skcipher.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. /*
  2. * Symmetric key ciphers.
  3. *
  4. * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. *
  11. */
  12. #ifndef _CRYPTO_SKCIPHER_H
  13. #define _CRYPTO_SKCIPHER_H
  14. #include <linux/crypto.h>
  15. #include <linux/kernel.h>
  16. #include <linux/slab.h>
  17. /**
  18. * struct skcipher_request - Symmetric key cipher request
  19. * @cryptlen: Number of bytes to encrypt or decrypt
  20. * @iv: Initialisation Vector
  21. * @src: Source SG list
  22. * @dst: Destination SG list
  23. * @base: Underlying async request request
  24. * @__ctx: Start of private context data
  25. */
  26. struct skcipher_request {
  27. unsigned int cryptlen;
  28. u8 *iv;
  29. struct scatterlist *src;
  30. struct scatterlist *dst;
  31. struct crypto_async_request base;
  32. void *__ctx[] CRYPTO_MINALIGN_ATTR;
  33. };
  34. /**
  35. * struct skcipher_givcrypt_request - Crypto request with IV generation
  36. * @seq: Sequence number for IV generation
  37. * @giv: Space for generated IV
  38. * @creq: The crypto request itself
  39. */
  40. struct skcipher_givcrypt_request {
  41. u64 seq;
  42. u8 *giv;
  43. struct ablkcipher_request creq;
  44. };
  45. struct crypto_skcipher {
  46. int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  47. unsigned int keylen);
  48. int (*encrypt)(struct skcipher_request *req);
  49. int (*decrypt)(struct skcipher_request *req);
  50. unsigned int ivsize;
  51. unsigned int reqsize;
  52. unsigned int keysize;
  53. struct crypto_tfm base;
  54. };
  55. /**
  56. * struct skcipher_alg - symmetric key cipher definition
  57. * @min_keysize: Minimum key size supported by the transformation. This is the
  58. * smallest key length supported by this transformation algorithm.
  59. * This must be set to one of the pre-defined values as this is
  60. * not hardware specific. Possible values for this field can be
  61. * found via git grep "_MIN_KEY_SIZE" include/crypto/
  62. * @max_keysize: Maximum key size supported by the transformation. This is the
  63. * largest key length supported by this transformation algorithm.
  64. * This must be set to one of the pre-defined values as this is
  65. * not hardware specific. Possible values for this field can be
  66. * found via git grep "_MAX_KEY_SIZE" include/crypto/
  67. * @setkey: Set key for the transformation. This function is used to either
  68. * program a supplied key into the hardware or store the key in the
  69. * transformation context for programming it later. Note that this
  70. * function does modify the transformation context. This function can
  71. * be called multiple times during the existence of the transformation
  72. * object, so one must make sure the key is properly reprogrammed into
  73. * the hardware. This function is also responsible for checking the key
  74. * length for validity. In case a software fallback was put in place in
  75. * the @cra_init call, this function might need to use the fallback if
  76. * the algorithm doesn't support all of the key sizes.
  77. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  78. * the supplied scatterlist containing the blocks of data. The crypto
  79. * API consumer is responsible for aligning the entries of the
  80. * scatterlist properly and making sure the chunks are correctly
  81. * sized. In case a software fallback was put in place in the
  82. * @cra_init call, this function might need to use the fallback if
  83. * the algorithm doesn't support all of the key sizes. In case the
  84. * key was stored in transformation context, the key might need to be
  85. * re-programmed into the hardware in this function. This function
  86. * shall not modify the transformation context, as this function may
  87. * be called in parallel with the same transformation object.
  88. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
  89. * and the conditions are exactly the same.
  90. * @init: Initialize the cryptographic transformation object. This function
  91. * is used to initialize the cryptographic transformation object.
  92. * This function is called only once at the instantiation time, right
  93. * after the transformation context was allocated. In case the
  94. * cryptographic hardware has some special requirements which need to
  95. * be handled by software, this function shall check for the precise
  96. * requirement of the transformation and put any software fallbacks
  97. * in place.
  98. * @exit: Deinitialize the cryptographic transformation object. This is a
  99. * counterpart to @init, used to remove various changes set in
  100. * @init.
