current group.
- */
- group = child->groups;
- do {
- struct sched_group_capacity *sgc = group->sgc;
- capacity += sgc->capacity;
- min_capacity = min(sgc->min_capacity, min_capacity);
- group = group->next;
- } while (group != child->groups);
- }
- sdg->sgc->capacity = capacity;
- sdg->sgc->min_capacity = min_capacity;
- }
- /*
- * Check whether the capacity of the rq has been noticeably reduced by side
- * activity. The imbalance_pct is used for the threshold.
- * Return true is the capacity is reduced
- */
- static inline int
- check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
- {
- return ((rq->cpu_capacity * sd->imbalance_pct) <
- (rq->cpu_capacity_orig * 100));
- }
- /*
- * Group imbalance indicates (and tries to solve) the problem where balancing
- * groups is inadequate due to ->cpus_allowed constraints.
- *
- * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
- * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
- * Something like:
- *
- * { 0 1 2 3 } { 4 5 6 7 }
- * * * * *
- *
- * If we were to balance group-wise we'd place two tasks in the first group and
- * two tasks in the second group. Clearly this is undesired as it will overload
- * cpu 3 and leave one of the CPUs in the second group unused.
- *
- * The current solution to this issue is detecting the skew in the first group
- * by noticing the lower domain failed to reach balance and had difficulty
- * moving tasks due to affinity constraints.
- *
- * When this is so detected; this group becomes a candidate for busiest; see
- * update_sd_pick_busiest(). And calculate_imbalance() and
- * find_busiest_group() avoid some of the usual balance conditions to allow it
- * to create an effective group imbalance.
- *
- * This is a somewhat tricky proposition since the next run might not find the
- * group imbalance and decide the groups need to be balanced again. A most
- * subtle and fragile situation.
- */
- static inline int sg_imbalanced(struct sched_group *group)
- {
- return group->sgc->imbalance;
- }
- /*
- * group_has_capacity returns true if the group has spare capacity that could
- * be used by some tasks.
- * We consider that a group has spare capacity if the * number of task is
- * smaller than the number of CPUs or if the utilization is lower than the
- * available capacity for CFS tasks.
- * For the latter, we use a threshold to stabilize the state, to take into
- * account the variance of the tasks' load and to return true if the available
- * capacity in meaningful for the load balancer.
- * As an example, an available capacity of 1% can appear but it doesn't make
- * any benefit for the load balance.
- */
- static inline bool
- group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
- {
- if (sgs->sum_nr_running < sgs->group_weight)
- return true;
- if ((sgs->group_capacity * 100) >
- (sgs->group_util * env->sd->imbalance_pct))
- return true;
- return false;
- }
- /*
- * group_is_overloaded returns true if the group has more tasks than it can
- * handle.
- * group_is_overloaded is not equals to !group_has_capacity because a group
- * with the exact right number of tasks, has no more spare capacity but is not
- * overloaded so both group_has_capacity and group_is_overloaded return
- * false.
- */
- static inline bool
- group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
- {
- if (sgs->sum_nr_running <= sgs->group_weight)
- return false;
- if ((sgs->group_capacity * 100) <
- (sgs->group_util * env->sd->imbalance_pct))
- return true;
- return false;
- }
- /*
- * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
- * per-CPU capacity than sched_group ref.
- */
- static inline bool
- group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
- {
- return sg->sgc->min_capacity * capacity_margin <
- ref->sgc->min_capacity * 1024;
- }
- static inline enum
- group_type group_classify(struct sched_group *group,
- struct sg_lb_stats *sgs)
- {
- if (sgs->group_no_capacity)
- return group_overloaded;
- if (sg_imbalanced(group))
- return group_imbalanced;
- return group_other;
- }
- static bool update_nohz_stats(struct rq *rq, bool force)
- {
- #ifdef CONFIG_NO_HZ_COMMON
- unsigned int cpu = rq->cpu;
- if (!rq->has_blocked_load)
- return false;
- if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
- return false;
- if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
- return true;
- update_blocked_averages(cpu);
- return rq->has_blocked_load;
- #else
- return false;
- #endif
- }
- /**
- * update_sg_lb_stats - Update sched_group's statistics for load balancing.
- * @env: The load balancing environment.
- * @group: sched_group whose statistics are to be updated.
- * @load_idx: Load index of sched_domain of this_cpu for load calc.
- * @local_group: Does group contain this_cpu.
- * @sgs: variable to hold the statistics for this group.
- * @overload: Indicate more than one runnable task for any CPU.
- */
- static inline void update_sg_lb_stats(struct lb_env *env,
- struct sched_group *group, int load_idx,
- int local_group, struct sg_lb_stats *sgs,
- bool *overload)
- {
- unsigned long load;
- int i, nr_running;
- memset(sgs, 0, sizeof(*sgs));
- for_each_cpu_and(i, sched_group_span(group), env->cpus) {
- struct rq *rq = cpu_rq(i);
- if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
- env->flags |= LBF_NOHZ_AGAIN;
- /* Bias balancing toward CPUs of our domain: */
- if (local_group)
- load = target_load(i, load_idx);
- else
- load = source_load(i, load_idx);
- sgs->group_load += load;
- sgs->group_util += cpu_util(i);
- sgs->sum_nr_running += rq->cfs.h_nr_running;
- nr_running = rq->nr_running;
- if (nr_running > 1)
- *overload = true;
- #ifdef CONFIG_NUMA_BALANCING
- sgs->nr_numa_running += rq->nr_numa_running;
- sgs->nr_preferred_running += rq->nr_preferred_running;
- #endif
- sgs->sum_weighted_load += weighted_cpuload(rq);
- /*
- * No need to call idle_cpu() if nr_running is not 0
- */
- if (!nr_running && idle_cpu(i))
- sgs->idle_cpus++;
- }
- /* Adjust by relative CPU capacity of the group */
- sgs->group_capacity = group->sgc->capacity;
- sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
- if (sgs->sum_nr_running)
- sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
- sgs->group_weight = group->group_weight;
- sgs->group_no_capacity = group_is_overloaded(env, sgs);
- sgs->group_type = group_classify(group, sgs);
- }
- /**
- * update_sd_pick_busiest - return 1 on busiest group
- * @env: The load balancing environment.
- * @sds: sched_domain statistics
- * @sg: sched_group candidate to be checked for being the busiest
- * @sgs: sched_group statistics
- *
- * Determine if @sg is a busier group than the previously selected
- * busiest group.
- *
- * Return: %true if @sg is a busier group than the previously selected
- * busiest group. %false otherwise.
- */
- static bool update_sd_pick_busiest(struct lb_env *env,
- struct sd_lb_stats *sds,
- struct sched_group *sg,
- struct sg_lb_stats *sgs)
- {
- struct sg_lb_stats *busiest = &sds->busiest_stat;
- if (sgs->group_type > busiest->group_type)
- return true;
- if (sgs->group_type < busiest->group_type)
- return false;
- if (sgs->avg_load <= busiest->avg_load)
- return false;
- if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
- goto asym_packing;
- /*
- * Candidate sg has no more than one task per CPU and
- * has higher per-CPU capacity. Migrating tasks to less
- * capable CPUs may harm throughput. Maximize throughput,
- * power/energy consequences are not considered.
- */
- if (sgs->sum_nr_running <= sgs->group_weight &&
- group_smaller_cpu_capacity(sds->local, sg))
- return false;
- asym_packing:
- /* This is the busiest node in its class. */
- if (!(env->sd->flags & SD_ASYM_PACKING))
- return true;
- /* No ASYM_PACKING if target CPU is already busy */
- if (env->idle == CPU_NOT_IDLE)
- return true;
- /*
- * ASYM_PACKING needs to move all the work to the highest
- * prority CPUs in the group, therefore mark all groups
- * of lower priority than ourself as busy.
- */
- if (sgs->sum_nr_running &&
- sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
- if (!sds->busiest)
- return true;
- /* Prefer to move from lowest priority CPU's work */
- if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
- sg->asym_prefer_cpu))
- return true;
- }
- return false;
- }
- #ifdef CONFIG_NUMA_BALANCING
- static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
- {
- if (sgs->sum_nr_running > sgs->nr_numa_running)
- return regular;
- if (sgs->sum_nr_running > sgs->nr_preferred_running)
- return remote;
- return all;
- }
- static inline enum fbq_type fbq_classify_rq(struct rq *rq)
- {
- if (rq->nr_running > rq->nr_numa_running)
- return regular;
- if (rq->nr_running > rq->nr_preferred_running)
- return remote;
- return all;
- }
- #else
- static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
- {
- return all;
- }
- static inline enum fbq_type fbq_classify_rq(struct rq *rq)
- {
- return regular;
- }
- #endif /* CONFIG_NUMA_BALANCING */
- /**
- * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
- * @env: The load balancing environment.
