12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430 |
- /*
- * fs/direct-io.c
- *
- * Copyright (C) 2002, Linus Torvalds.
- *
- * O_DIRECT
- *
- * 04Jul2002 Andrew Morton
- * Initial version
- * 11Sep2002 janetinc@us.ibm.com
- * added readv/writev support.
- * 29Oct2002 Andrew Morton
- * rewrote bio_add_page() support.
- * 30Oct2002 pbadari@us.ibm.com
- * added support for non-aligned IO.
- * 06Nov2002 pbadari@us.ibm.com
- * added asynchronous IO support.
- * 21Jul2003 nathans@sgi.com
- * added IO completion notifier.
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/types.h>
- #include <linux/fs.h>
- #include <linux/mm.h>
- #include <linux/slab.h>
- #include <linux/highmem.h>
- #include <linux/pagemap.h>
- #include <linux/task_io_accounting_ops.h>
- #include <linux/bio.h>
- #include <linux/wait.h>
- #include <linux/err.h>
- #include <linux/blkdev.h>
- #include <linux/buffer_head.h>
- #include <linux/rwsem.h>
- #include <linux/uio.h>
- #include <linux/atomic.h>
- #include <linux/prefetch.h>
- /*
- * How many user pages to map in one call to get_user_pages(). This determines
- * the size of a structure in the slab cache
- */
- #define DIO_PAGES 64
- /*
- * Flags for dio_complete()
- */
- #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
- #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
- /*
- * This code generally works in units of "dio_blocks". A dio_block is
- * somewhere between the hard sector size and the filesystem block size. it
- * is determined on a per-invocation basis. When talking to the filesystem
- * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
- * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
- * to bio_block quantities by shifting left by blkfactor.
- *
- * If blkfactor is zero then the user's request was aligned to the filesystem's
- * blocksize.
- */
- /* dio_state only used in the submission path */
- struct dio_submit {
- struct bio *bio; /* bio under assembly */
- unsigned blkbits; /* doesn't change */
- unsigned blkfactor; /* When we're using an alignment which
- is finer than the filesystem's soft
- blocksize, this specifies how much
- finer. blkfactor=2 means 1/4-block
- alignment. Does not change */
- unsigned start_zero_done; /* flag: sub-blocksize zeroing has
- been performed at the start of a
- write */
- int pages_in_io; /* approximate total IO pages */
- sector_t block_in_file; /* Current offset into the underlying
- file in dio_block units. */
- unsigned blocks_available; /* At block_in_file. changes */
- int reap_counter; /* rate limit reaping */
- sector_t final_block_in_request;/* doesn't change */
- int boundary; /* prev block is at a boundary */
- get_block_t *get_block; /* block mapping function */
- dio_submit_t *submit_io; /* IO submition function */
- loff_t logical_offset_in_bio; /* current first logical block in bio */
- sector_t final_block_in_bio; /* current final block in bio + 1 */
- sector_t next_block_for_io; /* next block to be put under IO,
- in dio_blocks units */
- /*
- * Deferred addition of a page to the dio. These variables are
- * private to dio_send_cur_page(), submit_page_section() and
- * dio_bio_add_page().
- */
- struct page *cur_page; /* The page */
- unsigned cur_page_offset; /* Offset into it, in bytes */
- unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
- sector_t cur_page_block; /* Where it starts */
- loff_t cur_page_fs_offset; /* Offset in file */
- struct iov_iter *iter;
- /*
- * Page queue. These variables belong to dio_refill_pages() and
- * dio_get_page().
- */
- unsigned head; /* next page to process */
- unsigned tail; /* last valid page + 1 */
- size_t from, to;
- };
- /* dio_state communicated between submission path and end_io */
- struct dio {
- int flags; /* doesn't change */
- int op;
- int op_flags;
- blk_qc_t bio_cookie;
- struct gendisk *bio_disk;
- struct inode *inode;
- loff_t i_size; /* i_size when submitted */
- dio_iodone_t *end_io; /* IO completion function */
- void *private; /* copy from map_bh.b_private */
- /* BIO completion state */
- spinlock_t bio_lock; /* protects BIO fields below */
- int page_errors; /* errno from get_user_pages() */
- int is_async; /* is IO async ? */
- bool defer_completion; /* defer AIO completion to workqueue? */
- bool should_dirty; /* if pages should be dirtied */
- int io_error; /* IO error in completion path */
- unsigned long refcount; /* direct_io_worker() and bios */
- struct bio *bio_list; /* singly linked via bi_private */
- struct task_struct *waiter; /* waiting task (NULL if none) */
- /* AIO related stuff */
- struct kiocb *iocb; /* kiocb */
- ssize_t result; /* IO result */
- /*
- * pages[] (and any fields placed after it) are not zeroed out at
- * allocation time. Don't add new fields after pages[] unless you
- * wish that they not be zeroed.
- */
- union {
- struct page *pages[DIO_PAGES]; /* page buffer */
- struct work_struct complete_work;/* deferred AIO completion */
- };
- } ____cacheline_aligned_in_smp;
- static struct kmem_cache *dio_cache __read_mostly;
- /*
- * How many pages are in the queue?