  101. * @ivsize: IV size applicable for transformation. The consumer must provide an
  102. * IV of exactly that size to perform the encrypt or decrypt operation.
  103. * @chunksize: Equal to the block size except for stream ciphers such as
  104. * CTR where it is set to the underlying block size.
  105. * @walksize: Equal to the chunk size except in cases where the algorithm is
  106. * considerably more efficient if it can operate on multiple chunks
  107. * in parallel. Should be a multiple of chunksize.
  108. * @base: Definition of a generic crypto algorithm.
  109. *
  110. * All fields except @ivsize are mandatory and must be filled.
  111. */
  112. struct skcipher_alg {
  113. int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  114. unsigned int keylen);
  115. int (*encrypt)(struct skcipher_request *req);
  116. int (*decrypt)(struct skcipher_request *req);
  117. int (*init)(struct crypto_skcipher *tfm);
  118. void (*exit)(struct crypto_skcipher *tfm);
  119. unsigned int min_keysize;
  120. unsigned int max_keysize;
  121. unsigned int ivsize;
  122. unsigned int chunksize;
  123. unsigned int walksize;
  124. struct crypto_alg base;
  125. };
  126. #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
  127. char __##name##_desc[sizeof(struct skcipher_request) + \
  128. crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
  129. struct skcipher_request *name = (void *)__##name##_desc
  130. /**
  131. * DOC: Symmetric Key Cipher API
  132. *
  133. * Symmetric key cipher API is used with the ciphers of type
  134. * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
  135. *
  136. * Asynchronous cipher operations imply that the function invocation for a
  137. * cipher request returns immediately before the completion of the operation.
  138. * The cipher request is scheduled as a separate kernel thread and therefore
  139. * load-balanced on the different CPUs via the process scheduler. To allow
  140. * the kernel crypto API to inform the caller about the completion of a cipher
  141. * request, the caller must provide a callback function. That function is
  142. * invoked with the cipher handle when the request completes.
  143. *
  144. * To support the asynchronous operation, additional information than just the
  145. * cipher handle must be supplied to the kernel crypto API. That additional
  146. * information is given by filling in the skcipher_request data structure.
  147. *
  148. * For the symmetric key cipher API, the state is maintained with the tfm
  149. * cipher handle. A single tfm can be used across multiple calls and in
  150. * parallel. For asynchronous block cipher calls, context data supplied and
  151. * only used by the caller can be referenced the request data structure in
  152. * addition to the IV used for the cipher request. The maintenance of such
  153. * state information would be important for a crypto driver implementer to
  154. * have, because when calling the callback function upon completion of the
  155. * cipher operation, that callback function may need some information about
  156. * which operation just finished if it invoked multiple in parallel. This
  157. * state information is unused by the kernel crypto API.
  158. */
  159. static inline struct crypto_skcipher *__crypto_skcipher_cast(
  160. struct crypto_tfm *tfm)
  161. {
  162. return container_of(tfm, struct crypto_skcipher, base);
  163. }
  164. /**
  165. * crypto_alloc_skcipher() - allocate symmetric key cipher handle
  166. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  167. * skcipher cipher
  168. * @type: specifies the type of the cipher
  169. * @mask: specifies the mask for the cipher
  170. *
  171. * Allocate a cipher handle for an skcipher. The returned struct
  172. * crypto_skcipher is the cipher handle that is required for any subsequent
  173. * API invocation for that skcipher.
  174. *
  175. * Return: allocated cipher handle in case of success; IS_ERR() is true in case
  176. * of an error, PTR_ERR() returns the error code.
  177. */
  178. struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
  179. u32 type, u32 mask);
  180. static inline struct crypto_tfm *crypto_skcipher_tfm(
  181. struct crypto_skcipher *tfm)
  182. {
  183. return &tfm->base;
  184. }
  185. /**
  186. * crypto_free_skcipher() - zeroize and free cipher handle
  187. * @tfm: cipher handle to be freed
  188. */
  189. static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
  190. {
  191. crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
  192. }
  193. /**
  194. * crypto_has_skcipher() - Search for the availability of an skcipher.