- * @sds: variable to hold the statistics for this sched_domain.
- */
- static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
- {
- struct sched_domain *child = env->sd->child;
- struct sched_group *sg = env->sd->groups;
- struct sg_lb_stats *local = &sds->local_stat;
- struct sg_lb_stats tmp_sgs;
- int load_idx, prefer_sibling = 0;
- bool overload = false;
- if (child && child->flags & SD_PREFER_SIBLING)
- prefer_sibling = 1;
- #ifdef CONFIG_NO_HZ_COMMON
- if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
- env->flags |= LBF_NOHZ_STATS;
- #endif
- load_idx = get_sd_load_idx(env->sd, env->idle);
- do {
- struct sg_lb_stats *sgs = &tmp_sgs;
- int local_group;
- local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
- if (local_group) {
- sds->local = sg;
- sgs = local;
- if (env->idle != CPU_NEWLY_IDLE ||
- time_after_eq(jiffies, sg->sgc->next_update))
- update_group_capacity(env->sd, env->dst_cpu);
- }
- update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
- &overload);
- if (local_group)
- goto next_group;
- /*
- * In case the child domain prefers tasks go to siblings
- * first, lower the sg capacity so that we'll try
- * and move all the excess tasks away. We lower the capacity
- * of a group only if the local group has the capacity to fit
- * these excess tasks. The extra check prevents the case where
- * you always pull from the heaviest group when it is already
- * under-utilized (possible with a large weight task outweighs
- * the tasks on the system).
- */
- if (prefer_sibling && sds->local &&
- group_has_capacity(env, local) &&
- (sgs->sum_nr_running > local->sum_nr_running + 1)) {
- sgs->group_no_capacity = 1;
- sgs->group_type = group_classify(sg, sgs);
- }
- if (update_sd_pick_busiest(env, sds, sg, sgs)) {
- sds->busiest = sg;
- sds->busiest_stat = *sgs;
- }
- next_group:
- /* Now, start updating sd_lb_stats */
- sds->total_running += sgs->sum_nr_running;
- sds->total_load += sgs->group_load;
- sds->total_capacity += sgs->group_capacity;
- sg = sg->next;
- } while (sg != env->sd->groups);
- #ifdef CONFIG_NO_HZ_COMMON
- if ((env->flags & LBF_NOHZ_AGAIN) &&
- cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
- WRITE_ONCE(nohz.next_blocked,
- jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
- }
- #endif
- if (env->sd->flags & SD_NUMA)
- env->fbq_type = fbq_classify_group(&sds->busiest_stat);
- if (!env->sd->parent) {
- /* update overload indicator if we are at root domain */
- if (env->dst_rq->rd->overload != overload)
- env->dst_rq->rd->overload = overload;
- }
- }
- /**
- * check_asym_packing - Check to see if the group is packed into the
- * sched domain.
- *
- * This is primarily intended to used at the sibling level. Some
- * cores like POWER7 prefer to use lower numbered SMT threads. In the
- * case of POWER7, it can move to lower SMT modes only when higher
- * threads are idle. When in lower SMT modes, the threads will
- * perform better since they share less core resources. Hence when we
- * have idle threads, we want them to be the higher ones.
- *
- * This packing function is run on idle threads. It checks to see if
- * the busiest CPU in this domain (core in the P7 case) has a higher
- * CPU number than the packing function is being run on. Here we are
- * assuming lower CPU number will be equivalent to lower a SMT thread
- * number.
- *
- * Return: 1 when packing is required and a task should be moved to
- * this CPU. The amount of the imbalance is returned in env->imbalance.
- *
- * @env: The load balancing environment.
- * @sds: Statistics of the sched_domain which is to be packed
- */
- static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
- {
- int busiest_cpu;
- if (!(env->sd->flags & SD_ASYM_PACKING))
- return 0;
- if (env->idle == CPU_NOT_IDLE)
- return 0;
- if (!sds->busiest)
- return 0;
- busiest_cpu = sds->busiest->asym_prefer_cpu;
- if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
- return 0;
- env->imbalance = DIV_ROUND_CLOSEST(
- sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
- SCHED_CAPACITY_SCALE);
- return 1;
- }
- /**
- * fix_small_imbalance - Calculate the minor imbalance that exists
- * amongst the groups of a sched_domain, during
- * load balancing.
- * @env: The load balancing environment.
- * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
- */
- static inline
- void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
- {
- unsigned long tmp, capa_now = 0, capa_move = 0;
- unsigned int imbn = 2;
- unsigned long scaled_busy_load_per_task;
- struct sg_lb_stats *local, *busiest;
- local = &sds->local_stat;
- busiest = &sds->busiest_stat;
- if (!local->sum_nr_running)
- local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
- else if (busiest->load_per_task > local->load_per_task)
- imbn = 1;
- scaled_busy_load_per_task =
- (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
- busiest->group_capacity;
- if (busiest->avg_load + scaled_busy_load_per_task >=
- local->avg_load + (scaled_busy_load_per_task * imbn)) {
- env->imbalance = busiest->load_per_task;
- return;
- }
- /*
- * OK, we don't have enough imbalance to justify moving tasks,
- * however we may be able to increase total CPU capacity used by
- * moving them.
- */
- capa_now += busiest->group_capacity *
- min(busiest->load_per_task, busiest->avg_load);
- capa_now += local->group_capacity *
- min(local->load_per_task, local->avg_load);
- capa_now /= SCHED_CAPACITY_SCALE;
- /* Amount of load we'd subtract */
- if (busiest->avg_load > scaled_busy_load_per_task) {
- capa_move += busiest->group_capacity *
- min(busiest->load_per_task,
- busiest->avg_load - scaled_busy_load_per_task);
- }
- /* Amount of load we'd add */
- if (busiest->avg_load * busiest->group_capacity <
- busiest->load_per_task * SCHED_CAPACITY_SCALE) {
- tmp = (busiest->avg_load * busiest->group_capacity) /
- local->group_capacity;
- } else {
- tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
- local->group_capacity;
- }
- capa_move += local->group_capacity *
- min(local->load_per_task, local->avg_load + tmp);
- capa_move /= SCHED_CAPACITY_SCALE;
- /* Move if we gain throughput */
- if (capa_move > capa_now)
- env->imbalance = busiest->load_per_task;
- }
- /**
- * calculate_imbalance - Calculate the amount of imbalance present within the
- * groups of a given sched_domain during load balance.
- * @env: load balance environment
- * @sds: statistics of the sched_domain whose imbalance is to be calculated.
- */
- static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
- {
- unsigned long max_pull, load_above_capacity = ~0UL;
- struct sg_lb_stats *local, *busiest;
- local = &sds->local_stat;
- busiest = &sds->busiest_stat;
- if (busiest->group_type == group_imbalanced) {
- /*
- * In the group_imb case we cannot rely on group-wide averages
- * to ensure CPU-load equilibrium, look at wider averages. XXX
- */
- busiest->load_per_task =
- min(busiest->load_per_task, sds->avg_load);
- }
- /*
- * Avg load of busiest sg can be less and avg load of local sg can
- * be greater than avg load across all sgs of sd because avg load
- * factors in sg capacity and sgs with smaller group_type are
- * skipped when updating the busiest sg:
- */
- if (busiest->avg_load <= sds->avg_load ||
- local->avg_load >= sds->avg_load) {
- env->imbalance = 0;
- return fix_small_imbalance(env, sds);
- }
- /*
- * If there aren't any idle CPUs, avoid creating some.
- */
- if (busiest->group_type == group_overloaded &&
- local->group_type == group_overloaded) {
- load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
- if (load_above_capacity > busiest->group_capacity) {
- load_above_capacity -= busiest->group_capacity;
- load_above_capacity *= scale_load_down(NICE_0_LOAD);
- load_above_capacity /= busiest->group_capacity;
- } else
- load_above_capacity = ~0UL;
- }
- /*
- * We're trying to get all the CPUs to the average_load, so we don't
- * want to push ourselves above the average load, nor do we wish to
- * reduce the max loaded CPU below the average load. At the same time,
- * we also don't want to reduce the group load below the group
- * capacity. Thus we look for the minimum possible imbalance.
