123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- /* SPDX-License-Identifier: GPL-2.0 */
- #ifndef _ASM_GENERIC_DIV64_H
- #define _ASM_GENERIC_DIV64_H
- /*
- * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
- * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
- *
- * Optimization for constant divisors on 32-bit machines:
- * Copyright (C) 2006-2015 Nicolas Pitre
- *
- * The semantics of do_div() are:
- *
- * uint32_t do_div(uint64_t *n, uint32_t base)
- * {
- * uint32_t remainder = *n % base;
- * *n = *n / base;
- * return remainder;
- * }
- *
- * NOTE: macro parameter n is evaluated multiple times,
- * beware of side effects!
- */
- #include <linux/types.h>
- #include <linux/compiler.h>
- #if BITS_PER_LONG == 64
- /**
- * do_div - returns 2 values: calculate remainder and update new dividend
- * @n: pointer to uint64_t dividend (will be updated)
- * @base: uint32_t divisor
- *
- * Summary:
- * ``uint32_t remainder = *n % base;``
- * ``*n = *n / base;``
- *
- * Return: (uint32_t)remainder
- *
- * NOTE: macro parameter @n is evaluated multiple times,
- * beware of side effects!
- */
- # define do_div(n,base) ({ \
- uint32_t __base = (base); \
- uint32_t __rem; \
- __rem = ((uint64_t)(n)) % __base; \
- (n) = ((uint64_t)(n)) / __base; \
- __rem; \
- })
- #elif BITS_PER_LONG == 32
- #include <linux/log2.h>
- /*
- * If the divisor happens to be constant, we determine the appropriate
- * inverse at compile time to turn the division into a few inline
- * multiplications which ought to be much faster. And yet only if compiling
- * with a sufficiently recent gcc version to perform proper 64-bit constant
- * propagation.
- *
- * (It is unfortunate that gcc doesn't perform all this internally.)
- */
- #ifndef __div64_const32_is_OK
- #define __div64_const32_is_OK (__GNUC__ >= 4)
- #endif
- #define __div64_const32(n, ___b) \
- ({ \
- /* \
- * Multiplication by reciprocal of b: n / b = n * (p / b) / p \
- * \
- * We rely on the fact that most of this code gets optimized \
- * away at compile time due to constant propagation and only \
- * a few multiplication instructions should remain. \
- * Hence this monstrous macro (static inline doesn't always \
- * do the trick here). \
- */ \
- uint64_t ___res, ___x, ___t, ___m, ___n = (n); \
- uint32_t ___p, ___bias; \
- \
- /* determine MSB of b */ \
- ___p = 1 << ilog2(___b); \
- \
- /* compute m = ((p << 64) + b - 1) / b */ \
- ___m = (~0ULL / ___b) * ___p; \
- ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \
- \
- /* one less than the dividend with highest result */ \
- ___x = ~0ULL / ___b * ___b - 1; \
- \
- /* test our ___m with res = m * x / (p << 64) */ \
- ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \
- ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \
- ___res += (___x & 0xffffffff) * (___m >> 32); \
- ___t = (___res < ___t) ? (1ULL << 32) : 0; \
- ___res = (___res >> 32) + ___t; \
- ___res += (___m >> 32) * (___x >> 32); \
- ___res /= ___p; \
- \
- /* Now sanitize and optimize what we've got. */ \
- if (~0ULL % (___b / (___b & -___b)) == 0) { \
- /* special case, can be simplified to ... */ \
- ___n /= (___b & -___b); \
- ___m = ~0ULL / (___b / (___b & -___b)); \
- ___p = 1; \
- ___bias = 1; \
- } else if (___res != ___x / ___b) { \
- /* \
- * We can't get away without a bias to compensate \
- * for bit truncation errors. To avoid it we'd need an \
- * additional bit to represent m which would overflow \
- * a 64-bit variable. \
- * \
- * Instead we do m = p / b and n / b = (n * m + m) / p. \
- */ \
- ___bias = 1; \
- /* Compute m = (p << 64) / b */ \
