spi-sh-msiof.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Renesas Electronics Corporation
  6. * Copyright (C) 2014-2017 Glider bvba
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/bitmap.h>
  14. #include <linux/clk.h>
  15. #include <linux/completion.h>
  16. #include <linux/delay.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/dmaengine.h>
  19. #include <linux/err.h>
  20. #include <linux/gpio.h>
  21. #include <linux/gpio/consumer.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/io.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/of.h>
  27. #include <linux/of_device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/sh_dma.h>
  31. #include <linux/spi/sh_msiof.h>
  32. #include <linux/spi/spi.h>
  33. #include <asm/unaligned.h>
  34. struct sh_msiof_chipdata {
  35. u16 tx_fifo_size;
  36. u16 rx_fifo_size;
  37. u16 master_flags;
  38. u16 min_div_pow;
  39. };
  40. struct sh_msiof_spi_priv {
  41. struct spi_master *master;
  42. void __iomem *mapbase;
  43. struct clk *clk;
  44. struct platform_device *pdev;
  45. struct sh_msiof_spi_info *info;
  46. struct completion done;
  47. struct completion done_txdma;
  48. unsigned int tx_fifo_size;
  49. unsigned int rx_fifo_size;
  50. unsigned int min_div_pow;
  51. void *tx_dma_page;
  52. void *rx_dma_page;
  53. dma_addr_t tx_dma_addr;
  54. dma_addr_t rx_dma_addr;
  55. unsigned short unused_ss;
  56. bool native_cs_inited;
  57. bool native_cs_high;
  58. bool slave_aborted;
  59. };
  60. #define MAX_SS 3 /* Maximum number of native chip selects */
  61. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  62. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  63. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  64. #define RMDR1 0x10 /* Receive Mode Register 1 */
  65. #define RMDR2 0x14 /* Receive Mode Register 2 */
  66. #define RMDR3 0x18 /* Receive Mode Register 3 */
  67. #define TSCR 0x20 /* Transmit Clock Select Register */
  68. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  69. #define CTR 0x28 /* Control Register */
  70. #define FCTR 0x30 /* FIFO Control Register */
  71. #define STR 0x40 /* Status Register */
  72. #define IER 0x44 /* Interrupt Enable Register */
  73. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  74. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  75. #define TFDR 0x50 /* Transmit FIFO Data Register */
  76. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  77. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  78. #define RFDR 0x60 /* Receive FIFO Data Register */
  79. /* TMDR1 and RMDR1 */
  80. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  81. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  82. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  83. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  84. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  85. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  86. #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  87. #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  88. #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
  89. #define MDR1_FLD_SHIFT 2
  90. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  91. /* TMDR1 */
  92. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  93. #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
  94. #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
  95. /* TMDR2 and RMDR2 */
  96. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  97. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  98. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  99. /* TSCR and RSCR */
  100. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  101. #define SCR_BRPS(i) (((i) - 1) << 8)
  102. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  103. #define SCR_BRDV_DIV_2 0x0000
  104. #define SCR_BRDV_DIV_4 0x0001
  105. #define SCR_BRDV_DIV_8 0x0002
  106. #define SCR_BRDV_DIV_16 0x0003
  107. #define SCR_BRDV_DIV_32 0x0004
  108. #define SCR_BRDV_DIV_1 0x0007
  109. /* CTR */
  110. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  111. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  112. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  113. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  114. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  115. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  116. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  117. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  118. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  119. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  120. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  121. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  122. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  123. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  124. #define CTR_TXE 0x00000200 /* Transmit Enable */
  125. #define CTR_RXE 0x00000100 /* Receive Enable */
  126. /* FCTR */