- */
- max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
- /* How much load to actually move to equalise the imbalance */
- env->imbalance = min(
- max_pull * busiest->group_capacity,
- (sds->avg_load - local->avg_load) * local->group_capacity
- ) / SCHED_CAPACITY_SCALE;
- /*
- * if *imbalance is less than the average load per runnable task
- * there is no guarantee that any tasks will be moved so we'll have
- * a think about bumping its value to force at least one task to be
- * moved
- */
- if (env->imbalance < busiest->load_per_task)
- return fix_small_imbalance(env, sds);
- }
- /******* find_busiest_group() helpers end here *********************/
- /**
- * find_busiest_group - Returns the busiest group within the sched_domain
- * if there is an imbalance.
- *
- * Also calculates the amount of weighted load which should be moved
- * to restore balance.
- *
- * @env: The load balancing environment.
- *
- * Return: - The busiest group if imbalance exists.
- */
- static struct sched_group *find_busiest_group(struct lb_env *env)
- {
- struct sg_lb_stats *local, *busiest;
- struct sd_lb_stats sds;
- init_sd_lb_stats(&sds);
- /*
- * Compute the various statistics relavent for load balancing at
- * this level.
- */
- update_sd_lb_stats(env, &sds);
- local = &sds.local_stat;
- busiest = &sds.busiest_stat;
- /* ASYM feature bypasses nice load balance check */
- if (check_asym_packing(env, &sds))
- return sds.busiest;
- /* There is no busy sibling group to pull tasks from */
- if (!sds.busiest || busiest->sum_nr_running == 0)
- goto out_balanced;
- /* XXX broken for overlapping NUMA groups */
- sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
- / sds.total_capacity;
- /*
- * If the busiest group is imbalanced the below checks don't
- * work because they assume all things are equal, which typically
- * isn't true due to cpus_allowed constraints and the like.
- */
- if (busiest->group_type == group_imbalanced)
- goto force_balance;
- /*
- * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
- * capacities from resulting in underutilization due to avg_load.
- */
- if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
- busiest->group_no_capacity)
- goto force_balance;
- /*
- * If the local group is busier than the selected busiest group
- * don't try and pull any tasks.
- */
- if (local->avg_load >= busiest->avg_load)
- goto out_balanced;
- /*
- * Don't pull any tasks if this group is already above the domain
- * average load.
- */
- if (local->avg_load >= sds.avg_load)
- goto out_balanced;
- if (env->idle == CPU_IDLE) {
- /*
- * This CPU is idle. If the busiest group is not overloaded
- * and there is no imbalance between this and busiest group
- * wrt idle CPUs, it is balanced. The imbalance becomes
- * significant if the diff is greater than 1 otherwise we
- * might end up to just move the imbalance on another group
- */
- if ((busiest->group_type != group_overloaded) &&
- (local->idle_cpus <= (busiest->idle_cpus + 1)))
- goto out_balanced;
- } else {
- /*
- * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
- * imbalance_pct to be conservative.
- */
- if (100 * busiest->avg_load <=
- env->sd->imbalance_pct * local->avg_load)
- goto out_balanced;
- }
- force_balance:
- /* Looks like there is an imbalance. Compute it */
- calculate_imbalance(env, &sds);
- return env->imbalance ? sds.busiest : NULL;
- out_balanced:
- env->imbalance = 0;
- return NULL;
- }
- /*
- * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
- */
- static struct rq *find_busiest_queue(struct lb_env *env,
- struct sched_group *group)
- {
- struct rq *busiest = NULL, *rq;
- unsigned long busiest_load = 0, busiest_capacity = 1;
- int i;
- for_each_cpu_and(i, sched_group_span(group), env->cpus) {
- unsigned long capacity, wl;
- enum fbq_type rt;
- rq = cpu_rq(i);
- rt = fbq_classify_rq(rq);
- /*
- * We classify groups/runqueues into three groups:
- * - regular: there are !numa tasks
- * - remote: there are numa tasks that run on the 'wrong' node
- * - all: there is no distinction
- *
- * In order to avoid migrating ideally placed numa tasks,
- * ignore those when there's better options.
- *
- * If we ignore the actual busiest queue to migrate another
- * task, the next balance pass can still reduce the busiest
- * queue by moving tasks around inside the node.
- *
- * If we cannot move enough load due to this classification
- * the next pass will adjust the group classification and
- * allow migration of more tasks.
- *
- * Both cases only affect the total convergence complexity.
- */
- if (rt > env->fbq_type)
- continue;
- capacity = capacity_of(i);
- wl = weighted_cpuload(rq);
- /*
- * When comparing with imbalance, use weighted_cpuload()
- * which is not scaled with the CPU capacity.
- */
- if (rq->nr_running == 1 && wl > env->imbalance &&
- !check_cpu_capacity(rq, env->sd))
- continue;
- /*
- * For the load comparisons with the other CPU's, consider
- * the weighted_cpuload() scaled with the CPU capacity, so
- * that the load can be moved away from the CPU that is
- * potentially running at a lower capacity.
- *
- * Thus we're looking for max(wl_i / capacity_i), crosswise
- * multiplication to rid ourselves of the division works out
- * to: wl_i * capacity_j > wl_j * capacity_i; where j is
- * our previous maximum.
- */
- if (wl * busiest_capacity > busiest_load * capacity) {
- busiest_load = wl;
- busiest_capacity = capacity;
- busiest = rq;
- }
- }
- return busiest;
- }
- /*
- * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
- * so long as it is large enough.
- */
- #define MAX_PINNED_INTERVAL 512
- static int need_active_balance(struct lb_env *env)
- {
- struct sched_domain *sd = env->sd;
- if (env->idle == CPU_NEWLY_IDLE) {
- /*
- * ASYM_PACKING needs to force migrate tasks from busy but
- * lower priority CPUs in order to pack all tasks in the
- * highest priority CPUs.
- */
- if ((sd->flags & SD_ASYM_PACKING) &&
- sched_asym_prefer(env->dst_cpu, env->src_cpu))
- return 1;
- }
- /*
- * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
- * It's worth migrating the task if the src_cpu's capacity is reduced
- * because of other sched_class or IRQs if more capacity stays
- * available on dst_cpu.
- */
- if ((env->idle != CPU_NOT_IDLE) &&
- (env->src_rq->cfs.h_nr_running == 1)) {
- if ((check_cpu_capacity(env->src_rq, sd)) &&
- (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
- return 1;
- }
- return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
- }
- static int active_load_balance_cpu_stop(void *data);
- static int should_we_balance(struct lb_env *env)
- {
- struct sched_group *sg = env->sd->groups;
- int cpu, balance_cpu = -1;
- /*
- * Ensure the balancing environment is consistent; can happen
- * when the softirq triggers 'during' hotplug.
- */
- if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
- return 0;
- /*
- * In the newly idle case, we will allow all the CPUs
- * to do the newly idle load balance.
- */
- if (env->idle == CPU_NEWLY_IDLE)
- return 1;
- /* Try to find first idle CPU */
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
- if (!idle_cpu(cpu))
- continue;
- balance_cpu = cpu;
- break;
- }
- if (balance_cpu == -1)
- balance_cpu = group_balance_cpu(sg);
- /*
- * First idle CPU or the first CPU(busiest) in this sched group
- * is eligible for doing load balancing at this and above domains.
- */
- return balance_cpu == env->dst_cpu;
- }
- /*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- */
- static int load_balance(int this_cpu, struct rq *this_rq,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *continue_balancing)
- {
- int ld_moved, cur_ld_moved, active_balance = 0;
- struct sched_domain *sd_parent = sd->parent;
- struct sched_group *group;
- struct rq *busiest;
- struct rq_flags rf;
- struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
- struct lb_env env = {
- .sd = sd,
- .dst_cpu = this_cpu,
- .dst_rq = this_rq,
- .dst_grpmask = sched_group_span(sd->groups),
- .idle = idle,
- .loop_break = sched_nr_migrate_break,
- .cpus = cpus,
- .fbq_type = all,
- .tasks = LIST_HEAD_INIT(env.tasks),
- };
- cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
- schedstat_inc(sd->lb_count[idle]);
- redo:
- if (!should_we_balance(&env)) {
- *continue_balancing = 0;
- goto out_balanced;
- }
- group = find_busiest_group(&env);
- if (!group) {
- schedstat_inc(sd->lb_nobusyg[idle]);
- goto out_balanced;
- }
- busiest = find_busiest_queue(&env, group);
- if (!busiest) {
- schedstat_inc(sd->lb_nobusyq[idle]);
- goto out_balanced;
- }
- BUG_ON(busiest == env.dst_rq);
- schedstat_add(sd->lb_imbalance[idle], env.imbalance);
- env.src_cpu = busiest->cpu;
- env.src_rq = busiest;
- ld_moved = 0;
- if (busiest->nr_running > 1) {
- /*
- * Attempt to move tasks. If find_busiest_group has found
- * an imbalance but busiest->nr_running <= 1, the group is
- * still unbalanced. ld_moved simply stays zero, so it is
- * correctly treated as an imbalance.