  195. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  196. * skcipher
  197. * @type: specifies the type of the cipher
  198. * @mask: specifies the mask for the cipher
  199. *
  200. * Return: true when the skcipher is known to the kernel crypto API; false
  201. * otherwise
  202. */
  203. static inline int crypto_has_skcipher(const char *alg_name, u32 type,
  204. u32 mask)
  205. {
  206. return crypto_has_alg(alg_name, crypto_skcipher_type(type),
  207. crypto_skcipher_mask(mask));
  208. }
  209. /**
  210. * crypto_has_skcipher2() - Search for the availability of an skcipher.
  211. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  212. * skcipher
  213. * @type: specifies the type of the skcipher
  214. * @mask: specifies the mask for the skcipher
  215. *
  216. * Return: true when the skcipher is known to the kernel crypto API; false
  217. * otherwise
  218. */
  219. int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
  220. static inline const char *crypto_skcipher_driver_name(
  221. struct crypto_skcipher *tfm)
  222. {
  223. return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
  224. }
  225. static inline struct skcipher_alg *crypto_skcipher_alg(
  226. struct crypto_skcipher *tfm)
  227. {
  228. return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
  229. struct skcipher_alg, base);
  230. }
  231. static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
  232. {
  233. if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
  234. CRYPTO_ALG_TYPE_BLKCIPHER)
  235. return alg->base.cra_blkcipher.ivsize;
  236. if (alg->base.cra_ablkcipher.encrypt)
  237. return alg->base.cra_ablkcipher.ivsize;
  238. return alg->ivsize;
  239. }
  240. /**
  241. * crypto_skcipher_ivsize() - obtain IV size
  242. * @tfm: cipher handle
  243. *
  244. * The size of the IV for the skcipher referenced by the cipher handle is
  245. * returned. This IV size may be zero if the cipher does not need an IV.
  246. *
  247. * Return: IV size in bytes
  248. */
  249. static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
  250. {
  251. return tfm->ivsize;
  252. }
  253. static inline unsigned int crypto_skcipher_alg_chunksize(
  254. struct skcipher_alg *alg)
  255. {
  256. if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
  257. CRYPTO_ALG_TYPE_BLKCIPHER)
  258. return alg->base.cra_blocksize;
  259. if (alg->base.cra_ablkcipher.encrypt)
  260. return alg->base.cra_blocksize;
  261. return alg->chunksize;
  262. }
  263. static inline unsigned int crypto_skcipher_alg_walksize(
  264. struct skcipher_alg *alg)
  265. {
  266. if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
  267. CRYPTO_ALG_TYPE_BLKCIPHER)
  268. return alg->base.cra_blocksize;
  269. if (alg->base.cra_ablkcipher.encrypt)
  270. return alg->base.cra_blocksize;
  271. return alg->walksize;
  272. }
  273. /**
  274. * crypto_skcipher_chunksize() - obtain chunk size
  275. * @tfm: cipher handle
  276. *
  277. * The block size is set to one for ciphers such as CTR. However,
  278. * you still need to provide incremental updates in multiples of
  279. * the underlying block size as the IV does not have sub-block
  280. * granularity. This is known in this API as the chunk size.
  281. *
  282. * Return: chunk size in bytes
  283. */
  284. static inline unsigned int crypto_skcipher_chunksize(
  285. struct crypto_skcipher *tfm)
  286. {
  287. return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
  288. }
  289. /**
  290. * crypto_skcipher_walksize() - obtain walk size
  291. * @tfm: cipher handle
  292. *
  293. * In some cases, algorithms can only perform optimally when operating on
  294. * multiple blocks in parallel. This is reflected by the walksize, which
  295. * must be a multiple of the chunksize (or equal if the concern does not
  296. * apply)
  297. *
  298. * Return: walk size in bytes
  299. */
  300. static inline unsigned int crypto_skcipher_walksize(
  301. struct crypto_skcipher *tfm)
  302. {
  303. return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
  304. }
  305. /**
  306. * crypto_skcipher_blocksize() - obtain block size of cipher
  307. * @tfm: cipher handle
  308. *
  309. * The block size for the skcipher referenced with the cipher handle is
  310. * returned. The caller may use that information to allocate appropriate
  311. * memory for the data returned by the encryption or decryption operation
  312. *
  313. * Return: block size of cipher
  314. */
  315. static inline unsigned int crypto_skcipher_blocksize(
  316. struct crypto_skcipher *tfm)
  317. {
  318. return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
  319. }
  320. static inline unsigned int crypto_skcipher_alignmask(
  321. struct crypto_skcipher *tfm)
  322. {
  323. return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
  324. }
  325. static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
  326. {
  327. return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
  328. }
  329. static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
  330. u32 flags)
  331. {
  332. crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
  333. }
  334. static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
  335. u32 flags)
  336. {
  337. crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
  338. }
  339. /**
  340. * crypto_skcipher_setkey() - set key for cipher
  341. * @tfm: cipher handle
  342. * @key: buffer holding the key
  343. * @keylen: length of the key in bytes
  344. *
  345. * The caller provided key is set for the skcipher referenced by the cipher
  346. * handle.
