123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715 |
- /*
- * Longest prefix match list implementation
- *
- * Copyright (c) 2016,2017 Daniel Mack
- * Copyright (c) 2016 David Herrmann
- *
- * This file is subject to the terms and conditions of version 2 of the GNU
- * General Public License. See the file COPYING in the main directory of the
- * Linux distribution for more details.
- */
- #include <linux/bpf.h>
- #include <linux/btf.h>
- #include <linux/err.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/vmalloc.h>
- #include <net/ipv6.h>
- #include <uapi/linux/btf.h>
- /* Intermediate node */
- #define LPM_TREE_NODE_FLAG_IM BIT(0)
- struct lpm_trie_node;
- struct lpm_trie_node {
- struct rcu_head rcu;
- struct lpm_trie_node __rcu *child[2];
- u32 prefixlen;
- u32 flags;
- u8 data[0];
- };
- struct lpm_trie {
- struct bpf_map map;
- struct lpm_trie_node __rcu *root;
- size_t n_entries;
- size_t max_prefixlen;
- size_t data_size;
- raw_spinlock_t lock;
- };
- /* This trie implements a longest prefix match algorithm that can be used to
- * match IP addresses to a stored set of ranges.
- *
- * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
- * interpreted as big endian, so data[0] stores the most significant byte.
- *
- * Match ranges are internally stored in instances of struct lpm_trie_node
- * which each contain their prefix length as well as two pointers that may
- * lead to more nodes containing more specific matches. Each node also stores
- * a value that is defined by and returned to userspace via the update_elem
- * and lookup functions.
- *
- * For instance, let's start with a trie that was created with a prefix length
- * of 32, so it can be used for IPv4 addresses, and one single element that
- * matches 192.168.0.0/16. The data array would hence contain
- * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
- * stick to IP-address notation for readability though.
- *
- * As the trie is empty initially, the new node (1) will be places as root
- * node, denoted as (R) in the example below. As there are no other node, both
- * child pointers are %NULL.
- *
- * +----------------+
- * | (1) (R) |
- * | 192.168.0.0/16 |
- * | value: 1 |
- * | [0] [1] |
- * +----------------+
- *
- * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
- * a node with the same data and a smaller prefix (ie, a less specific one),
- * node (2) will become a child of (1). In child index depends on the next bit
- * that is outside of what (1) matches, and that bit is 0, so (2) will be
- * child[0] of (1):
- *
- * +----------------+
- * | (1) (R) |
- * | 192.168.0.0/16 |
- * | value: 1 |
- * | [0] [1] |
- * +----------------+
- * |
- * +----------------+
- * | (2) |
- * | 192.168.0.0/24 |
- * | value: 2 |
- * | [0] [1] |
- * +----------------+
- *
- * The child[1] slot of (1) could be filled with another node which has bit #17
- * (the next bit after the ones that (1) matches on) set to 1. For instance,
- * 192.168.128.0/24:
- *
- * +----------------+
- * | (1) (R) |
- * | 192.168.0.0/16 |
- * | value: 1 |
- * | [0] [1] |
- * +----------------+
- * | |
- * +----------------+ +------------------+
- * | (2) | | (3) |
- * | 192.168.0.0/24 | | 192.168.128.0/24 |
- * | value: 2 | | value: 3 |
- * | [0] [1] | | [0] [1] |
- * +----------------+ +------------------+
- *
- * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
- * it, node (1) is looked at first, and because (4) of the semantics laid out
- * above (bit #17 is 0), it would normally be attached to (1) as child[0].
- * However, that slot is already allocated, so a new node is needed in between.
- * That node does not have a value attached to it and it will never be
- * returned to users as result of a lookup. It is only there to differentiate
- * the traversal further. It will get a prefix as wide as necessary to
- * distinguish its two children:
- *
- * +----------------+
- * | (1) (R) |
- * | 192.168.0.0/16 |
- * | value: 1 |
- * | [0] [1] |
- * +----------------+
- * | |
- * +----------------+ +------------------+
- * | (4) (I) | | (3) |
- * | 192.168.0.0/23 | | 192.168.128.0/24 |
- * | value: --- | | value: 3 |
- * | [0] [1] | | [0] [1] |
- * +----------------+ +------------------+
- * | |
- * +----------------+ +----------------+
- * | (2) | | (5) |
- * | 192.168.0.0/24 | | 192.168.1.0/24 |
- * | value: 2 | | value: 5 |
- * | [0] [1] | | [0] [1] |
- * +----------------+ +----------------+
- *
- * 192.168.1.1/32 would be a child of (5) etc.