- */
- static inline unsigned dio_pages_present(struct dio_submit *sdio)
- {
- return sdio->tail - sdio->head;
- }
- /*
- * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
- */
- static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
- {
- ssize_t ret;
- ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
- &sdio->from);
- if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
- struct page *page = ZERO_PAGE(0);
- /*
- * A memory fault, but the filesystem has some outstanding
- * mapped blocks. We need to use those blocks up to avoid
- * leaking stale data in the file.
- */
- if (dio->page_errors == 0)
- dio->page_errors = ret;
- get_page(page);
- dio->pages[0] = page;
- sdio->head = 0;
- sdio->tail = 1;
- sdio->from = 0;
- sdio->to = PAGE_SIZE;
- return 0;
- }
- if (ret >= 0) {
- iov_iter_advance(sdio->iter, ret);
- ret += sdio->from;
- sdio->head = 0;
- sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
- sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
- return 0;
- }
- return ret;
- }
- /*
- * Get another userspace page. Returns an ERR_PTR on error. Pages are
- * buffered inside the dio so that we can call get_user_pages() against a
- * decent number of pages, less frequently. To provide nicer use of the
- * L1 cache.
- */
- static inline struct page *dio_get_page(struct dio *dio,
- struct dio_submit *sdio)
- {
- if (dio_pages_present(sdio) == 0) {
- int ret;
- ret = dio_refill_pages(dio, sdio);
- if (ret)
- return ERR_PTR(ret);
- BUG_ON(dio_pages_present(sdio) == 0);
- }
- return dio->pages[sdio->head];
- }
- /*
- * Warn about a page cache invalidation failure during a direct io write.
- */
- void dio_warn_stale_pagecache(struct file *filp)
- {
- static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
- char pathname[128];
- struct inode *inode = file_inode(filp);
- char *path;
- errseq_set(&inode->i_mapping->wb_err, -EIO);
- if (__ratelimit(&_rs)) {
- path = file_path(filp, pathname, sizeof(pathname));
- if (IS_ERR(path))
- path = "(unknown)";
- pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
- pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
- current->comm);
- }
- }
- /**
- * dio_complete() - called when all DIO BIO I/O has been completed
- * @offset: the byte offset in the file of the completed operation
- *
- * This drops i_dio_count, lets interested parties know that a DIO operation
- * has completed, and calculates the resulting return code for the operation.
- *
- * It lets the filesystem know if it registered an interest earlier via
- * get_block. Pass the private field of the map buffer_head so that
- * filesystems can use it to hold additional state between get_block calls and
- * dio_complete.
- */
- static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
- {
- loff_t offset = dio->iocb->ki_pos;
- ssize_t transferred = 0;
- int err;
- /*
- * AIO submission can race with bio completion to get here while
- * expecting to have the last io completed by bio completion.
- * In that case -EIOCBQUEUED is in fact not an error we want
- * to preserve through this call.
- */
- if (ret == -EIOCBQUEUED)
- ret = 0;
- if (dio->result) {
- transferred = dio->result;
- /* Check for short read case */
- if ((dio->op == REQ_OP_READ) &&
- ((offset + transferred) > dio->i_size))
- transferred = dio->i_size - offset;
- /* ignore EFAULT if some IO has been done */
- if (unlikely(ret == -EFAULT) && transferred)
- ret = 0;
- }
- if (ret == 0)
- ret = dio->page_errors;
- if (ret == 0)
- ret = dio->io_error;
- if (ret == 0)
- ret = transferred;
- if (dio->end_io) {
- // XXX: ki_pos??
- err = dio->end_io(dio->iocb, offset, ret, dio->private);
- if (err)
- ret = err;
- }
- /*
- * Try again to invalidate clean pages which might have been cached by
- * non-direct readahead, or faulted in by get_user_pages() if the source
- * of the write was an mmap'ed region of the file we're writing. Either
- * one is a pretty crazy thing to do, so we don't support it 100%. If
- * this invalidation fails, tough, the write still worked...
- *
- * And this page cache invalidation has to be after dio->end_io(), as
- * some filesystems convert unwritten extents to real allocations in
- * end_io() when necessary, otherwise a racing buffer read would cache
- * zeros from unwritten extents.
- */
- if (flags & DIO_COMPLETE_INVALIDATE &&
- ret > 0 && dio->op == REQ_OP_WRITE &&
- dio->inode->i_mapping->nrpages) {
- err = invalidate_inode_pages2_range(dio->inode->i_mapping,
- offset >> PAGE_SHIFT,
- (offset + ret - 1) >> PAGE_SHIFT);
- if (err)
- dio_warn_stale_pagecache(dio->iocb->ki_filp);
- }
- inode_dio_end(dio->inode);
- if (flags & DIO_COMPLETE_ASYNC) {
- /*
- * generic_write_sync expects ki_pos to have been updated
- * already, but the submission path only does this for
- * synchronous I/O.
- */
- dio->iocb->ki_pos += transferred;
- if (ret > 0 && dio->op == REQ_OP_WRITE)
- ret = generic_write_sync(dio->iocb, ret);
- dio->iocb->ki_complete(dio->iocb, ret, 0);
- }
- kmem_cache_free(dio_cache, dio);
- return ret;
- }
- static void dio_aio_complete_work(struct work_struct *work)
- {
- struct dio *dio = container_of(work, struct dio, complete_work);
- dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
- }
- static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
- /*
- * Asynchronous IO callback.