- */
- env.flags |= LBF_ALL_PINNED;
- env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
- more_balance:
- rq_lock_irqsave(busiest, &rf);
- update_rq_clock(busiest);
- /*
- * cur_ld_moved - load moved in current iteration
- * ld_moved - cumulative load moved across iterations
- */
- cur_ld_moved = detach_tasks(&env);
- /*
- * We've detached some tasks from busiest_rq. Every
- * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
- * unlock busiest->lock, and we are able to be sure
- * that nobody can manipulate the tasks in parallel.
- * See task_rq_lock() family for the details.
- */
- rq_unlock(busiest, &rf);
- if (cur_ld_moved) {
- attach_tasks(&env);
- ld_moved += cur_ld_moved;
- }
- local_irq_restore(rf.flags);
- if (env.flags & LBF_NEED_BREAK) {
- env.flags &= ~LBF_NEED_BREAK;
- goto more_balance;
- }
- /*
- * Revisit (affine) tasks on src_cpu that couldn't be moved to
- * us and move them to an alternate dst_cpu in our sched_group
- * where they can run. The upper limit on how many times we
- * iterate on same src_cpu is dependent on number of CPUs in our
- * sched_group.
- *
- * This changes load balance semantics a bit on who can move
- * load to a given_cpu. In addition to the given_cpu itself
- * (or a ilb_cpu acting on its behalf where given_cpu is
- * nohz-idle), we now have balance_cpu in a position to move
- * load to given_cpu. In rare situations, this may cause
- * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
- * _independently_ and at _same_ time to move some load to
- * given_cpu) causing exceess load to be moved to given_cpu.
- * This however should not happen so much in practice and
- * moreover subsequent load balance cycles should correct the
- * excess load moved.
- */
- if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
- /* Prevent to re-select dst_cpu via env's CPUs */
- cpumask_clear_cpu(env.dst_cpu, env.cpus);
- env.dst_rq = cpu_rq(env.new_dst_cpu);
- env.dst_cpu = env.new_dst_cpu;
- env.flags &= ~LBF_DST_PINNED;
- env.loop = 0;
- env.loop_break = sched_nr_migrate_break;
- /*
- * Go back to "more_balance" rather than "redo" since we
- * need to continue with same src_cpu.
- */
- goto more_balance;
- }
- /*
- * We failed to reach balance because of affinity.
- */
- if (sd_parent) {
- int *group_imbalance = &sd_parent->groups->sgc->imbalance;
- if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
- *group_imbalance = 1;
- }
- /* All tasks on this runqueue were pinned by CPU affinity */
- if (unlikely(env.flags & LBF_ALL_PINNED)) {
- cpumask_clear_cpu(cpu_of(busiest), cpus);
- /*
- * Attempting to continue load balancing at the current
- * sched_domain level only makes sense if there are
- * active CPUs remaining as possible busiest CPUs to
- * pull load from which are not contained within the
- * destination group that is receiving any migrated
- * load.
- */
- if (!cpumask_subset(cpus, env.dst_grpmask)) {
- env.loop = 0;
- env.loop_break = sched_nr_migrate_break;
- goto redo;
- }
- goto out_all_pinned;
- }
- }
- if (!ld_moved) {
- schedstat_inc(sd->lb_failed[idle]);
- /*
- * Increment the failure counter only on periodic balance.
- * We do not want newidle balance, which can be very
- * frequent, pollute the failure counter causing
- * excessive cache_hot migrations and active balances.
- */
- if (idle != CPU_NEWLY_IDLE)
- sd->nr_balance_failed++;
- if (need_active_balance(&env)) {
- unsigned long flags;
- raw_spin_lock_irqsave(&busiest->lock, flags);
- /*
- * Don't kick the active_load_balance_cpu_stop,
- * if the curr task on busiest CPU can't be
- * moved to this_cpu:
- */
- if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
- raw_spin_unlock_irqrestore(&busiest->lock,
- flags);
- env.flags |= LBF_ALL_PINNED;
- goto out_one_pinned;
- }
- /*
- * ->active_balance synchronizes accesses to
- * ->active_balance_work. Once set, it's cleared
- * only after active load balance is finished.
- */
- if (!busiest->active_balance) {
- busiest->active_balance = 1;
- busiest->push_cpu = this_cpu;
- active_balance = 1;
- }
- raw_spin_unlock_irqrestore(&busiest->lock, flags);
- if (active_balance) {
- stop_one_cpu_nowait(cpu_of(busiest),
- active_load_balance_cpu_stop, busiest,
- &busiest->active_balance_work);
- }
- /* We've kicked active balancing, force task migration. */
- sd->nr_balance_failed = sd->cache_nice_tries+1;
- }
- } else
- sd->nr_balance_failed = 0;
- if (likely(!active_balance)) {
- /* We were unbalanced, so reset the balancing interval */
- sd->balance_interval = sd->min_interval;
- } else {
- /*
- * If we've begun active balancing, start to back off. This
- * case may not be covered by the all_pinned logic if there
- * is only 1 task on the busy runqueue (because we don't call
- * detach_tasks).
- */
- if (sd->balance_interval < sd->max_interval)
- sd->balance_interval *= 2;
- }
- goto out;
- out_balanced:
- /*
- * We reach balance although we may have faced some affinity
- * constraints. Clear the imbalance flag only if other tasks got
- * a chance to move and fix the imbalance.
- */
- if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
- int *group_imbalance = &sd_parent->groups->sgc->imbalance;
- if (*group_imbalance)
- *group_imbalance = 0;
- }
- out_all_pinned:
- /*
- * We reach balance because all tasks are pinned at this level so
- * we can't migrate them. Let the imbalance flag set so parent level
- * can try to migrate them.
- */
- schedstat_inc(sd->lb_balanced[idle]);
- sd->nr_balance_failed = 0;
- out_one_pinned:
- ld_moved = 0;
- /*
- * idle_balance() disregards balance intervals, so we could repeatedly
- * reach this code, which would lead to balance_interval skyrocketting
- * in a short amount of time. Skip the balance_interval increase logic
- * to avoid that.
- */
- if (env.idle == CPU_NEWLY_IDLE)
- goto out;
- /* tune up the balancing interval */
- if (((env.flags & LBF_ALL_PINNED) &&
- sd->balance_interval < MAX_PINNED_INTERVAL) ||
- (sd->balance_interval < sd->max_interval))
- sd->balance_interval *= 2;
- out:
- return ld_moved;
- }
- static inline unsigned long
- get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
- {
- unsigned long interval = sd->balance_interval;
- if (cpu_busy)
- interval *= sd->busy_factor;
- /* scale ms to jiffies */
- interval = msecs_to_jiffies(interval);
- interval = clamp(interval, 1UL, max_load_balance_interval);
- return interval;
- }
- static inline void
- update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
- {
- unsigned long interval, next;
- /* used by idle balance, so cpu_busy = 0 */
- interval = get_sd_balance_interval(sd, 0);
- next = sd->last_balance + interval;
- if (time_after(*next_balance, next))
- *next_balance = next;
- }
- /*
- * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
- * running tasks off the busiest CPU onto idle CPUs. It requires at
- * least 1 task to be running on each physical CPU where possible, and
- * avoids physical / logical imbalances.
- */
- static int active_load_balance_cpu_stop(void *data)
- {
- struct rq *busiest_rq = data;
- int busiest_cpu = cpu_of(busiest_rq);
- int target_cpu = busiest_rq->push_cpu;
- struct rq *target_rq = cpu_rq(target_cpu);
- struct sched_domain *sd;
- struct task_struct *p = NULL;
- struct rq_flags rf;
- rq_lock_irq(busiest_rq, &rf);
- /*
- * Between queueing the stop-work and running it is a hole in which
- * CPUs can become inactive. We should not move tasks from or to
- * inactive CPUs.