  127. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  128. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  129. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  130. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  131. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  132. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  133. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  134. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  135. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  136. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  137. #define FCTR_TFUA_SHIFT 20
  138. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  139. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  140. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  141. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  142. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  143. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  144. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  145. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  146. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  147. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  148. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  149. #define FCTR_RFUA_SHIFT 4
  150. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  151. /* STR */
  152. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  153. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  154. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  155. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  156. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  157. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  158. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  159. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  160. #define STR_REOF 0x00000080 /* Frame Reception End */
  161. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  162. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  163. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  164. /* IER */
  165. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  166. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  167. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  168. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  169. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  170. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  171. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  172. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  173. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  174. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  175. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  176. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  177. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  178. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  179. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  180. {
  181. switch (reg_offs) {
  182. case TSCR:
  183. case RSCR:
  184. return ioread16(p->mapbase + reg_offs);
  185. default:
  186. return ioread32(p->mapbase + reg_offs);
  187. }
  188. }
  189. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  190. u32 value)
  191. {
  192. switch (reg_offs) {
  193. case TSCR:
  194. case RSCR:
  195. iowrite16(value, p->mapbase + reg_offs);
  196. break;
  197. default:
  198. iowrite32(value, p->mapbase + reg_offs);
  199. break;
  200. }
  201. }
  202. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  203. u32 clr, u32 set)
  204. {
  205. u32 mask = clr | set;
  206. u32 data;
  207. int k;
  208. data = sh_msiof_read(p, CTR);
  209. data &= ~clr;
  210. data |= set;
  211. sh_msiof_write(p, CTR, data);
  212. for (k = 100; k > 0; k--) {
  213. if ((sh_msiof_read(p, CTR) & mask) == set)
  214. break;
  215. udelay(10);
  216. }
  217. return k > 0 ? 0 : -ETIMEDOUT;
  218. }
  219. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  220. {
  221. struct sh_msiof_spi_priv *p = data;
  222. /* just disable the interrupt and wake up */
  223. sh_msiof_write(p, IER, 0);
  224. complete(&p->done);
  225. return IRQ_HANDLED;
  226. }
  227. static const u32 sh_msiof_spi_div_array[] = {
  228. SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4,
  229. SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
  230. };
  231. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  232. unsigned long parent_rate, u32 spi_hz)
  233. {
  234. unsigned long div;
  235. u32 brps, scr;
  236. unsigned int div_pow = p->min_div_pow;
  237. if (!spi_hz || !parent_rate) {
  238. WARN(1, "Invalid clock rate parameters %lu and %u\n",
  239. parent_rate, spi_hz);
  240. return;
  241. }
  242. div = DIV_ROUND_UP(parent_rate, spi_hz);
  243. if (div <= 1024) {
  244. /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
  245. if (!div_pow && div <= 32 && div > 2)
  246. div_pow = 1;
  247. if (div_pow)
  248. brps = (div + 1) >> div_pow;
  249. else
  250. brps = div;
  251. for (; brps > 32; div_pow++)
  252. brps = (brps + 1) >> 1;
  253. } else {
  254. /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
  255. dev_err(&p->pdev->dev,
  256. "Requested SPI transfer rate %d is too low\n", spi_hz);
  257. div_pow = 5;
  258. brps = 32;
  259. }
  260. scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
  261. sh_msiof_write(p, TSCR, scr);
  262. if (!(p->master->flags & SPI_MASTER_MUST_TX))
  263. sh_msiof_write(p, RSCR, scr);
  264. }
  265. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  266. {