- */
- static void dio_bio_end_aio(struct bio *bio)
- {
- struct dio *dio = bio->bi_private;
- unsigned long remaining;
- unsigned long flags;
- bool defer_completion = false;
- /* cleanup the bio */
- dio_bio_complete(dio, bio);
- spin_lock_irqsave(&dio->bio_lock, flags);
- remaining = --dio->refcount;
- if (remaining == 1 && dio->waiter)
- wake_up_process(dio->waiter);
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- if (remaining == 0) {
- /*
- * Defer completion when defer_completion is set or
- * when the inode has pages mapped and this is AIO write.
- * We need to invalidate those pages because there is a
- * chance they contain stale data in the case buffered IO
- * went in between AIO submission and completion into the
- * same region.
- */
- if (dio->result)
- defer_completion = dio->defer_completion ||
- (dio->op == REQ_OP_WRITE &&
- dio->inode->i_mapping->nrpages);
- if (defer_completion) {
- INIT_WORK(&dio->complete_work, dio_aio_complete_work);
- queue_work(dio->inode->i_sb->s_dio_done_wq,
- &dio->complete_work);
- } else {
- dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
- }
- }
- }
- /*
- * The BIO completion handler simply queues the BIO up for the process-context
- * handler.
- *
- * During I/O bi_private points at the dio. After I/O, bi_private is used to
- * implement a singly-linked list of completed BIOs, at dio->bio_list.
- */
- static void dio_bio_end_io(struct bio *bio)
- {
- struct dio *dio = bio->bi_private;
- unsigned long flags;
- spin_lock_irqsave(&dio->bio_lock, flags);
- bio->bi_private = dio->bio_list;
- dio->bio_list = bio;
- if (--dio->refcount == 1 && dio->waiter)
- wake_up_process(dio->waiter);
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- }
- /**
- * dio_end_io - handle the end io action for the given bio
- * @bio: The direct io bio thats being completed
- *
- * This is meant to be called by any filesystem that uses their own dio_submit_t
- * so that the DIO specific endio actions are dealt with after the filesystem
- * has done it's completion work.
- */
- void dio_end_io(struct bio *bio)
- {
- struct dio *dio = bio->bi_private;
- if (dio->is_async)
- dio_bio_end_aio(bio);
- else
- dio_bio_end_io(bio);
- }
- EXPORT_SYMBOL_GPL(dio_end_io);
- static inline void
- dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
- struct block_device *bdev,
- sector_t first_sector, int nr_vecs)
- {
- struct bio *bio;
- /*
- * bio_alloc() is guaranteed to return a bio when allowed to sleep and
- * we request a valid number of vectors.
- */
- bio = bio_alloc(GFP_KERNEL, nr_vecs);
- bio_set_dev(bio, bdev);
- bio->bi_iter.bi_sector = first_sector;
- bio_set_op_attrs(bio, dio->op, dio->op_flags);
- if (dio->is_async)
- bio->bi_end_io = dio_bio_end_aio;
- else
- bio->bi_end_io = dio_bio_end_io;
- bio->bi_write_hint = dio->iocb->ki_hint;
- sdio->bio = bio;
- sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
- }
- /*
- * In the AIO read case we speculatively dirty the pages before starting IO.
- * During IO completion, any of these pages which happen to have been written
- * back will be redirtied by bio_check_pages_dirty().
- *
- * bios hold a dio reference between submit_bio and ->end_io.
- */
- static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
- {
- struct bio *bio = sdio->bio;
- unsigned long flags;
- bio->bi_private = dio;
- spin_lock_irqsave(&dio->bio_lock, flags);
- dio->refcount++;
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
- bio_set_pages_dirty(bio);
- dio->bio_disk = bio->bi_disk;
- if (sdio->submit_io) {
- sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
- dio->bio_cookie = BLK_QC_T_NONE;
- } else
- dio->bio_cookie = submit_bio(bio);
- sdio->bio = NULL;
- sdio->boundary = 0;
- sdio->logical_offset_in_bio = 0;
- }
- /*
- * Release any resources in case of a failure
- */
- static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
- {
- while (sdio->head < sdio->tail)
- put_page(dio->pages[sdio->head++]);
- }
- /*
- * Wait for the next BIO to complete. Remove it and return it. NULL is
- * returned once all BIOs have been completed. This must only be called once
- * all bios have been issued so that dio->refcount can only decrease. This
- * requires that that the caller hold a reference on the dio.
- */
- static struct bio *dio_await_one(struct dio *dio)
- {
- unsigned long flags;
- struct bio *bio = NULL;
- spin_lock_irqsave(&dio->bio_lock, flags);
- /*
- * Wait as long as the list is empty and there are bios in flight. bio
- * completion drops the count, maybe adds to the list, and wakes while
- * holding the bio_lock so we don't need set_current_state()'s barrier
- * and can call it after testing our condition.
- */
- while (dio->refcount > 1 && dio->bio_list == NULL) {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- dio->waiter = current;
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
- !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
- io_schedule();
- /* wake up sets us TASK_RUNNING */
- spin_lock_irqsave(&dio->bio_lock, flags);
- dio->waiter = NULL;
- }
- if (dio->bio_list) {
- bio = dio->bio_list;
- dio->bio_list = bio->bi_private;
- }
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- return bio;
- }
- /*
- * Process one completed BIO. No locks are held.