- */
- if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
- goto out_unlock;
- /* Make sure the requested CPU hasn't gone down in the meantime: */
- if (unlikely(busiest_cpu != smp_processor_id() ||
- !busiest_rq->active_balance))
- goto out_unlock;
- /* Is there any task to move? */
- if (busiest_rq->nr_running <= 1)
- goto out_unlock;
- /*
- * This condition is "impossible", if it occurs
- * we need to fix it. Originally reported by
- * Bjorn Helgaas on a 128-CPU setup.
- */
- BUG_ON(busiest_rq == target_rq);
- /* Search for an sd spanning us and the target CPU. */
- rcu_read_lock();
- for_each_domain(target_cpu, sd) {
- if ((sd->flags & SD_LOAD_BALANCE) &&
- cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
- break;
- }
- if (likely(sd)) {
- struct lb_env env = {
- .sd = sd,
- .dst_cpu = target_cpu,
- .dst_rq = target_rq,
- .src_cpu = busiest_rq->cpu,
- .src_rq = busiest_rq,
- .idle = CPU_IDLE,
- /*
- * can_migrate_task() doesn't need to compute new_dst_cpu
- * for active balancing. Since we have CPU_IDLE, but no
- * @dst_grpmask we need to make that test go away with lying
- * about DST_PINNED.
- */
- .flags = LBF_DST_PINNED,
- };
- schedstat_inc(sd->alb_count);
- update_rq_clock(busiest_rq);
- p = detach_one_task(&env);
- if (p) {
- schedstat_inc(sd->alb_pushed);
- /* Active balancing done, reset the failure counter. */
- sd->nr_balance_failed = 0;
- } else {
- schedstat_inc(sd->alb_failed);
- }
- }
- rcu_read_unlock();
- out_unlock:
- busiest_rq->active_balance = 0;
- rq_unlock(busiest_rq, &rf);
- if (p)
- attach_one_task(target_rq, p);
- local_irq_enable();
- return 0;
- }
- static DEFINE_SPINLOCK(balancing);
- /*
- * Scale the max load_balance interval with the number of CPUs in the system.
- * This trades load-balance latency on larger machines for less cross talk.
- */
- void update_max_interval(void)
- {
- max_load_balance_interval = HZ*num_online_cpus()/10;
- }
- /*
- * It checks each scheduling domain to see if it is due to be balanced,
- * and initiates a balancing operation if so.
- *
- * Balancing parameters are set up in init_sched_domains.
- */
- static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
- {
- int continue_balancing = 1;
- int cpu = rq->cpu;
- unsigned long interval;
- struct sched_domain *sd;
- /* Earliest time when we have to do rebalance again */
- unsigned long next_balance = jiffies + 60*HZ;
- int update_next_balance = 0;
- int need_serialize, need_decay = 0;
- u64 max_cost = 0;
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- /*
- * Decay the newidle max times here because this is a regular
- * visit to all the domains. Decay ~1% per second.
- */
- if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
- sd->max_newidle_lb_cost =
- (sd->max_newidle_lb_cost * 253) / 256;
- sd->next_decay_max_lb_cost = jiffies + HZ;
- need_decay = 1;
- }
- max_cost += sd->max_newidle_lb_cost;
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- /*
- * Stop the load balance at this level. There is another
- * CPU in our sched group which is doing load balancing more
- * actively.
- */
- if (!continue_balancing) {
- if (need_decay)
- continue;
- break;
- }
- interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
- need_serialize = sd->flags & SD_SERIALIZE;
- if (need_serialize) {
- if (!spin_trylock(&balancing))
- goto out;
- }
- if (time_after_eq(jiffies, sd->last_balance + interval)) {
- if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
- /*
- * The LBF_DST_PINNED logic could have changed
- * env->dst_cpu, so we can't know our idle
- * state even if we migrated tasks. Update it.
- */
- idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
- }
- sd->last_balance = jiffies;
- interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
- }
- if (need_serialize)
- spin_unlock(&balancing);
- out:
- if (time_after(next_balance, sd->last_balance + interval)) {
- next_balance = sd->last_balance + interval;
- update_next_balance = 1;
- }
- }
- if (need_decay) {
- /*
- * Ensure the rq-wide value also decays but keep it at a
- * reasonable floor to avoid funnies with rq->avg_idle.
- */
- rq->max_idle_balance_cost =
- max((u64)sysctl_sched_migration_cost, max_cost);
- }
- rcu_read_unlock();
- /*
- * next_balance will be updated only when there is a need.
- * When the cpu is attached to null domain for ex, it will not be
- * updated.
- */
- if (likely(update_next_balance)) {
- rq->next_balance = next_balance;
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * If this CPU has been elected to perform the nohz idle
- * balance. Other idle CPUs have already rebalanced with
- * nohz_idle_balance() and nohz.next_balance has been
- * updated accordingly. This CPU is now running the idle load
- * balance for itself and we need to update the
- * nohz.next_balance accordingly.
- */
- if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
- nohz.next_balance = rq->next_balance;
- #endif
- }
- }
- static inline int on_null_domain(struct rq *rq)
- {
- return unlikely(!rcu_dereference_sched(rq->sd));
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * idle load balancing details
- * - When one of the busy CPUs notice that there may be an idle rebalancing
- * needed, they will kick the idle load balancer, which then does idle
- * load balancing for all the idle CPUs.
- * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
- * anywhere yet.
- */
- static inline int find_new_ilb(void)
- {
- int ilb;
- for_each_cpu_and(ilb, nohz.idle_cpus_mask,
- housekeeping_cpumask(HK_FLAG_MISC)) {
- if (idle_cpu(ilb))
- return ilb;
- }
- return nr_cpu_ids;
- }
- /*
- * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
- * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
- */
- static void kick_ilb(unsigned int flags)
- {
- int ilb_cpu;
- nohz.next_balance++;
- ilb_cpu = find_new_ilb();
- if (ilb_cpu >= nr_cpu_ids)
- return;
- flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
- if (flags & NOHZ_KICK_MASK)
- return;
- /*
- * Use smp_send_reschedule() instead of resched_cpu().
- * This way we generate a sched IPI on the target CPU which
- * is idle. And the softirq performing nohz idle load balance
- * will be run before returning from the IPI.
- */
- smp_send_reschedule(ilb_cpu);
- }
- /*
- * Current heuristic for kicking the idle load balancer in the presence
- * of an idle cpu in the system.
- * - This rq has more than one task.
- * - This rq has at least one CFS task and the capacity of the CPU is
- * significantly reduced because of RT tasks or IRQs.
- * - At parent of LLC scheduler domain level, this cpu's scheduler group has
- * multiple busy cpu.
- * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
- * domain span are idle.
- */
- static void nohz_balancer_kick(struct rq *rq)
- {
- unsigned long now = jiffies;
- struct sched_domain_shared *sds;
- struct sched_domain *sd;
- int nr_busy, i, cpu = rq->cpu;
- unsigned int flags = 0;
- if (unlikely(rq->idle_balance))
- return;
- /*
- * We may be recently in ticked or tickless idle mode. At the first
- * busy tick after returning from idle, we will update the busy stats.
- */
- nohz_balance_exit_idle(rq);
- /*
- * None are in tickless mode and hence no need for NOHZ idle load
- * balancing.
- */
- if (likely(!atomic_read(&nohz.nr_cpus)))
- return;
- if (READ_ONCE(nohz.has_blocked) &&
- time_after(now, READ_ONCE(nohz.next_blocked)))
- flags = NOHZ_STATS_KICK;
- if (time_before(now, nohz.next_balance))
- goto out;
- if (rq->nr_running >= 2) {
- flags = NOHZ_KICK_MASK;
- goto out;
- }
- rcu_read_lock();
- sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
- if (sds) {
- /*
- * XXX: write a coherent comment on why we do this.
- * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
- */
- nr_busy = atomic_read(&sds->nr_busy_cpus);
- if (nr_busy > 1) {
- flags = NOHZ_KICK_MASK;
- goto unlock;
- }
- }
- sd = rcu_dereference(rq->sd);
- if (sd) {
- if ((rq->cfs.h_nr_running >= 1) &&
- check_cpu_capacity(rq, sd)) {
- flags = NOHZ_KICK_MASK;
- goto unlock;
- }
- }
- sd = rcu_dereference(per_cpu(sd_asym, cpu));
- if (sd) {
- for_each_cpu(i, sched_domain_span(sd)) {
- if (i == cpu ||
- !cpumask_test_cpu(i, nohz.idle_cpus_mask))
- continue;
- if (sched_asym_prefer(i, cpu)) {
- flags = NOHZ_KICK_MASK;
- goto unlock;
- }
- }
- }
- unlock:
- rcu_read_unlock();
- out:
- if (flags)
- kick_ilb(flags);
- }
- static void set_cpu_sd_state_busy(int cpu)
- {
- struct sched_domain *sd;
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_llc, cpu));
- if (!sd || !sd->nohz_idle)
- goto unlock;
- sd->nohz_idle = 0;
- atomic_inc(&sd->shared->nr_busy_cpus);
- unlock:
- rcu_read_unlock();
- }
- void nohz_balance_exit_idle(struct rq *rq)
- {
- SCHED_WARN_ON(rq != this_rq());
- if (likely(!rq->nohz_tick_stopped))
- return;
- rq->nohz_tick_stopped = 0;
- cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
- atomic_dec(&nohz.nr_cpus);
- set_cpu_sd_state_busy(rq->cpu);
- }
- static void set_cpu_sd_state_idle(int cpu)
- {
- struct sched_domain *sd;
- rcu_read_lock();
- sd = rcu_dereference(per_cpu(sd_llc, cpu));
- if (!sd || sd->nohz_idle)
- goto unlock;
- sd->nohz_idle = 1;
- atomic_dec(&sd->shared->nr_busy_cpus);
- unlock:
- rcu_read_unlock();
- }
- /*
- * This routine will record that the CPU is going idle with tick stopped.
- * This info will be used in performing idle load balancing in the future.
- */
- void nohz_balance_enter_idle(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- SCHED_WARN_ON(cpu != smp_processor_id());
- /* If this CPU is going down, then nothing needs to be done: */
- if (!cpu_active(cpu))
- return;
- /* Spare idle load balancing on CPUs that don't want to be disturbed: */
- if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
- return;
- /*
- * Can be set safely without rq->lock held
- * If a clear happens, it will have evaluated last additions because
- * rq->lock is held during the check and the clear
- */
- rq->has_blocked_load = 1;
- /*
- * The tick is still stopped but load could have been added in the
- * meantime. We set the nohz.has_blocked flag to trig a check of the
- * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
- * of nohz.has_blocked can only happen after checking the new load
- */
- if (rq->nohz_tick_stopped)
- goto out;
- /* If we're a completely isolated CPU, we don't play: */
- if (on_null_domain(rq))
- return;
- rq->nohz_tick_stopped = 1;
- cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
- atomic_inc(&nohz.nr_cpus);
- /*
- * Ensures that if nohz_idle_balance() fails to observe our
- * @idle_cpus_mask store, it must observe the @has_blocked
- * store.
- */
- smp_mb__after_atomic();
- set_cpu_sd_state_idle(cpu);
- out:
- /*
- * Each time a cpu enter idle, we assume that it has blocked load and
- * enable the periodic update of the load of idle cpus
- */
- WRITE_ONCE(nohz.has_blocked, 1);
- }
- /*
- * Internal function that runs load balance for all idle cpus. The load balance
- * can be a simple update of blocked load or a complete load balance with
- * tasks movement depending of flags.
- * The function returns false if the loop has stopped before running
- * through all idle CPUs.
- */
- static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
- enum cpu_idle_type idle)
- {
- /* Earliest time when we have to do rebalance again */
- unsigned long now = jiffies;
- unsigned long next_balance = now + 60*HZ;
- bool has_blocked_load = false;
- int update_next_balance = 0;
- int this_cpu = this_rq->cpu;
- int balance_cpu;
- int ret = false;
- struct rq *rq;
- SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
- /*
- * We assume there will be no idle load after this update and clear
- * the has_blocked flag. If a cpu enters idle in the mean time, it will
- * set the has_blocked flag and trig another update of idle load.
- * Because a cpu that becomes idle, is added to idle_cpus_mask before
- * setting the flag, we are sure to not clear the state and not
- * check the load of an idle cpu.
- */
- WRITE_ONCE(nohz.has_blocked, 0);
- /*
- * Ensures that if we miss the CPU, we must see the has_blocked
- * store from nohz_balance_enter_idle().
- */
- smp_mb();
- for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
- if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
- continue;
- /*
- * If this CPU gets work to do, stop the load balancing
- * work being done for other CPUs. Next load
- * balancing owner will pick it up.
- */
- if (need_resched()) {
- has_blocked_load = true;
- goto abort;
- }
- rq = cpu_rq(balance_cpu);
- has_blocked_load |= update_nohz_stats(rq, true);
- /*
- * If time for next balance is due,
- * do the balance.
- */
- if (time_after_eq(jiffies, rq->next_balance)) {
- struct rq_flags rf;
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
- cpu_load_update_idle(rq);
- rq_unlock_irqrestore(rq, &rf);
- if (flags & NOHZ_BALANCE_KICK)
- rebalance_domains(rq, CPU_IDLE);
- }
- if (time_after(next_balance, rq->next_balance)) {
- next_balance = rq->next_balance;
- update_next_balance = 1;
- }
- }
- /* Newly idle CPU doesn't need an update */
- if (idle != CPU_NEWLY_IDLE) {
- update_blocked_averages(this_cpu);
- has_blocked_load |= this_rq->has_blocked_load;
- }
- if (flags & NOHZ_BALANCE_KICK)
- rebalance_domains(this_rq, CPU_IDLE);
- WRITE_ONCE(nohz.next_blocked,
- now + msecs_to_jiffies(LOAD_AVG_PERIOD));
- /* The full idle balance loop has been done */
- ret = true;
- abort:
- /* There is still blocked load, enable periodic update */
- if (has_blocked_load)
- WRITE_ONCE(nohz.has_blocked, 1);
- /*
- * next_balance will be updated only when there is a need.
- * When the CPU is attached to null domain for ex, it will not be
- * updated.
- */
- if (likely(update_next_balance))
- nohz.next_balance = next_balance;
- return ret;
- }
- /*
- * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
- */
- static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
- {
- int this_cpu = this_rq->cpu;
- unsigned int flags;
- if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
- return false;
- if (idle != CPU_IDLE) {
- atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
- return false;
- }
- /*
- * barrier, pairs with nohz_balance_enter_idle(), ensures ...
- */
- flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
- if (!(flags & NOHZ_KICK_MASK))
- return false;
- _nohz_idle_balance(this_rq, flags, idle);
- return true;
- }
- static void nohz_newidle_balance(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu;
- /*
- * This CPU doesn't want to be disturbed by scheduler
- * housekeeping
- */
- if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
- return;
- /* Will wake up very soon. No time for doing anything else*/
- if (this_rq->avg_idle < sysctl_sched_migration_cost)
- return;
- /* Don't need to update blocked load of idle CPUs*/
- if (!READ_ONCE(nohz.has_blocked) ||
- time_before(jiffies, READ_ONCE(nohz.next_blocked)))
- return;
- raw_spin_unlock(&this_rq->lock);
- /*
- * This CPU is going to be idle and blocked load of idle CPUs
- * need to be updated. Run the ilb locally as it is a good
- * candidate for ilb instead of waking up another idle CPU.
- * Kick an normal ilb if we failed to do the update.
- */
- if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
- kick_ilb(NOHZ_STATS_KICK);
- raw_spin_lock(&this_rq->lock);
- }
- #else /* !CONFIG_NO_HZ_COMMON */
- static inline void nohz_balancer_kick(struct rq *rq) { }
- static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
- {
- return false;
- }
- static inline void nohz_newidle_balance(struct rq *this_rq) { }
- #endif /* CONFIG_NO_HZ_COMMON */
- /*
- * idle_balance is called by schedule() if this_cpu is about to become
- * idle. Attempts to pull tasks from other CPUs.
- */
- static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
- {
- unsigned long next_balance = jiffies + HZ;
- int this_cpu = this_rq->cpu;
- struct sched_domain *sd;
- int pulled_task = 0;
- u64 curr_cost = 0;
- /*
- * We must set idle_stamp _before_ calling idle_balance(), such that we
- * measure the duration of idle_balance() as idle time.
- */
- this_rq->idle_stamp = rq_clock(this_rq);
- /*
- * Do not pull tasks towards !active CPUs...
- */
- if (!cpu_active(this_cpu))
- return 0;
- /*
- * This is OK, because current is on_cpu, which avoids it being picked
- * for load-balance and preemption/IRQs are still disabled avoiding
- * further scheduler activity on it and we're being very careful to
- * re-start the picking loop.