- ___m = (~0ULL / ___b) * ___p; \
- ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \
- } else { \
- /* \
- * Reduce m / p, and try to clear bit 31 of m when \
- * possible, otherwise that'll need extra overflow \
- * handling later. \
- */ \
- uint32_t ___bits = -(___m & -___m); \
- ___bits |= ___m >> 32; \
- ___bits = (~___bits) << 1; \
- /* \
- * If ___bits == 0 then setting bit 31 is unavoidable. \
- * Simply apply the maximum possible reduction in that \
- * case. Otherwise the MSB of ___bits indicates the \
- * best reduction we should apply. \
- */ \
- if (!___bits) { \
- ___p /= (___m & -___m); \
- ___m /= (___m & -___m); \
- } else { \
- ___p >>= ilog2(___bits); \
- ___m >>= ilog2(___bits); \
- } \
- /* No bias needed. */ \
- ___bias = 0; \
- } \
- \
- /* \
- * Now we have a combination of 2 conditions: \
- * \
- * 1) whether or not we need to apply a bias, and \
- * \
- * 2) whether or not there might be an overflow in the cross \
- * product determined by (___m & ((1 << 63) | (1 << 31))). \
- * \
- * Select the best way to do (m_bias + m * n) / (1 << 64). \
- * From now on there will be actual runtime code generated. \
- */ \
- ___res = __arch_xprod_64(___m, ___n, ___bias); \
- \
- ___res /= ___p; \
- })
- #ifndef __arch_xprod_64
- /*
- * Default C implementation for __arch_xprod_64()
- *
- * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
- * Semantic: retval = ((bias ? m : 0) + m * n) >> 64
- *
- * The product is a 128-bit value, scaled down to 64 bits.
- * Assuming constant propagation to optimize away unused conditional code.
- * Architectures may provide their own optimized assembly implementation.
- */
- static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
- {
- uint32_t m_lo = m;
- uint32_t m_hi = m >> 32;
- uint32_t n_lo = n;
- uint32_t n_hi = n >> 32;
- uint64_t res, tmp;
- if (!bias) {
- res = ((uint64_t)m_lo * n_lo) >> 32;
- } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
- /* there can't be any overflow here */
- res = (m + (uint64_t)m_lo * n_lo) >> 32;
- } else {
- res = m + (uint64_t)m_lo * n_lo;
- tmp = (res < m) ? (1ULL << 32) : 0;
- res = (res >> 32) + tmp;
- }
- if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
- /* there can't be any overflow here */
- res += (uint64_t)m_lo * n_hi;
- res += (uint64_t)m_hi * n_lo;
- res >>= 32;
- } else {
- tmp = res += (uint64_t)m_lo * n_hi;
- res += (uint64_t)m_hi * n_lo;
- tmp = (res < tmp) ? (1ULL << 32) : 0;
- res = (res >> 32) + tmp;
- }
- res += (uint64_t)m_hi * n_hi;
- return res;
- }
- #endif
- #ifndef __div64_32
- extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
- #endif
- /* The unnecessary pointer compare is there
- * to check for type safety (n must be 64bit)
- */
- # define do_div(n,base) ({ \
- uint32_t __base = (base); \
- uint32_t __rem; \
- (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
- if (__builtin_constant_p(__base) && \
- is_power_of_2(__base)) { \
- __rem = (n) & (__base - 1); \
- (n) >>= ilog2(__base); \
- } else if (__div64_const32_is_OK && \
- __builtin_constant_p(__base) && \
- __base != 0) { \
- uint32_t __res_lo, __n_lo = (n); \
- (n) = __div64_const32(n, __base); \
- /* the remainder can be computed with 32-bit regs */ \
- __res_lo = (n); \
- __rem = __n_lo - __res_lo * __base; \
- } else if (likely(((n) >> 32) == 0)) { \
- __rem = (uint32_t)(n) % __base; \
- (n) = (uint32_t)(n) / __base; \
- } else \
- __rem = __div64_32(&(n), __base); \
- __rem; \
- })
- #else /* BITS_PER_LONG == ?? */
- # error do_div() does not yet support the C64
- #endif /* BITS_PER_LONG */
- #endif /* _ASM_GENERIC_DIV64_H */
|