- */
- static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
- {
- struct bio_vec *bvec;
- unsigned i;
- blk_status_t err = bio->bi_status;
- if (err) {
- if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
- dio->io_error = -EAGAIN;
- else
- dio->io_error = -EIO;
- }
- if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
- bio_check_pages_dirty(bio); /* transfers ownership */
- } else {
- bio_for_each_segment_all(bvec, bio, i) {
- struct page *page = bvec->bv_page;
- if (dio->op == REQ_OP_READ && !PageCompound(page) &&
- dio->should_dirty)
- set_page_dirty_lock(page);
- put_page(page);
- }
- bio_put(bio);
- }
- return err;
- }
- /*
- * Wait on and process all in-flight BIOs. This must only be called once
- * all bios have been issued so that the refcount can only decrease.
- * This just waits for all bios to make it through dio_bio_complete. IO
- * errors are propagated through dio->io_error and should be propagated via
- * dio_complete().
- */
- static void dio_await_completion(struct dio *dio)
- {
- struct bio *bio;
- do {
- bio = dio_await_one(dio);
- if (bio)
- dio_bio_complete(dio, bio);
- } while (bio);
- }
- /*
- * A really large O_DIRECT read or write can generate a lot of BIOs. So
- * to keep the memory consumption sane we periodically reap any completed BIOs
- * during the BIO generation phase.
- *
- * This also helps to limit the peak amount of pinned userspace memory.
- */
- static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
- {
- int ret = 0;
- if (sdio->reap_counter++ >= 64) {
- while (dio->bio_list) {
- unsigned long flags;
- struct bio *bio;
- int ret2;
- spin_lock_irqsave(&dio->bio_lock, flags);
- bio = dio->bio_list;
- dio->bio_list = bio->bi_private;
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
- if (ret == 0)
- ret = ret2;
- }
- sdio->reap_counter = 0;
- }
- return ret;
- }
- /*
- * Create workqueue for deferred direct IO completions. We allocate the
- * workqueue when it's first needed. This avoids creating workqueue for
- * filesystems that don't need it and also allows us to create the workqueue
- * late enough so the we can include s_id in the name of the workqueue.
- */
- int sb_init_dio_done_wq(struct super_block *sb)
- {
- struct workqueue_struct *old;
- struct workqueue_struct *wq = alloc_workqueue("dio/%s",
- WQ_MEM_RECLAIM, 0,
- sb->s_id);
- if (!wq)
- return -ENOMEM;
- /*
- * This has to be atomic as more DIOs can race to create the workqueue
- */
- old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
- /* Someone created workqueue before us? Free ours... */
- if (old)
- destroy_workqueue(wq);
- return 0;
- }
- static int dio_set_defer_completion(struct dio *dio)
- {
- struct super_block *sb = dio->inode->i_sb;
- if (dio->defer_completion)
- return 0;
- dio->defer_completion = true;
- if (!sb->s_dio_done_wq)
- return sb_init_dio_done_wq(sb);
- return 0;
- }
- /*
- * Call into the fs to map some more disk blocks. We record the current number
- * of available blocks at sdio->blocks_available. These are in units of the
- * fs blocksize, i_blocksize(inode).
- *
- * The fs is allowed to map lots of blocks at once. If it wants to do that,
- * it uses the passed inode-relative block number as the file offset, as usual.
- *
- * get_block() is passed the number of i_blkbits-sized blocks which direct_io
- * has remaining to do. The fs should not map more than this number of blocks.
- *
- * If the fs has mapped a lot of blocks, it should populate bh->b_size to
- * indicate how much contiguous disk space has been made available at
- * bh->b_blocknr.
- *
- * If *any* of the mapped blocks are new, then the fs must set buffer_new().
- * This isn't very efficient...
- *
- * In the case of filesystem holes: the fs may return an arbitrarily-large
- * hole by returning an appropriate value in b_size and by clearing
- * buffer_mapped(). However the direct-io code will only process holes one
- * block at a time - it will repeatedly call get_block() as it walks the hole.
- */
- static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
- struct buffer_head *map_bh)
- {
- int ret;
- sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
- sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
- unsigned long fs_count; /* Number of filesystem-sized blocks */
- int create;
- unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
- loff_t i_size;
- /*
- * If there was a memory error and we've overwritten all the
- * mapped blocks then we can now return that memory error
- */
- ret = dio->page_errors;
- if (ret == 0) {
- BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
- fs_startblk = sdio->block_in_file >> sdio->blkfactor;
- fs_endblk = (sdio->final_block_in_request - 1) >>
- sdio->blkfactor;
- fs_count = fs_endblk - fs_startblk + 1;
- map_bh->b_state = 0;
- map_bh->b_size = fs_count << i_blkbits;
- /*
- * For writes that could fill holes inside i_size on a
- * DIO_SKIP_HOLES filesystem we forbid block creations: only
- * overwrites are permitted. We will return early to the caller
- * once we see an unmapped buffer head returned, and the caller
- * will fall back to buffered I/O.
- *
- * Otherwise the decision is left to the get_blocks method,
- * which may decide to handle it or also return an unmapped
- * buffer head.