  267. /*
  268. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  269. * b'000 : 0
  270. * b'001 : 100
  271. * b'010 : 200
  272. * b'011 (SYNCDL only) : 300
  273. * b'101 : 50
  274. * b'110 : 150
  275. */
  276. if (dtdl_or_syncdl % 100)
  277. return dtdl_or_syncdl / 100 + 5;
  278. else
  279. return dtdl_or_syncdl / 100;
  280. }
  281. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  282. {
  283. u32 val;
  284. if (!p->info)
  285. return 0;
  286. /* check if DTDL and SYNCDL is allowed value */
  287. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  288. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  289. return 0;
  290. }
  291. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  292. if ((p->info->dtdl + p->info->syncdl) % 100) {
  293. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  294. return 0;
  295. }
  296. val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
  297. val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
  298. return val;
  299. }
  300. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
  301. u32 cpol, u32 cpha,
  302. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  303. {
  304. u32 tmp;
  305. int edge;
  306. /*
  307. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  308. * 0 0 10 10 1 1
  309. * 0 1 10 10 0 0
  310. * 1 0 11 11 0 0
  311. * 1 1 11 11 1 1
  312. */
  313. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  314. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  315. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  316. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  317. if (spi_controller_is_slave(p->master)) {
  318. sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
  319. } else {
  320. sh_msiof_write(p, TMDR1,
  321. tmp | MDR1_TRMD | TMDR1_PCON |
  322. (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
  323. }
  324. if (p->master->flags & SPI_MASTER_MUST_TX) {
  325. /* These bits are reserved if RX needs TX */
  326. tmp &= ~0x0000ffff;
  327. }
  328. sh_msiof_write(p, RMDR1, tmp);
  329. tmp = 0;
  330. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  331. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  332. edge = cpol ^ !cpha;
  333. tmp |= edge << CTR_TEDG_SHIFT;
  334. tmp |= edge << CTR_REDG_SHIFT;
  335. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  336. sh_msiof_write(p, CTR, tmp);
  337. }
  338. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  339. const void *tx_buf, void *rx_buf,
  340. u32 bits, u32 words)
  341. {
  342. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  343. if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
  344. sh_msiof_write(p, TMDR2, dr2);
  345. else
  346. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  347. if (rx_buf)
  348. sh_msiof_write(p, RMDR2, dr2);
  349. }
  350. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  351. {
  352. sh_msiof_write(p, STR,
  353. sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
  354. }
  355. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  356. const void *tx_buf, int words, int fs)
  357. {
  358. const u8 *buf_8 = tx_buf;
  359. int k;
  360. for (k = 0; k < words; k++)
  361. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  362. }
  363. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  364. const void *tx_buf, int words, int fs)
  365. {
  366. const u16 *buf_16 = tx_buf;
  367. int k;
  368. for (k = 0; k < words; k++)
  369. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  370. }
  371. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  372. const void *tx_buf, int words, int fs)
  373. {
  374. const u16 *buf_16 = tx_buf;
  375. int k;
  376. for (k = 0; k < words; k++)
  377. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  378. }
  379. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  380. const void *tx_buf, int words, int fs)
  381. {
  382. const u32 *buf_32 = tx_buf;
  383. int k;
  384. for (k = 0; k < words; k++)
  385. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  386. }
  387. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  388. const void *tx_buf, int words, int fs)
  389. {
  390. const u32 *buf_32 = tx_buf;
  391. int k;
  392. for (k = 0; k < words; k++)
  393. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  394. }
  395. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  396. const void *tx_buf, int words, int fs)
  397. {
  398. const u32 *buf_32 = tx_buf;
  399. int k;
  400. for (k = 0; k < words; k++)
  401. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  402. }
  403. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  404. const void *tx_buf, int words, int fs)
  405. {
  406. const u32 *buf_32 = tx_buf;
  407. int k;
  408. for (k = 0; k < words; k++)
  409. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  410. }
  411. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  412. void *rx_buf, int words, int fs)
  413. {
  414. u8 *buf_8 = rx_buf;
  415. int k;
  416. for (k = 0; k < words; k++)
  417. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  418. }
  419. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  420. void *rx_buf, int words, int fs)
  421. {
  422. u16 *buf_16 = rx_buf;
  423. int k;