- *
- * An intermediate node will be turned into a 'real' node on demand. In the
- * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
- *
- * A fully populated trie would have a height of 32 nodes, as the trie was
- * created with a prefix length of 32.
- *
- * The lookup starts at the root node. If the current node matches and if there
- * is a child that can be used to become more specific, the trie is traversed
- * downwards. The last node in the traversal that is a non-intermediate one is
- * returned.
- */
- static inline int extract_bit(const u8 *data, size_t index)
- {
- return !!(data[index / 8] & (1 << (7 - (index % 8))));
- }
- /**
- * longest_prefix_match() - determine the longest prefix
- * @trie: The trie to get internal sizes from
- * @node: The node to operate on
- * @key: The key to compare to @node
- *
- * Determine the longest prefix of @node that matches the bits in @key.
- */
- static size_t longest_prefix_match(const struct lpm_trie *trie,
- const struct lpm_trie_node *node,
- const struct bpf_lpm_trie_key *key)
- {
- size_t prefixlen = 0;
- size_t i;
- for (i = 0; i < trie->data_size; i++) {
- size_t b;
- b = 8 - fls(node->data[i] ^ key->data[i]);
- prefixlen += b;
- if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
- return min(node->prefixlen, key->prefixlen);
- if (b < 8)
- break;
- }
- return prefixlen;
- }
- /* Called from syscall or from eBPF program */
- static void *trie_lookup_elem(struct bpf_map *map, void *_key)
- {
- struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
- struct lpm_trie_node *node, *found = NULL;
- struct bpf_lpm_trie_key *key = _key;
- /* Start walking the trie from the root node ... */
- for (node = rcu_dereference(trie->root); node;) {
- unsigned int next_bit;
- size_t matchlen;
- /* Determine the longest prefix of @node that matches @key.
- * If it's the maximum possible prefix for this trie, we have
- * an exact match and can return it directly.
- */
- matchlen = longest_prefix_match(trie, node, key);
- if (matchlen == trie->max_prefixlen) {
- found = node;
- break;
- }
- /* If the number of bits that match is smaller than the prefix
- * length of @node, bail out and return the node we have seen
- * last in the traversal (ie, the parent).
- */
- if (matchlen < node->prefixlen)
- break;
- /* Consider this node as return candidate unless it is an
- * artificially added intermediate one.
- */
- if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
- found = node;
- /* If the node match is fully satisfied, let's see if we can
- * become more specific. Determine the next bit in the key and
- * traverse down.
- */
- next_bit = extract_bit(key->data, node->prefixlen);
- node = rcu_dereference(node->child[next_bit]);
- }
- if (!found)
- return NULL;
- return found->data + trie->data_size;
- }
- static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
- const void *value)
- {
- struct lpm_trie_node *node;
- size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
- if (value)
- size += trie->map.value_size;
- node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
- trie->map.numa_node);
- if (!node)
- return NULL;
- node->flags = 0;
- if (value)
- memcpy(node->data + trie->data_size, value,
- trie->map.value_size);
- return node;
- }
- /* Called from syscall or from eBPF program */
- static int trie_update_elem(struct bpf_map *map,
- void *_key, void *value, u64 flags)
- {
- struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
- struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
- struct lpm_trie_node __rcu **slot;
- struct bpf_lpm_trie_key *key = _key;
- unsigned long irq_flags;
- unsigned int next_bit;
- size_t matchlen = 0;
- int ret = 0;
- if (unlikely(flags > BPF_EXIST))
- return -EINVAL;
- if (key->prefixlen > trie->max_prefixlen)
- return -EINVAL;
- raw_spin_lock_irqsave(&trie->lock, irq_flags);
- /* Allocate and fill a new node */
- if (trie->n_entries == trie->map.max_entries) {
- ret = -ENOSPC;
- goto out;
- }
- new_node = lpm_trie_node_alloc(trie, value);
- if (!new_node) {
- ret = -ENOMEM;
- goto out;
- }
- trie->n_entries++;
- new_node->prefixlen = key->prefixlen;
- RCU_INIT_POINTER(new_node->child[0], NULL);
- RCU_INIT_POINTER(new_node->child[1], NULL);
- memcpy(new_node->data, key->data, trie->data_size);
- /* Now find a slot to attach the new node. To do that, walk the tree
- * from the root and match as many bits as possible for each node until
- * we either find an empty slot or a slot that needs to be replaced by
- * an intermediate node.