- */
- create = dio->op == REQ_OP_WRITE;
- if (dio->flags & DIO_SKIP_HOLES) {
- i_size = i_size_read(dio->inode);
- if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
- create = 0;
- }
- ret = (*sdio->get_block)(dio->inode, fs_startblk,
- map_bh, create);
- /* Store for completion */
- dio->private = map_bh->b_private;
- if (ret == 0 && buffer_defer_completion(map_bh))
- ret = dio_set_defer_completion(dio);
- }
- return ret;
- }
- /*
- * There is no bio. Make one now.
- */
- static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
- sector_t start_sector, struct buffer_head *map_bh)
- {
- sector_t sector;
- int ret, nr_pages;
- ret = dio_bio_reap(dio, sdio);
- if (ret)
- goto out;
- sector = start_sector << (sdio->blkbits - 9);
- nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
- BUG_ON(nr_pages <= 0);
- dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
- sdio->boundary = 0;
- out:
- return ret;
- }
- /*
- * Attempt to put the current chunk of 'cur_page' into the current BIO. If
- * that was successful then update final_block_in_bio and take a ref against
- * the just-added page.
- *
- * Return zero on success. Non-zero means the caller needs to start a new BIO.
- */
- static inline int dio_bio_add_page(struct dio_submit *sdio)
- {
- int ret;
- ret = bio_add_page(sdio->bio, sdio->cur_page,
- sdio->cur_page_len, sdio->cur_page_offset);
- if (ret == sdio->cur_page_len) {
- /*
- * Decrement count only, if we are done with this page
- */
- if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
- sdio->pages_in_io--;
- get_page(sdio->cur_page);
- sdio->final_block_in_bio = sdio->cur_page_block +
- (sdio->cur_page_len >> sdio->blkbits);
- ret = 0;
- } else {
- ret = 1;
- }
- return ret;
- }
-
- /*
- * Put cur_page under IO. The section of cur_page which is described by
- * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
- * starts on-disk at cur_page_block.
- *
- * We take a ref against the page here (on behalf of its presence in the bio).
- *
- * The caller of this function is responsible for removing cur_page from the
- * dio, and for dropping the refcount which came from that presence.
- */
- static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
- struct buffer_head *map_bh)
- {
- int ret = 0;
- if (sdio->bio) {
- loff_t cur_offset = sdio->cur_page_fs_offset;
- loff_t bio_next_offset = sdio->logical_offset_in_bio +
- sdio->bio->bi_iter.bi_size;
- /*
- * See whether this new request is contiguous with the old.
- *
- * Btrfs cannot handle having logically non-contiguous requests
- * submitted. For example if you have
- *
- * Logical: [0-4095][HOLE][8192-12287]
- * Physical: [0-4095] [4096-8191]
- *
- * We cannot submit those pages together as one BIO. So if our
- * current logical offset in the file does not equal what would
- * be the next logical offset in the bio, submit the bio we
- * have.
- */
- if (sdio->final_block_in_bio != sdio->cur_page_block ||
- cur_offset != bio_next_offset)
- dio_bio_submit(dio, sdio);
- }
- if (sdio->bio == NULL) {
- ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
- if (ret)
- goto out;
- }
- if (dio_bio_add_page(sdio) != 0) {
- dio_bio_submit(dio, sdio);
- ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
- if (ret == 0) {
- ret = dio_bio_add_page(sdio);
- BUG_ON(ret != 0);
- }
- }
- out:
- return ret;
- }
- /*
- * An autonomous function to put a chunk of a page under deferred IO.
- *
- * The caller doesn't actually know (or care) whether this piece of page is in
- * a BIO, or is under IO or whatever. We just take care of all possible
- * situations here. The separation between the logic of do_direct_IO() and
- * that of submit_page_section() is important for clarity. Please don't break.
- *
- * The chunk of page starts on-disk at blocknr.
- *
- * We perform deferred IO, by recording the last-submitted page inside our
- * private part of the dio structure. If possible, we just expand the IO
- * across that page here.
- *
- * If that doesn't work out then we put the old page into the bio and add this
- * page to the dio instead.
- */
- static inline int
- submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
- unsigned offset, unsigned len, sector_t blocknr,
- struct buffer_head *map_bh)
- {
- int ret = 0;
- if (dio->op == REQ_OP_WRITE) {
- /*
- * Read accounting is performed in submit_bio()
- */
- task_io_account_write(len);
- }
- /*
- * Can we just grow the current page's presence in the dio?
- */
- if (sdio->cur_page == page &&
- sdio->cur_page_offset + sdio->cur_page_len == offset &&
- sdio->cur_page_block +
- (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
- sdio->cur_page_len += len;
- goto out;
- }
- /*
- * If there's a deferred page already there then send it.
- */
- if (sdio->cur_page) {
- ret = dio_send_cur_page(dio, sdio, map_bh);
- put_page(sdio->cur_page);
- sdio->cur_page = NULL;
- if (ret)
- return ret;
- }
- get_page(page); /* It is in dio */
- sdio->cur_page = page;
- sdio->cur_page_offset = offset;
- sdio->cur_page_len = len;
- sdio->cur_page_block = blocknr;
- sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
- out:
- /*
- * If sdio->boundary then we want to schedule the IO now to
- * avoid metadata seeks.
