mapping.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * arch-independent dma-mapping routines
  4. *
  5. * Copyright (c) 2006 SUSE Linux Products GmbH
  6. * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
  7. */
  8. #include <linux/acpi.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/export.h>
  11. #include <linux/gfp.h>
  12. #include <linux/of_device.h>
  13. #include <linux/slab.h>
  14. #include <linux/vmalloc.h>
  15. /*
  16. * Managed DMA API
  17. */
  18. struct dma_devres {
  19. size_t size;
  20. void *vaddr;
  21. dma_addr_t dma_handle;
  22. unsigned long attrs;
  23. };
  24. static void dmam_release(struct device *dev, void *res)
  25. {
  26. struct dma_devres *this = res;
  27. dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  28. this->attrs);
  29. }
  30. static int dmam_match(struct device *dev, void *res, void *match_data)
  31. {
  32. struct dma_devres *this = res, *match = match_data;
  33. if (this->vaddr == match->vaddr) {
  34. WARN_ON(this->size != match->size ||
  35. this->dma_handle != match->dma_handle);
  36. return 1;
  37. }
  38. return 0;
  39. }
  40. /**
  41. * dmam_alloc_coherent - Managed dma_alloc_coherent()
  42. * @dev: Device to allocate coherent memory for
  43. * @size: Size of allocation
  44. * @dma_handle: Out argument for allocated DMA handle
  45. * @gfp: Allocation flags
  46. *
  47. * Managed dma_alloc_coherent(). Memory allocated using this function
  48. * will be automatically released on driver detach.
  49. *
  50. * RETURNS:
  51. * Pointer to allocated memory on success, NULL on failure.
  52. */
  53. void *dmam_alloc_coherent(struct device *dev, size_t size,
  54. dma_addr_t *dma_handle, gfp_t gfp)
  55. {
  56. struct dma_devres *dr;
  57. void *vaddr;
  58. dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  59. if (!dr)
  60. return NULL;
  61. vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
  62. if (!vaddr) {
  63. devres_free(dr);
  64. return NULL;
  65. }
  66. dr->vaddr = vaddr;
  67. dr->dma_handle = *dma_handle;
  68. dr->size = size;
  69. devres_add(dev, dr);
  70. return vaddr;
  71. }
  72. EXPORT_SYMBOL(dmam_alloc_coherent);
  73. /**
  74. * dmam_free_coherent - Managed dma_free_coherent()
  75. * @dev: Device to free coherent memory for
  76. * @size: Size of allocation
  77. * @vaddr: Virtual address of the memory to free
  78. * @dma_handle: DMA handle of the memory to free
  79. *
  80. * Managed dma_free_coherent().
  81. */
  82. void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  83. dma_addr_t dma_handle)
  84. {
  85. struct dma_devres match_data = { size, vaddr, dma_handle };
  86. dma_free_coherent(dev, size, vaddr, dma_handle);
  87. WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
  88. }
  89. EXPORT_SYMBOL(dmam_free_coherent);
  90. /**
  91. * dmam_alloc_attrs - Managed dma_alloc_attrs()
  92. * @dev: Device to allocate non_coherent memory for
  93. * @size: Size of allocation
  94. * @dma_handle: Out argument for allocated DMA handle
  95. * @gfp: Allocation flags
  96. * @attrs: Flags in the DMA_ATTR_* namespace.
  97. *
  98. * Managed dma_alloc_attrs(). Memory allocated using this function will be
  99. * automatically released on driver detach.
  100. *
  101. * RETURNS:
  102. * Pointer to allocated memory on success, NULL on failure.
  103. */
  104. void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
  105. gfp_t gfp, unsigned long attrs)
  106. {
  107. struct dma_devres *dr;
  108. void *vaddr;
  109. dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  110. if (!dr)
  111. return NULL;
  112. vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
  113. if (!vaddr) {
  114. devres_free(dr);
  115. return NULL;
  116. }
  117. dr->vaddr = vaddr;
  118. dr->dma_handle = *dma_handle;
  119. dr->size = size;
  120. dr->attrs = attrs;
  121. devres_add(dev, dr);
  122. return vaddr;
  123. }
  124. EXPORT_SYMBOL(dmam_alloc_attrs);
  125. #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
  126. static void dmam_coherent_decl_release(struct device *dev, void *res)
  127. {
  128. dma_release_declared_memory(dev);
  129. }
  130. /**
  131. * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
  132. * @dev: Device to declare coherent memory for
  133. * @phys_addr: Physical address of coherent memory to be declared
  134. * @device_addr: Device address of coherent memory to be declared
  135. * @size: Size of coherent memory to be declared
  136. * @flags: Flags
  137. *
  138. * Managed dma_declare_coherent_memory().