- */
- rq_unpin_lock(this_rq, rf);
- if (this_rq->avg_idle < sysctl_sched_migration_cost ||
- !this_rq->rd->overload) {
- rcu_read_lock();
- sd = rcu_dereference_check_sched_domain(this_rq->sd);
- if (sd)
- update_next_balance(sd, &next_balance);
- rcu_read_unlock();
- nohz_newidle_balance(this_rq);
- goto out;
- }
- raw_spin_unlock(&this_rq->lock);
- update_blocked_averages(this_cpu);
- rcu_read_lock();
- for_each_domain(this_cpu, sd) {
- int continue_balancing = 1;
- u64 t0, domain_cost;
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
- update_next_balance(sd, &next_balance);
- break;
- }
- if (sd->flags & SD_BALANCE_NEWIDLE) {
- t0 = sched_clock_cpu(this_cpu);
- pulled_task = load_balance(this_cpu, this_rq,
- sd, CPU_NEWLY_IDLE,
- &continue_balancing);
- domain_cost = sched_clock_cpu(this_cpu) - t0;
- if (domain_cost > sd->max_newidle_lb_cost)
- sd->max_newidle_lb_cost = domain_cost;
- curr_cost += domain_cost;
- }
- update_next_balance(sd, &next_balance);
- /*
- * Stop searching for tasks to pull if there are
- * now runnable tasks on this rq.
- */
- if (pulled_task || this_rq->nr_running > 0)
- break;
- }
- rcu_read_unlock();
- raw_spin_lock(&this_rq->lock);
- if (curr_cost > this_rq->max_idle_balance_cost)
- this_rq->max_idle_balance_cost = curr_cost;
- out:
- /*
- * While browsing the domains, we released the rq lock, a task could
- * have been enqueued in the meantime. Since we're not going idle,
- * pretend we pulled a task.
- */
- if (this_rq->cfs.h_nr_running && !pulled_task)
- pulled_task = 1;
- /* Move the next balance forward */
- if (time_after(this_rq->next_balance, next_balance))
- this_rq->next_balance = next_balance;
- /* Is there a task of a high priority class? */
- if (this_rq->nr_running != this_rq->cfs.h_nr_running)
- pulled_task = -1;
- if (pulled_task)
- this_rq->idle_stamp = 0;
- rq_repin_lock(this_rq, rf);
- return pulled_task;
- }
- /*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
- */
- static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
- {
- struct rq *this_rq = this_rq();
- enum cpu_idle_type idle = this_rq->idle_balance ?
- CPU_IDLE : CPU_NOT_IDLE;
- /*
- * If this CPU has a pending nohz_balance_kick, then do the
- * balancing on behalf of the other idle CPUs whose ticks are
- * stopped. Do nohz_idle_balance *before* rebalance_domains to
- * give the idle CPUs a chance to load balance. Else we may
- * load balance only within the local sched_domain hierarchy
- * and abort nohz_idle_balance altogether if we pull some load.
- */
- if (nohz_idle_balance(this_rq, idle))
- return;
- /* normal load balance */
- update_blocked_averages(this_rq->cpu);
- rebalance_domains(this_rq, idle);
- }
- /*
- * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
- */
- void trigger_load_balance(struct rq *rq)
- {
- /* Don't need to rebalance while attached to NULL domain */
- if (unlikely(on_null_domain(rq)))
- return;
- if (time_after_eq(jiffies, rq->next_balance))
- raise_softirq(SCHED_SOFTIRQ);
- nohz_balancer_kick(rq);
- }
- static void rq_online_fair(struct rq *rq)
- {
- update_sysctl();
- update_runtime_enabled(rq);
- }
- static void rq_offline_fair(struct rq *rq)
- {
- update_sysctl();
- /* Ensure any throttled groups are reachable by pick_next_task */
- unthrottle_offline_cfs_rqs(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * scheduler tick hitting a task of our scheduling class.
- *
- * NOTE: This function can be called remotely by the tick offload that
- * goes along full dynticks. Therefore no local assumption can be made
- * and everything must be accessed through the @rq and @curr passed in
- * parameters.
- */
- static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &curr->se;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- entity_tick(cfs_rq, se, queued);
- }
- if (static_branch_unlikely(&sched_numa_balancing))
- task_tick_numa(rq, curr);
- }
- /*
- * called on fork with the child task as argument from the parent's context
- * - child not yet on the tasklist
- * - preemption disabled
- */
- static void task_fork_fair(struct task_struct *p)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se, *curr;
- struct rq *rq = this_rq();
- struct rq_flags rf;
- rq_lock(rq, &rf);
- update_rq_clock(rq);
- cfs_rq = task_cfs_rq(current);
- curr = cfs_rq->curr;
- if (curr) {
- update_curr(cfs_rq);
- se->vruntime = curr->vruntime;
- }
- place_entity(cfs_rq, se, 1);
- if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
- /*
- * Upon rescheduling, sched_class::put_prev_task() will place
- * 'current' within the tree based on its new key value.
- */
- swap(curr->vruntime, se->vruntime);
- resched_curr(rq);
- }
- se->vruntime -= cfs_rq->min_vruntime;
- rq_unlock(rq, &rf);
- }
- /*
- * Priority of the task has changed. Check to see if we preempt
- * the current task.
- */
- static void
- prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
- {
- if (!task_on_rq_queued(p))
- return;
- /*
- * Reschedule if we are currently running on this runqueue and
- * our priority decreased, or if we are not currently running on
- * this runqueue and our priority is higher than the current's
- */
- if (rq->curr == p) {
- if (p->prio > oldprio)
- resched_curr(rq);
- } else
- check_preempt_curr(rq, p, 0);
- }
- static inline bool vruntime_normalized(struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- /*
- * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
- * the dequeue_entity(.flags=0) will already have normalized the
- * vruntime.
- */
- if (p->on_rq)
- return true;
- /*
- * When !on_rq, vruntime of the task has usually NOT been normalized.
- * But there are some cases where it has already been normalized:
- *
- * - A forked child which is waiting for being woken up by
- * wake_up_new_task().
- * - A task which has been woken up by try_to_wake_up() and
- * waiting for actually being woken up by sched_ttwu_pending().
- */
- if (!se->sum_exec_runtime ||
- (p->state == TASK_WAKING && p->sched_remote_wakeup))
- return true;
- return false;
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /*
- * Propagate the changes of the sched_entity across the tg tree to make it
- * visible to the root
- */
- static void propagate_entity_cfs_rq(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq;
- /* Start to propagate at parent */
- se = se->parent;
- for_each_sched_entity(se) {
- cfs_rq = cfs_rq_of(se);
- if (cfs_rq_throttled(cfs_rq))
- break;
- update_load_avg(cfs_rq, se, UPDATE_TG);
- }
- }
- #else
- static void propagate_entity_cfs_rq(struct sched_entity *se) { }
- #endif
- static void detach_entity_cfs_rq(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- /* Catch up with the cfs_rq and remove our load when we leave */
- update_load_avg(cfs_rq, se, 0);
- detach_entity_load_avg(cfs_rq, se);
- update_tg_load_avg(cfs_rq, false);
- propagate_entity_cfs_rq(se);
- }
- static void attach_entity_cfs_rq(struct sched_entity *se)
- {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /*
- * Since the real-depth could have been changed (only FAIR
- * class maintain depth value), reset depth properly.
- */
- se->depth = se->parent ? se->parent->depth + 1 : 0;
- #endif
- /* Synchronize entity with its cfs_rq */
- update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
- attach_entity_load_avg(cfs_rq, se, 0);
- update_tg_load_avg(cfs_rq, false);
- propagate_entity_cfs_rq(se);
- }
- static void detach_task_cfs_rq(struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (!vruntime_normalized(p)) {
- /*
- * Fix up our vruntime so that the current sleep doesn't
- * cause 'unlimited' sleep bonus.
- */
- place_entity(cfs_rq, se, 0);
- se->vruntime -= cfs_rq->min_vruntime;
- }
- detach_entity_cfs_rq(se);
- }
- static void attach_task_cfs_rq(struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- attach_entity_cfs_rq(se);
- if (!vruntime_normalized(p))
- se->vruntime += cfs_rq->min_vruntime;
- }
- static void switched_from_fair(struct rq *rq, struct task_struct *p)
- {
- detach_task_cfs_rq(p);
- }
- static void switched_to_fair(struct rq *rq, struct task_struct *p)
- {
- attach_task_cfs_rq(p);
- if (task_on_rq_queued(p)) {
- /*
- * We were most likely switched from sched_rt, so
- * kick off the schedule if running, otherwise just see
- * if we can still preempt the current task.