- */
- if (sdio->boundary) {
- ret = dio_send_cur_page(dio, sdio, map_bh);
- if (sdio->bio)
- dio_bio_submit(dio, sdio);
- put_page(sdio->cur_page);
- sdio->cur_page = NULL;
- }
- return ret;
- }
- /*
- * If we are not writing the entire block and get_block() allocated
- * the block for us, we need to fill-in the unused portion of the
- * block with zeros. This happens only if user-buffer, fileoffset or
- * io length is not filesystem block-size multiple.
- *
- * `end' is zero if we're doing the start of the IO, 1 at the end of the
- * IO.
- */
- static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
- int end, struct buffer_head *map_bh)
- {
- unsigned dio_blocks_per_fs_block;
- unsigned this_chunk_blocks; /* In dio_blocks */
- unsigned this_chunk_bytes;
- struct page *page;
- sdio->start_zero_done = 1;
- if (!sdio->blkfactor || !buffer_new(map_bh))
- return;
- dio_blocks_per_fs_block = 1 << sdio->blkfactor;
- this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
- if (!this_chunk_blocks)
- return;
- /*
- * We need to zero out part of an fs block. It is either at the
- * beginning or the end of the fs block.
- */
- if (end)
- this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
- this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
- page = ZERO_PAGE(0);
- if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
- sdio->next_block_for_io, map_bh))
- return;
- sdio->next_block_for_io += this_chunk_blocks;
- }
- /*
- * Walk the user pages, and the file, mapping blocks to disk and generating
- * a sequence of (page,offset,len,block) mappings. These mappings are injected
- * into submit_page_section(), which takes care of the next stage of submission
- *
- * Direct IO against a blockdev is different from a file. Because we can
- * happily perform page-sized but 512-byte aligned IOs. It is important that
- * blockdev IO be able to have fine alignment and large sizes.
- *
- * So what we do is to permit the ->get_block function to populate bh.b_size
- * with the size of IO which is permitted at this offset and this i_blkbits.
- *
- * For best results, the blockdev should be set up with 512-byte i_blkbits and
- * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
- * fine alignment but still allows this function to work in PAGE_SIZE units.
- */
- static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
- struct buffer_head *map_bh)
- {
- const unsigned blkbits = sdio->blkbits;
- const unsigned i_blkbits = blkbits + sdio->blkfactor;
- int ret = 0;
- while (sdio->block_in_file < sdio->final_block_in_request) {
- struct page *page;
- size_t from, to;
- page = dio_get_page(dio, sdio);
- if (IS_ERR(page)) {
- ret = PTR_ERR(page);
- goto out;
- }
- from = sdio->head ? 0 : sdio->from;
- to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
- sdio->head++;
- while (from < to) {
- unsigned this_chunk_bytes; /* # of bytes mapped */
- unsigned this_chunk_blocks; /* # of blocks */
- unsigned u;
- if (sdio->blocks_available == 0) {
- /*
- * Need to go and map some more disk
- */
- unsigned long blkmask;
- unsigned long dio_remainder;
- ret = get_more_blocks(dio, sdio, map_bh);
- if (ret) {
- put_page(page);
- goto out;
- }
- if (!buffer_mapped(map_bh))
- goto do_holes;
- sdio->blocks_available =
- map_bh->b_size >> blkbits;
- sdio->next_block_for_io =
- map_bh->b_blocknr << sdio->blkfactor;
- if (buffer_new(map_bh)) {
- clean_bdev_aliases(
- map_bh->b_bdev,
- map_bh->b_blocknr,
- map_bh->b_size >> i_blkbits);
- }
- if (!sdio->blkfactor)
- goto do_holes;
- blkmask = (1 << sdio->blkfactor) - 1;
- dio_remainder = (sdio->block_in_file & blkmask);
- /*
- * If we are at the start of IO and that IO
- * starts partway into a fs-block,
- * dio_remainder will be non-zero. If the IO
- * is a read then we can simply advance the IO
- * cursor to the first block which is to be
- * read. But if the IO is a write and the
- * block was newly allocated we cannot do that;
- * the start of the fs block must be zeroed out
- * on-disk
- */
- if (!buffer_new(map_bh))
- sdio->next_block_for_io += dio_remainder;
- sdio->blocks_available -= dio_remainder;
- }
- do_holes:
- /* Handle holes */
- if (!buffer_mapped(map_bh)) {
- loff_t i_size_aligned;
- /* AKPM: eargh, -ENOTBLK is a hack */
- if (dio->op == REQ_OP_WRITE) {
- put_page(page);
- return -ENOTBLK;
- }
- /*
- * Be sure to account for a partial block as the
- * last block in the file
- */
- i_size_aligned = ALIGN(i_size_read(dio->inode),
- 1 << blkbits);
- if (sdio->block_in_file >=
- i_size_aligned >> blkbits) {
- /* We hit eof */
- put_page(page);
- goto out;
- }
- zero_user(page, from, 1 << blkbits);
- sdio->block_in_file++;
- from += 1 << blkbits;
- dio->result += 1 << blkbits;
- goto next_block;
- }
- /*
- * If we're performing IO which has an alignment which
- * is finer than the underlying fs, go check to see if
- * we must zero out the start of this block.