  139. *
  140. * RETURNS:
  141. * 0 on success, -errno on failure.
  142. */
  143. int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
  144. dma_addr_t device_addr, size_t size, int flags)
  145. {
  146. void *res;
  147. int rc;
  148. res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
  149. if (!res)
  150. return -ENOMEM;
  151. rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
  152. flags);
  153. if (!rc)
  154. devres_add(dev, res);
  155. else
  156. devres_free(res);
  157. return rc;
  158. }
  159. EXPORT_SYMBOL(dmam_declare_coherent_memory);
  160. /**
  161. * dmam_release_declared_memory - Managed dma_release_declared_memory().
  162. * @dev: Device to release declared coherent memory for
  163. *
  164. * Managed dmam_release_declared_memory().
  165. */
  166. void dmam_release_declared_memory(struct device *dev)
  167. {
  168. WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
  169. }
  170. EXPORT_SYMBOL(dmam_release_declared_memory);
  171. #endif
  172. /*
  173. * Create scatter-list for the already allocated DMA buffer.
  174. */
  175. int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
  176. void *cpu_addr, dma_addr_t handle, size_t size)
  177. {
  178. struct page *page = virt_to_page(cpu_addr);
  179. int ret;
  180. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  181. if (unlikely(ret))
  182. return ret;
  183. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  184. return 0;
  185. }
  186. EXPORT_SYMBOL(dma_common_get_sgtable);
  187. /*
  188. * Create userspace mapping for the DMA-coherent memory.
  189. */
  190. int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
  191. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  192. {
  193. int ret = -ENXIO;
  194. #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
  195. unsigned long user_count = vma_pages(vma);
  196. unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  197. unsigned long off = vma->vm_pgoff;
  198. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  199. if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
  200. return ret;
  201. if (off < count && user_count <= (count - off))
  202. ret = remap_pfn_range(vma, vma->vm_start,
  203. page_to_pfn(virt_to_page(cpu_addr)) + off,
  204. user_count << PAGE_SHIFT,
  205. vma->vm_page_prot);
  206. #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
  207. return ret;
  208. }
  209. EXPORT_SYMBOL(dma_common_mmap);
  210. #ifdef CONFIG_MMU
  211. static struct vm_struct *__dma_common_pages_remap(struct page **pages,
  212. size_t size, unsigned long vm_flags, pgprot_t prot,
  213. const void *caller)
  214. {
  215. struct vm_struct *area;
  216. area = get_vm_area_caller(size, vm_flags, caller);
  217. if (!area)
  218. return NULL;
  219. if (map_vm_area(area, prot, pages)) {
  220. vunmap(area->addr);
  221. return NULL;
  222. }
  223. return area;
  224. }
  225. /*
  226. * remaps an array of PAGE_SIZE pages into another vm_area
  227. * Cannot be used in non-sleeping contexts
  228. */
  229. void *dma_common_pages_remap(struct page **pages, size_t size,
  230. unsigned long vm_flags, pgprot_t prot,
  231. const void *caller)
  232. {
  233. struct vm_struct *area;
  234. area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
  235. if (!area)
  236. return NULL;
  237. area->pages = pages;
  238. return area->addr;
  239. }
  240. /*
  241. * remaps an allocated contiguous region into another vm_area.
  242. * Cannot be used in non-sleeping contexts
  243. */
  244. void *dma_common_contiguous_remap(struct page *page, size_t size,
  245. unsigned long vm_flags,
  246. pgprot_t prot, const void *caller)
  247. {
  248. int i;
  249. struct page **pages;
  250. struct vm_struct *area;
  251. pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
  252. if (!pages)
  253. return NULL;
  254. for (i = 0; i < (size >> PAGE_SHIFT); i++)
  255. pages[i] = nth_page(page, i);
  256. area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
  257. kfree(pages);
  258. if (!area)
  259. return NULL;
  260. return area->addr;
  261. }
  262. /*
  263. * unmaps a range previously mapped by dma_common_*_remap
  264. */
  265. void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
  266. {
  267. struct vm_struct *area = find_vm_area(cpu_addr);
  268. if (!area || (area->flags & vm_flags) != vm_flags) {
  269. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  270. return;
  271. }
  272. unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
  273. vunmap(cpu_addr);
  274. }
  275. #endif
  276. /*
  277. * enables DMA API use for a device
  278. */
  279. int dma_configure(struct device *dev)
  280. {
  281. if (dev->bus->dma_configure)
  282. return dev->bus->dma_configure(dev);
  283. return 0;
  284. }
  285. void dma_deconfigure(struct device *dev)
  286. {
  287. of_dma_deconfigure(dev);
  288. acpi_dma_deconfigure(dev);
  289. }