- */
- slot = &trie->root;
- while ((node = rcu_dereference_protected(*slot,
- lockdep_is_held(&trie->lock)))) {
- matchlen = longest_prefix_match(trie, node, key);
- if (node->prefixlen != matchlen ||
- node->prefixlen == key->prefixlen ||
- node->prefixlen == trie->max_prefixlen)
- break;
- next_bit = extract_bit(key->data, node->prefixlen);
- slot = &node->child[next_bit];
- }
- /* If the slot is empty (a free child pointer or an empty root),
- * simply assign the @new_node to that slot and be done.
- */
- if (!node) {
- rcu_assign_pointer(*slot, new_node);
- goto out;
- }
- /* If the slot we picked already exists, replace it with @new_node
- * which already has the correct data array set.
- */
- if (node->prefixlen == matchlen) {
- new_node->child[0] = node->child[0];
- new_node->child[1] = node->child[1];
- if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
- trie->n_entries--;
- rcu_assign_pointer(*slot, new_node);
- kfree_rcu(node, rcu);
- goto out;
- }
- /* If the new node matches the prefix completely, it must be inserted
- * as an ancestor. Simply insert it between @node and *@slot.
- */
- if (matchlen == key->prefixlen) {
- next_bit = extract_bit(node->data, matchlen);
- rcu_assign_pointer(new_node->child[next_bit], node);
- rcu_assign_pointer(*slot, new_node);
- goto out;
- }
- im_node = lpm_trie_node_alloc(trie, NULL);
- if (!im_node) {
- ret = -ENOMEM;
- goto out;
- }
- im_node->prefixlen = matchlen;
- im_node->flags |= LPM_TREE_NODE_FLAG_IM;
- memcpy(im_node->data, node->data, trie->data_size);
- /* Now determine which child to install in which slot */
- if (extract_bit(key->data, matchlen)) {
- rcu_assign_pointer(im_node->child[0], node);
- rcu_assign_pointer(im_node->child[1], new_node);
- } else {
- rcu_assign_pointer(im_node->child[0], new_node);
- rcu_assign_pointer(im_node->child[1], node);
- }
- /* Finally, assign the intermediate node to the determined spot */
- rcu_assign_pointer(*slot, im_node);
- out:
- if (ret) {
- if (new_node)
- trie->n_entries--;
- kfree(new_node);
- kfree(im_node);
- }
- raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
- return ret;
- }
- /* Called from syscall or from eBPF program */
- static int trie_delete_elem(struct bpf_map *map, void *_key)
- {
- struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
- struct bpf_lpm_trie_key *key = _key;
- struct lpm_trie_node __rcu **trim, **trim2;
- struct lpm_trie_node *node, *parent;
- unsigned long irq_flags;
- unsigned int next_bit;
- size_t matchlen = 0;
- int ret = 0;
- if (key->prefixlen > trie->max_prefixlen)
- return -EINVAL;
- raw_spin_lock_irqsave(&trie->lock, irq_flags);
- /* Walk the tree looking for an exact key/length match and keeping
- * track of the path we traverse. We will need to know the node
- * we wish to delete, and the slot that points to the node we want
- * to delete. We may also need to know the nodes parent and the
- * slot that contains it.