  424. for (k = 0; k < words; k++)
  425. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  426. }
  427. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  428. void *rx_buf, int words, int fs)
  429. {
  430. u16 *buf_16 = rx_buf;
  431. int k;
  432. for (k = 0; k < words; k++)
  433. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  434. }
  435. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  436. void *rx_buf, int words, int fs)
  437. {
  438. u32 *buf_32 = rx_buf;
  439. int k;
  440. for (k = 0; k < words; k++)
  441. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  442. }
  443. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  444. void *rx_buf, int words, int fs)
  445. {
  446. u32 *buf_32 = rx_buf;
  447. int k;
  448. for (k = 0; k < words; k++)
  449. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  450. }
  451. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  452. void *rx_buf, int words, int fs)
  453. {
  454. u32 *buf_32 = rx_buf;
  455. int k;
  456. for (k = 0; k < words; k++)
  457. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  458. }
  459. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  460. void *rx_buf, int words, int fs)
  461. {
  462. u32 *buf_32 = rx_buf;
  463. int k;
  464. for (k = 0; k < words; k++)
  465. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  466. }
  467. static int sh_msiof_spi_setup(struct spi_device *spi)
  468. {
  469. struct device_node *np = spi->master->dev.of_node;
  470. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  471. u32 clr, set, tmp;
  472. if (!np) {
  473. /*
  474. * Use spi->controller_data for CS (same strategy as spi_gpio),
  475. * if any. otherwise let HW control CS
  476. */
  477. spi->cs_gpio = (uintptr_t)spi->controller_data;
  478. }
  479. if (gpio_is_valid(spi->cs_gpio)) {
  480. gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  481. return 0;
  482. }
  483. if (spi_controller_is_slave(p->master))
  484. return 0;
  485. if (p->native_cs_inited &&
  486. (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
  487. return 0;
  488. /* Configure native chip select mode/polarity early */
  489. clr = MDR1_SYNCMD_MASK;
  490. set = MDR1_SYNCMD_SPI;
  491. if (spi->mode & SPI_CS_HIGH)
  492. clr |= BIT(MDR1_SYNCAC_SHIFT);
  493. else
  494. set |= BIT(MDR1_SYNCAC_SHIFT);
  495. pm_runtime_get_sync(&p->pdev->dev);
  496. tmp = sh_msiof_read(p, TMDR1) & ~clr;
  497. sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
  498. tmp = sh_msiof_read(p, RMDR1) & ~clr;
  499. sh_msiof_write(p, RMDR1, tmp | set);
  500. pm_runtime_put(&p->pdev->dev);
  501. p->native_cs_high = spi->mode & SPI_CS_HIGH;
  502. p->native_cs_inited = true;
  503. return 0;
  504. }
  505. static int sh_msiof_prepare_message(struct spi_master *master,
  506. struct spi_message *msg)
  507. {
  508. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  509. const struct spi_device *spi = msg->spi;
  510. u32 ss, cs_high;
  511. /* Configure pins before asserting CS */
  512. if (gpio_is_valid(spi->cs_gpio)) {
  513. ss = p->unused_ss;
  514. cs_high = p->native_cs_high;
  515. } else {
  516. ss = spi->chip_select;
  517. cs_high = !!(spi->mode & SPI_CS_HIGH);
  518. }
  519. sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
  520. !!(spi->mode & SPI_CPHA),
  521. !!(spi->mode & SPI_3WIRE),
  522. !!(spi->mode & SPI_LSB_FIRST), cs_high);
  523. return 0;
  524. }
  525. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  526. {
  527. bool slave = spi_controller_is_slave(p->master);
  528. int ret = 0;
  529. /* setup clock and rx/tx signals */
  530. if (!slave)
  531. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  532. if (rx_buf && !ret)
  533. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  534. if (!ret)
  535. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  536. /* start by setting frame bit */
  537. if (!ret && !slave)
  538. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  539. return ret;
  540. }
  541. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  542. {
  543. bool slave = spi_controller_is_slave(p->master);
  544. int ret = 0;
  545. /* shut down frame, rx/tx and clock signals */
  546. if (!slave)
  547. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  548. if (!ret)
  549. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  550. if (rx_buf && !ret)
  551. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  552. if (!ret && !slave)
  553. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  554. return ret;
  555. }
  556. static int sh_msiof_slave_abort(struct spi_master *master)
  557. {
  558. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  559. p->slave_aborted = true;
  560. complete(&p->done);
  561. complete(&p->done_txdma);
  562. return 0;
  563. }
  564. static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
  565. struct completion *x)
  566. {
  567. if (spi_controller_is_slave(p->master)) {
  568. if (wait_for_completion_interruptible(x) ||
  569. p->slave_aborted) {
  570. dev_dbg(&p->pdev->dev, "interrupted\n");
  571. return -EINTR;
  572. }
  573. } else {
  574. if (!wait_for_completion_timeout(x, HZ)) {
  575. dev_err(&p->pdev->dev, "timeout\n");
  576. return -ETIMEDOUT;
  577. }