  347. *
  348. * Note, the key length determines the cipher type. Many block ciphers implement
  349. * different cipher modes depending on the key size, such as AES-128 vs AES-192
  350. * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
  351. * is performed.
  352. *
  353. * Return: 0 if the setting of the key was successful; < 0 if an error occurred
  354. */
  355. static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
  356. const u8 *key, unsigned int keylen)
  357. {
  358. return tfm->setkey(tfm, key, keylen);
  359. }
  360. static inline unsigned int crypto_skcipher_default_keysize(
  361. struct crypto_skcipher *tfm)
  362. {
  363. return tfm->keysize;
  364. }
  365. /**
  366. * crypto_skcipher_reqtfm() - obtain cipher handle from request
  367. * @req: skcipher_request out of which the cipher handle is to be obtained
  368. *
  369. * Return the crypto_skcipher handle when furnishing an skcipher_request
  370. * data structure.
  371. *
  372. * Return: crypto_skcipher handle
  373. */
  374. static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
  375. struct skcipher_request *req)
  376. {
  377. return __crypto_skcipher_cast(req->base.tfm);
  378. }
  379. /**
  380. * crypto_skcipher_encrypt() - encrypt plaintext
  381. * @req: reference to the skcipher_request handle that holds all information
  382. * needed to perform the cipher operation
  383. *
  384. * Encrypt plaintext data using the skcipher_request handle. That data
  385. * structure and how it is filled with data is discussed with the
  386. * skcipher_request_* functions.
  387. *
  388. * Return: 0 if the cipher operation was successful; < 0 if an error occurred
  389. */
  390. static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
  391. {
  392. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  393. if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
  394. return -ENOKEY;
  395. return tfm->encrypt(req);
  396. }
  397. /**
  398. * crypto_skcipher_decrypt() - decrypt ciphertext
  399. * @req: reference to the skcipher_request handle that holds all information
  400. * needed to perform the cipher operation
  401. *
  402. * Decrypt ciphertext data using the skcipher_request handle. That data
  403. * structure and how it is filled with data is discussed with the
  404. * skcipher_request_* functions.
  405. *
  406. * Return: 0 if the cipher operation was successful; < 0 if an error occurred
  407. */
  408. static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
  409. {
  410. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  411. if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
  412. return -ENOKEY;
  413. return tfm->decrypt(req);
  414. }
  415. /**
  416. * DOC: Symmetric Key Cipher Request Handle
  417. *
  418. * The skcipher_request data structure contains all pointers to data
  419. * required for the symmetric key cipher operation. This includes the cipher
  420. * handle (which can be used by multiple skcipher_request instances), pointer
  421. * to plaintext and ciphertext, asynchronous callback function, etc. It acts
  422. * as a handle to the skcipher_request_* API calls in a similar way as
  423. * skcipher handle to the crypto_skcipher_* API calls.
  424. */
  425. /**
  426. * crypto_skcipher_reqsize() - obtain size of the request data structure
  427. * @tfm: cipher handle
  428. *
  429. * Return: number of bytes
  430. */
  431. static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
  432. {
  433. return tfm->reqsize;
  434. }
  435. /**
  436. * skcipher_request_set_tfm() - update cipher handle reference in request
  437. * @req: request handle to be modified
  438. * @tfm: cipher handle that shall be added to the request handle
  439. *
  440. * Allow the caller to replace the existing skcipher handle in the request
  441. * data structure with a different one.