- */
- trim = &trie->root;
- trim2 = trim;
- parent = NULL;
- while ((node = rcu_dereference_protected(
- *trim, lockdep_is_held(&trie->lock)))) {
- matchlen = longest_prefix_match(trie, node, key);
- if (node->prefixlen != matchlen ||
- node->prefixlen == key->prefixlen)
- break;
- parent = node;
- trim2 = trim;
- next_bit = extract_bit(key->data, node->prefixlen);
- trim = &node->child[next_bit];
- }
- if (!node || node->prefixlen != key->prefixlen ||
- node->prefixlen != matchlen ||
- (node->flags & LPM_TREE_NODE_FLAG_IM)) {
- ret = -ENOENT;
- goto out;
- }
- trie->n_entries--;
- /* If the node we are removing has two children, simply mark it
- * as intermediate and we are done.
- */
- if (rcu_access_pointer(node->child[0]) &&
- rcu_access_pointer(node->child[1])) {
- node->flags |= LPM_TREE_NODE_FLAG_IM;
- goto out;
- }
- /* If the parent of the node we are about to delete is an intermediate
- * node, and the deleted node doesn't have any children, we can delete
- * the intermediate parent as well and promote its other child
- * up the tree. Doing this maintains the invariant that all
- * intermediate nodes have exactly 2 children and that there are no
- * unnecessary intermediate nodes in the tree.
- */
- if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
- !node->child[0] && !node->child[1]) {
- if (node == rcu_access_pointer(parent->child[0]))
- rcu_assign_pointer(
- *trim2, rcu_access_pointer(parent->child[1]));
- else
- rcu_assign_pointer(
- *trim2, rcu_access_pointer(parent->child[0]));
- kfree_rcu(parent, rcu);
- kfree_rcu(node, rcu);
- goto out;
- }
- /* The node we are removing has either zero or one child. If there
- * is a child, move it into the removed node's slot then delete
- * the node. Otherwise just clear the slot and delete the node.
- */
- if (node->child[0])
- rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
- else if (node->child[1])
- rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
- else
- RCU_INIT_POINTER(*trim, NULL);
- kfree_rcu(node, rcu);
- out:
- raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
- return ret;
- }
- #define LPM_DATA_SIZE_MAX 256
- #define LPM_DATA_SIZE_MIN 1
- #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
- sizeof(struct lpm_trie_node))
- #define LPM_VAL_SIZE_MIN 1
- #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
- #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
- #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
- #define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
- BPF_F_RDONLY | BPF_F_WRONLY)
- static struct bpf_map *trie_alloc(union bpf_attr *attr)
- {
- struct lpm_trie *trie;
- u64 cost = sizeof(*trie), cost_per_node;
- int ret;
- if (!capable(CAP_SYS_ADMIN))
- return ERR_PTR(-EPERM);
- /* check sanity of attributes */
- if (attr->max_entries == 0 ||
- !(attr->map_flags & BPF_F_NO_PREALLOC) ||
- attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
- attr->key_size < LPM_KEY_SIZE_MIN ||
- attr->key_size > LPM_KEY_SIZE_MAX ||
- attr->value_size < LPM_VAL_SIZE_MIN ||
- attr->value_size > LPM_VAL_SIZE_MAX)
- return ERR_PTR(-EINVAL);
- trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
- if (!trie)
- return ERR_PTR(-ENOMEM);
- /* copy mandatory map attributes */
- bpf_map_init_from_attr(&trie->map, attr);
- trie->data_size = attr->key_size -
- offsetof(struct bpf_lpm_trie_key, data);
- trie->max_prefixlen = trie->data_size * 8;
- cost_per_node = sizeof(struct lpm_trie_node) +
- attr->value_size + trie->data_size;
- cost += (u64) attr->max_entries * cost_per_node;
- if (cost >= U32_MAX - PAGE_SIZE) {
- ret = -E2BIG;
- goto out_err;
- }
- trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
- ret = bpf_map_precharge_memlock(trie->map.pages);
- if (ret)
- goto out_err;
- raw_spin_lock_init(&trie->lock);
- return &trie->map;
- out_err:
- kfree(trie);
- return ERR_PTR(ret);
- }
- static void trie_free(struct bpf_map *map)
- {
- struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
- struct lpm_trie_node __rcu **slot;
- struct lpm_trie_node *node;
- /* Wait for outstanding programs to complete
- * update/lookup/delete/get_next_key and free the trie.