- */
- if (rq->curr == p)
- resched_curr(rq);
- else
- check_preempt_curr(rq, p, 0);
- }
- }
- /* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
- static void set_curr_task_fair(struct rq *rq)
- {
- struct sched_entity *se = &rq->curr->se;
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- set_next_entity(cfs_rq, se);
- /* ensure bandwidth has been allocated on our new cfs_rq */
- account_cfs_rq_runtime(cfs_rq, 0);
- }
- }
- void init_cfs_rq(struct cfs_rq *cfs_rq)
- {
- cfs_rq->tasks_timeline = RB_ROOT_CACHED;
- cfs_rq->min_vruntime = (u64)(-(1LL << 20));
- #ifndef CONFIG_64BIT
- cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
- #endif
- #ifdef CONFIG_SMP
- raw_spin_lock_init(&cfs_rq->removed.lock);
- #endif
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void task_set_group_fair(struct task_struct *p)
- {
- struct sched_entity *se = &p->se;
- set_task_rq(p, task_cpu(p));
- se->depth = se->parent ? se->parent->depth + 1 : 0;
- }
- static void task_move_group_fair(struct task_struct *p)
- {
- detach_task_cfs_rq(p);
- set_task_rq(p, task_cpu(p));
- #ifdef CONFIG_SMP
- /* Tell se's cfs_rq has been changed -- migrated */
- p->se.avg.last_update_time = 0;
- #endif
- attach_task_cfs_rq(p);
- }
- static void task_change_group_fair(struct task_struct *p, int type)
- {
- switch (type) {
- case TASK_SET_GROUP:
- task_set_group_fair(p);
- break;
- case TASK_MOVE_GROUP:
- task_move_group_fair(p);
- break;
- }
- }
- void free_fair_sched_group(struct task_group *tg)
- {
- int i;
- destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
- for_each_possible_cpu(i) {
- if (tg->cfs_rq)
- kfree(tg->cfs_rq[i]);
- if (tg->se)
- kfree(tg->se[i]);
- }
- kfree(tg->cfs_rq);
- kfree(tg->se);
- }
- int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
- {
- struct sched_entity *se;
- struct cfs_rq *cfs_rq;
- int i;
- tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
- if (!tg->cfs_rq)
- goto err;
- tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
- if (!tg->se)
- goto err;
- tg->shares = NICE_0_LOAD;
- init_cfs_bandwidth(tg_cfs_bandwidth(tg));
- for_each_possible_cpu(i) {
- cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
- GFP_KERNEL, cpu_to_node(i));
- if (!cfs_rq)
- goto err;
- se = kzalloc_node(sizeof(struct sched_entity),
- GFP_KERNEL, cpu_to_node(i));
- if (!se)
- goto err_free_rq;
- init_cfs_rq(cfs_rq);
- init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
- init_entity_runnable_average(se);
- }
- return 1;
- err_free_rq:
- kfree(cfs_rq);
- err:
- return 0;
- }
- void online_fair_sched_group(struct task_group *tg)
- {
- struct sched_entity *se;
- struct rq_flags rf;
- struct rq *rq;
- int i;
- for_each_possible_cpu(i) {
- rq = cpu_rq(i);
- se = tg->se[i];
- rq_lock_irq(rq, &rf);
- update_rq_clock(rq);
- attach_entity_cfs_rq(se);
- sync_throttle(tg, i);
- rq_unlock_irq(rq, &rf);
- }
- }
- void unregister_fair_sched_group(struct task_group *tg)
- {
- unsigned long flags;
- struct rq *rq;
- int cpu;
- for_each_possible_cpu(cpu) {
- if (tg->se[cpu])
- remove_entity_load_avg(tg->se[cpu]);
- /*
- * Only empty task groups can be destroyed; so we can speculatively
- * check on_list without danger of it being re-added.
- */
- if (!tg->cfs_rq[cpu]->on_list)
- continue;
- rq = cpu_rq(cpu);
- raw_spin_lock_irqsave(&rq->lock, flags);
- list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- }
- }
- void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
- struct sched_entity *se, int cpu,
- struct sched_entity *parent)
- {
- struct rq *rq = cpu_rq(cpu);
- cfs_rq->tg = tg;
- cfs_rq->rq = rq;
- init_cfs_rq_runtime(cfs_rq);
- tg->cfs_rq[cpu] = cfs_rq;
- tg->se[cpu] = se;
- /* se could be NULL for root_task_group */
- if (!se)
- return;
- if (!parent) {
- se->cfs_rq = &rq->cfs;
- se->depth = 0;
- } else {
- se->cfs_rq = parent->my_q;
- se->depth = parent->depth + 1;
- }
- se->my_q = cfs_rq;
- /* guarantee group entities always have weight */
- update_load_set(&se->load, NICE_0_LOAD);
- se->parent = parent;
- }
- static DEFINE_MUTEX(shares_mutex);
- int sched_group_set_shares(struct task_group *tg, unsigned long shares)
- {
- int i;
- /*
- * We can't change the weight of the root cgroup.
- */
- if (!tg->se[0])
- return -EINVAL;
- shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
- mutex_lock(&shares_mutex);
- if (tg->shares == shares)
- goto done;
- tg->shares = shares;
- for_each_possible_cpu(i) {
- struct rq *rq = cpu_rq(i);
- struct sched_entity *se = tg->se[i];
- struct rq_flags rf;
- /* Propagate contribution to hierarchy */
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
- for_each_sched_entity(se) {
- update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
- update_cfs_group(se);
- }
- rq_unlock_irqrestore(rq, &rf);
- }
- done:
- mutex_unlock(&shares_mutex);
- return 0;
- }
- #else /* CONFIG_FAIR_GROUP_SCHED */
- void free_fair_sched_group(struct task_group *tg) { }
- int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
- {
- return 1;
- }
- void online_fair_sched_group(struct task_group *tg) { }
- void unregister_fair_sched_group(struct task_group *tg) { }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
- {
- struct sched_entity *se = &task->se;
- unsigned int rr_interval = 0;
- /*
- * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
- * idle runqueue:
- */
- if (rq->cfs.load.weight)
- rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
- return rr_interval;
- }
- /*
- * All the scheduling class methods:
- */
- const struct sched_class fair_sched_class = {
- .next = &idle_sched_class,
- .enqueue_task = enqueue_task_fair,
- .dequeue_task = dequeue_task_fair,
- .yield_task = yield_task_fair,
- .yield_to_task = yield_to_task_fair,
- .check_preempt_curr = check_preempt_wakeup,
- .pick_next_task = pick_next_task_fair,
- .put_prev_task = put_prev_task_fair,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_fair,
- .migrate_task_rq = migrate_task_rq_fair,
- .rq_online = rq_online_fair,
- .rq_offline = rq_offline_fair,
- .task_dead = task_dead_fair,
- .set_cpus_allowed = set_cpus_allowed_common,
- #endif
- .set_curr_task = set_curr_task_fair,
- .task_tick = task_tick_fair,
- .task_fork = task_fork_fair,
- .prio_changed = prio_changed_fair,
- .switched_from = switched_from_fair,
- .switched_to = switched_to_fair,
- .get_rr_interval = get_rr_interval_fair,
- .update_curr = update_curr_fair,
- #ifdef CONFIG_FAIR_GROUP_SCHED
- .task_change_group = task_change_group_fair,
- #endif
- };
- #ifdef CONFIG_SCHED_DEBUG
- void print_cfs_stats(struct seq_file *m, int cpu)
- {
- struct cfs_rq *cfs_rq, *pos;
- rcu_read_lock();
- for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
- print_cfs_rq(m, cpu, cfs_rq);
- rcu_read_unlock();
- }
- #ifdef CONFIG_NUMA_BALANCING
- void show_numa_stats(struct task_struct *p, struct seq_file *m)
- {
- int node;
- unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
- struct numa_group *ng;
- rcu_read_lock();
- ng = rcu_dereference(p->numa_group);
- for_each_online_node(node) {
- if (p->numa_faults) {
- tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
- tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- if (ng) {
- gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
- gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
- }
- print_numa_stats(m, node, tsf, tpf, gsf, gpf);
- }
- rcu_read_unlock();
- }
- #endif /* CONFIG_NUMA_BALANCING */
- #endif /* CONFIG_SCHED_DEBUG */
- __init void init_sched_fair_class(void)
- {
- #ifdef CONFIG_SMP
- open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
- #ifdef CONFIG_NO_HZ_COMMON
- nohz.next_balance = jiffies;
- nohz.next_blocked = jiffies;
- zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
- #endif
- #endif /* SMP */
- }
|