  442. */
  443. static inline void skcipher_request_set_tfm(struct skcipher_request *req,
  444. struct crypto_skcipher *tfm)
  445. {
  446. req->base.tfm = crypto_skcipher_tfm(tfm);
  447. }
  448. static inline struct skcipher_request *skcipher_request_cast(
  449. struct crypto_async_request *req)
  450. {
  451. return container_of(req, struct skcipher_request, base);
  452. }
  453. /**
  454. * skcipher_request_alloc() - allocate request data structure
  455. * @tfm: cipher handle to be registered with the request
  456. * @gfp: memory allocation flag that is handed to kmalloc by the API call.
  457. *
  458. * Allocate the request data structure that must be used with the skcipher
  459. * encrypt and decrypt API calls. During the allocation, the provided skcipher
  460. * handle is registered in the request data structure.
  461. *
  462. * Return: allocated request handle in case of success, or NULL if out of memory
  463. */
  464. static inline struct skcipher_request *skcipher_request_alloc(
  465. struct crypto_skcipher *tfm, gfp_t gfp)
  466. {
  467. struct skcipher_request *req;
  468. req = kmalloc(sizeof(struct skcipher_request) +
  469. crypto_skcipher_reqsize(tfm), gfp);
  470. if (likely(req))
  471. skcipher_request_set_tfm(req, tfm);
  472. return req;
  473. }
  474. /**
  475. * skcipher_request_free() - zeroize and free request data structure
  476. * @req: request data structure cipher handle to be freed
  477. */
  478. static inline void skcipher_request_free(struct skcipher_request *req)
  479. {
  480. kzfree(req);
  481. }
  482. static inline void skcipher_request_zero(struct skcipher_request *req)
  483. {
  484. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  485. memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
  486. }
  487. /**
  488. * skcipher_request_set_callback() - set asynchronous callback function
  489. * @req: request handle
  490. * @flags: specify zero or an ORing of the flags
  491. * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
  492. * increase the wait queue beyond the initial maximum size;
  493. * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
  494. * @compl: callback function pointer to be registered with the request handle
  495. * @data: The data pointer refers to memory that is not used by the kernel
  496. * crypto API, but provided to the callback function for it to use. Here,
  497. * the caller can provide a reference to memory the callback function can
  498. * operate on. As the callback function is invoked asynchronously to the
  499. * related functionality, it may need to access data structures of the
  500. * related functionality which can be referenced using this pointer. The
  501. * callback function can access the memory via the "data" field in the
  502. * crypto_async_request data structure provided to the callback function.
  503. *
  504. * This function allows setting the callback function that is triggered once the
  505. * cipher operation completes.
  506. *
  507. * The callback function is registered with the skcipher_request handle and
  508. * must comply with the following template::
  509. *
  510. * void callback_function(struct crypto_async_request *req, int error)
  511. */
  512. static inline void skcipher_request_set_callback(struct skcipher_request *req,
  513. u32 flags,
  514. crypto_completion_t compl,
  515. void *data)
  516. {
  517. req->base.complete = compl;
  518. req->base.data = data;
  519. req->base.flags = flags;
  520. }
  521. /**
  522. * skcipher_request_set_crypt() - set data buffers
  523. * @req: request handle
  524. * @src: source scatter / gather list
  525. * @dst: destination scatter / gather list
  526. * @cryptlen: number of bytes to process from @src
  527. * @iv: IV for the cipher operation which must comply with the IV size defined
  528. * by crypto_skcipher_ivsize
  529. *
  530. * This function allows setting of the source data and destination data
  531. * scatter / gather lists.
  532. *
  533. * For encryption, the source is treated as the plaintext and the
  534. * destination is the ciphertext. For a decryption operation, the use is
  535. * reversed - the source is the ciphertext and the destination is the plaintext.
  536. */
  537. static inline void skcipher_request_set_crypt(
  538. struct skcipher_request *req,
  539. struct scatterlist *src, struct scatterlist *dst,
  540. unsigned int cryptlen, void *iv)
  541. {
  542. req->src = src;
  543. req->dst = dst;
  544. req->cryptlen = cryptlen;
  545. req->iv = iv;
  546. }
  547. #endif /* _CRYPTO_SKCIPHER_H */