- */
- if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
- dio_zero_block(dio, sdio, 0, map_bh);
- /*
- * Work out, in this_chunk_blocks, how much disk we
- * can add to this page
- */
- this_chunk_blocks = sdio->blocks_available;
- u = (to - from) >> blkbits;
- if (this_chunk_blocks > u)
- this_chunk_blocks = u;
- u = sdio->final_block_in_request - sdio->block_in_file;
- if (this_chunk_blocks > u)
- this_chunk_blocks = u;
- this_chunk_bytes = this_chunk_blocks << blkbits;
- BUG_ON(this_chunk_bytes == 0);
- if (this_chunk_blocks == sdio->blocks_available)
- sdio->boundary = buffer_boundary(map_bh);
- ret = submit_page_section(dio, sdio, page,
- from,
- this_chunk_bytes,
- sdio->next_block_for_io,
- map_bh);
- if (ret) {
- put_page(page);
- goto out;
- }
- sdio->next_block_for_io += this_chunk_blocks;
- sdio->block_in_file += this_chunk_blocks;
- from += this_chunk_bytes;
- dio->result += this_chunk_bytes;
- sdio->blocks_available -= this_chunk_blocks;
- next_block:
- BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
- if (sdio->block_in_file == sdio->final_block_in_request)
- break;
- }
- /* Drop the ref which was taken in get_user_pages() */
- put_page(page);
- }
- out:
- return ret;
- }
- static inline int drop_refcount(struct dio *dio)
- {
- int ret2;
- unsigned long flags;
- /*
- * Sync will always be dropping the final ref and completing the
- * operation. AIO can if it was a broken operation described above or
- * in fact if all the bios race to complete before we get here. In
- * that case dio_complete() translates the EIOCBQUEUED into the proper
- * return code that the caller will hand to ->complete().
- *
- * This is managed by the bio_lock instead of being an atomic_t so that
- * completion paths can drop their ref and use the remaining count to
- * decide to wake the submission path atomically.
- */
- spin_lock_irqsave(&dio->bio_lock, flags);
- ret2 = --dio->refcount;
- spin_unlock_irqrestore(&dio->bio_lock, flags);
- return ret2;
- }
- /*
- * This is a library function for use by filesystem drivers.
- *
- * The locking rules are governed by the flags parameter:
- * - if the flags value contains DIO_LOCKING we use a fancy locking
- * scheme for dumb filesystems.
- * For writes this function is called under i_mutex and returns with
- * i_mutex held, for reads, i_mutex is not held on entry, but it is
- * taken and dropped again before returning.
- * - if the flags value does NOT contain DIO_LOCKING we don't use any
- * internal locking but rather rely on the filesystem to synchronize
- * direct I/O reads/writes versus each other and truncate.
- *
- * To help with locking against truncate we incremented the i_dio_count
- * counter before starting direct I/O, and decrement it once we are done.
- * Truncate can wait for it to reach zero to provide exclusion. It is
- * expected that filesystem provide exclusion between new direct I/O
- * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
- * but other filesystems need to take care of this on their own.
- *
- * NOTE: if you pass "sdio" to anything by pointer make sure that function
- * is always inlined. Otherwise gcc is unable to split the structure into
- * individual fields and will generate much worse code. This is important
- * for the whole file.
- */
- static inline ssize_t
- do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
- struct block_device *bdev, struct iov_iter *iter,
- get_block_t get_block, dio_iodone_t end_io,
- dio_submit_t submit_io, int flags)
- {
- unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
- unsigned blkbits = i_blkbits;
- unsigned blocksize_mask = (1 << blkbits) - 1;
- ssize_t retval = -EINVAL;
- const size_t count = iov_iter_count(iter);
- loff_t offset = iocb->ki_pos;
- const loff_t end = offset + count;
- struct dio *dio;
- struct dio_submit sdio = { 0, };
- struct buffer_head map_bh = { 0, };
- struct blk_plug plug;
- unsigned long align = offset | iov_iter_alignment(iter);
- /*
- * Avoid references to bdev if not absolutely needed to give
- * the early prefetch in the caller enough time.
- */
- if (align & blocksize_mask) {
- if (bdev)
- blkbits = blksize_bits(bdev_logical_block_size(bdev));
- blocksize_mask = (1 << blkbits) - 1;
- if (align & blocksize_mask)
- goto out;
- }
- /* watch out for a 0 len io from a tricksy fs */
- if (iov_iter_rw(iter) == READ && !count)
- return 0;
- dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
- retval = -ENOMEM;
- if (!dio)
- goto out;
- /*
- * Believe it or not, zeroing out the page array caused a .5%
- * performance regression in a database benchmark. So, we take
- * care to only zero out what's needed.
- */
- memset(dio, 0, offsetof(struct dio, pages));
- dio->flags = flags;
- if (dio->flags & DIO_LOCKING) {
- if (iov_iter_rw(iter) == READ) {
- struct address_space *mapping =
- iocb->ki_filp->f_mapping;
- /* will be released by direct_io_worker */
- inode_lock(inode);
- retval = filemap_write_and_wait_range(mapping, offset,
- end - 1);
- if (retval) {
- inode_unlock(inode);
- kmem_cache_free(dio_cache, dio);
- goto out;
- }
- }
- }
- /* Once we sampled i_size check for reads beyond EOF */
- dio->i_size = i_size_read(inode);
- if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
- if (dio->flags & DIO_LOCKING)
- inode_unlock(inode);
- kmem_cache_free(dio_cache, dio);
- retval = 0;
- goto out;
- }
- /*
- * For file extending writes updating i_size before data writeouts
- * complete can expose uninitialized blocks in dumb filesystems.