- */
- synchronize_rcu();
- /* Always start at the root and walk down to a node that has no
- * children. Then free that node, nullify its reference in the parent
- * and start over.
- */
- for (;;) {
- slot = &trie->root;
- for (;;) {
- node = rcu_dereference_protected(*slot, 1);
- if (!node)
- goto out;
- if (rcu_access_pointer(node->child[0])) {
- slot = &node->child[0];
- continue;
- }
- if (rcu_access_pointer(node->child[1])) {
- slot = &node->child[1];
- continue;
- }
- kfree(node);
- RCU_INIT_POINTER(*slot, NULL);
- break;
- }
- }
- out:
- kfree(trie);
- }
- static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
- {
- struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
- struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
- struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
- struct lpm_trie_node **node_stack = NULL;
- int err = 0, stack_ptr = -1;
- unsigned int next_bit;
- size_t matchlen;
- /* The get_next_key follows postorder. For the 4 node example in
- * the top of this file, the trie_get_next_key() returns the following
- * one after another:
- * 192.168.0.0/24
- * 192.168.1.0/24
- * 192.168.128.0/24
- * 192.168.0.0/16
- *
- * The idea is to return more specific keys before less specific ones.
- */
- /* Empty trie */
- search_root = rcu_dereference(trie->root);
- if (!search_root)
- return -ENOENT;
- /* For invalid key, find the leftmost node in the trie */
- if (!key || key->prefixlen > trie->max_prefixlen)
- goto find_leftmost;
- node_stack = kmalloc_array(trie->max_prefixlen,
- sizeof(struct lpm_trie_node *),
- GFP_ATOMIC | __GFP_NOWARN);
- if (!node_stack)
- return -ENOMEM;
- /* Try to find the exact node for the given key */
- for (node = search_root; node;) {
- node_stack[++stack_ptr] = node;
- matchlen = longest_prefix_match(trie, node, key);
- if (node->prefixlen != matchlen ||
- node->prefixlen == key->prefixlen)
- break;
- next_bit = extract_bit(key->data, node->prefixlen);
- node = rcu_dereference(node->child[next_bit]);
- }
- if (!node || node->prefixlen != key->prefixlen ||
- (node->flags & LPM_TREE_NODE_FLAG_IM))
- goto find_leftmost;
- /* The node with the exactly-matching key has been found,
- * find the first node in postorder after the matched node.
- */
- node = node_stack[stack_ptr];
- while (stack_ptr > 0) {
- parent = node_stack[stack_ptr - 1];
- if (rcu_dereference(parent->child[0]) == node) {
- search_root = rcu_dereference(parent->child[1]);
- if (search_root)
- goto find_leftmost;
- }
- if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
- next_node = parent;
- goto do_copy;
- }
- node = parent;
- stack_ptr--;
- }
- /* did not find anything */
- err = -ENOENT;
- goto free_stack;
- find_leftmost:
- /* Find the leftmost non-intermediate node, all intermediate nodes
- * have exact two children, so this function will never return NULL.
- */
- for (node = search_root; node;) {
- if (node->flags & LPM_TREE_NODE_FLAG_IM) {
- node = rcu_dereference(node->child[0]);
- } else {
- next_node = node;
- node = rcu_dereference(node->child[0]);
- if (!node)
- node = rcu_dereference(next_node->child[1]);
- }
- }
- do_copy:
- next_key->prefixlen = next_node->prefixlen;
- memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
- next_node->data, trie->data_size);
- free_stack:
- kfree(node_stack);
- return err;
- }
- static int trie_check_btf(const struct bpf_map *map,
- const struct btf_type *key_type,
- const struct btf_type *value_type)
- {
- /* Keys must have struct bpf_lpm_trie_key embedded. */
- return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
- -EINVAL : 0;
- }
- const struct bpf_map_ops trie_map_ops = {
- .map_alloc = trie_alloc,
- .map_free = trie_free,
- .map_get_next_key = trie_get_next_key,
- .map_lookup_elem = trie_lookup_elem,
- .map_update_elem = trie_update_elem,
- .map_delete_elem = trie_delete_elem,
- .map_check_btf = trie_check_btf,
- };
|