- * In that case we need to wait for I/O completion even if asked
- * for an asynchronous write.
- */
- if (is_sync_kiocb(iocb))
- dio->is_async = false;
- else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
- dio->is_async = false;
- else
- dio->is_async = true;
- dio->inode = inode;
- if (iov_iter_rw(iter) == WRITE) {
- dio->op = REQ_OP_WRITE;
- dio->op_flags = REQ_SYNC | REQ_IDLE;
- if (iocb->ki_flags & IOCB_NOWAIT)
- dio->op_flags |= REQ_NOWAIT;
- } else {
- dio->op = REQ_OP_READ;
- }
- /*
- * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
- * so that we can call ->fsync.
- */
- if (dio->is_async && iov_iter_rw(iter) == WRITE) {
- retval = 0;
- if (iocb->ki_flags & IOCB_DSYNC)
- retval = dio_set_defer_completion(dio);
- else if (!dio->inode->i_sb->s_dio_done_wq) {
- /*
- * In case of AIO write racing with buffered read we
- * need to defer completion. We can't decide this now,
- * however the workqueue needs to be initialized here.
- */
- retval = sb_init_dio_done_wq(dio->inode->i_sb);
- }
- if (retval) {
- /*
- * We grab i_mutex only for reads so we don't have
- * to release it here
- */
- kmem_cache_free(dio_cache, dio);
- goto out;
- }
- }
- /*
- * Will be decremented at I/O completion time.
- */
- inode_dio_begin(inode);
- retval = 0;
- sdio.blkbits = blkbits;
- sdio.blkfactor = i_blkbits - blkbits;
- sdio.block_in_file = offset >> blkbits;
- sdio.get_block = get_block;
- dio->end_io = end_io;
- sdio.submit_io = submit_io;
- sdio.final_block_in_bio = -1;
- sdio.next_block_for_io = -1;
- dio->iocb = iocb;
- spin_lock_init(&dio->bio_lock);
- dio->refcount = 1;
- dio->should_dirty = (iter->type == ITER_IOVEC);
- sdio.iter = iter;
- sdio.final_block_in_request = end >> blkbits;
- /*
- * In case of non-aligned buffers, we may need 2 more
- * pages since we need to zero out first and last block.
- */
- if (unlikely(sdio.blkfactor))
- sdio.pages_in_io = 2;
- sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
- blk_start_plug(&plug);
- retval = do_direct_IO(dio, &sdio, &map_bh);
- if (retval)
- dio_cleanup(dio, &sdio);
- if (retval == -ENOTBLK) {
- /*
- * The remaining part of the request will be
- * be handled by buffered I/O when we return
- */
- retval = 0;
- }
- /*
- * There may be some unwritten disk at the end of a part-written
- * fs-block-sized block. Go zero that now.
- */
- dio_zero_block(dio, &sdio, 1, &map_bh);
- if (sdio.cur_page) {
- ssize_t ret2;
- ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
- if (retval == 0)
- retval = ret2;
- put_page(sdio.cur_page);
- sdio.cur_page = NULL;
- }
- if (sdio.bio)
- dio_bio_submit(dio, &sdio);
- blk_finish_plug(&plug);
- /*
- * It is possible that, we return short IO due to end of file.
- * In that case, we need to release all the pages we got hold on.
- */
- dio_cleanup(dio, &sdio);
- /*
- * All block lookups have been performed. For READ requests
- * we can let i_mutex go now that its achieved its purpose
- * of protecting us from looking up uninitialized blocks.
- */
- if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
- inode_unlock(dio->inode);
- /*
- * The only time we want to leave bios in flight is when a successful
- * partial aio read or full aio write have been setup. In that case
- * bio completion will call aio_complete. The only time it's safe to
- * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
- * This had *better* be the only place that raises -EIOCBQUEUED.
- */
- BUG_ON(retval == -EIOCBQUEUED);
- if (dio->is_async && retval == 0 && dio->result &&
- (iov_iter_rw(iter) == READ || dio->result == count))
- retval = -EIOCBQUEUED;
- else
- dio_await_completion(dio);
- if (drop_refcount(dio) == 0) {
- retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
- } else
- BUG_ON(retval != -EIOCBQUEUED);
- out:
- return retval;
- }
- ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
- struct block_device *bdev, struct iov_iter *iter,
- get_block_t get_block,
- dio_iodone_t end_io, dio_submit_t submit_io,
- int flags)
- {
- /*
- * The block device state is needed in the end to finally
- * submit everything. Since it's likely to be cache cold
- * prefetch it here as first thing to hide some of the
- * latency.
- *
- * Attempt to prefetch the pieces we likely need later.
- */
- prefetch(&bdev->bd_disk->part_tbl);
- prefetch(bdev->bd_queue);
- prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
- return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
- end_io, submit_io, flags);
- }
- EXPORT_SYMBOL(__blockdev_direct_IO);
- static __init int dio_init(void)
- {
- dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
- return 0;
- }
- module_init(dio_init)
|