  578. }
  579. return 0;
  580. }
  581. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  582. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  583. const void *, int, int),
  584. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  585. void *, int, int),
  586. const void *tx_buf, void *rx_buf,
  587. int words, int bits)
  588. {
  589. int fifo_shift;
  590. int ret;
  591. /* limit maximum word transfer to rx/tx fifo size */
  592. if (tx_buf)
  593. words = min_t(int, words, p->tx_fifo_size);
  594. if (rx_buf)
  595. words = min_t(int, words, p->rx_fifo_size);
  596. /* the fifo contents need shifting */
  597. fifo_shift = 32 - bits;
  598. /* default FIFO watermarks for PIO */
  599. sh_msiof_write(p, FCTR, 0);
  600. /* setup msiof transfer mode registers */
  601. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  602. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  603. /* write tx fifo */
  604. if (tx_buf)
  605. tx_fifo(p, tx_buf, words, fifo_shift);
  606. reinit_completion(&p->done);
  607. p->slave_aborted = false;
  608. ret = sh_msiof_spi_start(p, rx_buf);
  609. if (ret) {
  610. dev_err(&p->pdev->dev, "failed to start hardware\n");
  611. goto stop_ier;
  612. }
  613. /* wait for tx fifo to be emptied / rx fifo to be filled */
  614. ret = sh_msiof_wait_for_completion(p, &p->done);
  615. if (ret)
  616. goto stop_reset;
  617. /* read rx fifo */
  618. if (rx_buf)
  619. rx_fifo(p, rx_buf, words, fifo_shift);
  620. /* clear status bits */
  621. sh_msiof_reset_str(p);
  622. ret = sh_msiof_spi_stop(p, rx_buf);
  623. if (ret) {
  624. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  625. return ret;
  626. }
  627. return words;
  628. stop_reset:
  629. sh_msiof_reset_str(p);
  630. sh_msiof_spi_stop(p, rx_buf);
  631. stop_ier:
  632. sh_msiof_write(p, IER, 0);
  633. return ret;
  634. }
  635. static void sh_msiof_dma_complete(void *arg)
  636. {
  637. complete(arg);
  638. }
  639. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  640. void *rx, unsigned int len)
  641. {
  642. u32 ier_bits = 0;
  643. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  644. dma_cookie_t cookie;
  645. int ret;
  646. /* First prepare and submit the DMA request(s), as this may fail */
  647. if (rx) {
  648. ier_bits |= IER_RDREQE | IER_RDMAE;
  649. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  650. p->rx_dma_addr, len, DMA_DEV_TO_MEM,
  651. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  652. if (!desc_rx)
  653. return -EAGAIN;
  654. desc_rx->callback = sh_msiof_dma_complete;
  655. desc_rx->callback_param = &p->done;
  656. cookie = dmaengine_submit(desc_rx);
  657. if (dma_submit_error(cookie))
  658. return cookie;
  659. }
  660. if (tx) {
  661. ier_bits |= IER_TDREQE | IER_TDMAE;
  662. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  663. p->tx_dma_addr, len, DMA_TO_DEVICE);
  664. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  665. p->tx_dma_addr, len, DMA_MEM_TO_DEV,
  666. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  667. if (!desc_tx) {
  668. ret = -EAGAIN;
  669. goto no_dma_tx;
  670. }
  671. desc_tx->callback = sh_msiof_dma_complete;
  672. desc_tx->callback_param = &p->done_txdma;
  673. cookie = dmaengine_submit(desc_tx);
  674. if (dma_submit_error(cookie)) {
  675. ret = cookie;
  676. goto no_dma_tx;
  677. }
  678. }
  679. /* 1 stage FIFO watermarks for DMA */
  680. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  681. /* setup msiof transfer mode registers (32-bit words) */
  682. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  683. sh_msiof_write(p, IER, ier_bits);
  684. reinit_completion(&p->done);
  685. if (tx)
  686. reinit_completion(&p->done_txdma);
  687. p->slave_aborted = false;
  688. /* Now start DMA */
  689. if (rx)
  690. dma_async_issue_pending(p->master->dma_rx);
  691. if (tx)
  692. dma_async_issue_pending(p->master->dma_tx);
  693. ret = sh_msiof_spi_start(p, rx);
  694. if (ret) {
  695. dev_err(&p->pdev->dev, "failed to start hardware\n");
  696. goto stop_dma;
  697. }
  698. if (tx) {
  699. /* wait for tx DMA completion */
  700. ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
  701. if (ret)
  702. goto stop_reset;
  703. }
  704. if (rx) {
  705. /* wait for rx DMA completion */
  706. ret = sh_msiof_wait_for_completion(p, &p->done);
  707. if (ret)
  708. goto stop_reset;
  709. sh_msiof_write(p, IER, 0);
  710. } else {
  711. /* wait for tx fifo to be emptied */
  712. sh_msiof_write(p, IER, IER_TEOFE);
  713. ret = sh_msiof_wait_for_completion(p, &p->done);
  714. if (ret)
  715. goto stop_reset;
  716. }
  717. /* clear status bits */
  718. sh_msiof_reset_str(p);
  719. ret = sh_msiof_spi_stop(p, rx);
  720. if (ret) {
  721. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  722. return ret;
  723. }
  724. if (rx)
  725. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  726. p->rx_dma_addr, len,
  727. DMA_FROM_DEVICE);
  728. return 0;
  729. stop_reset:
  730. sh_msiof_reset_str(p);
  731. sh_msiof_spi_stop(p, rx);
  732. stop_dma:
  733. if (tx)
  734. dmaengine_terminate_all(p->master->dma_tx);
  735. no_dma_tx:
  736. if (rx)
  737. dmaengine_terminate_all(p->master->dma_rx);
  738. sh_msiof_write(p, IER, 0);
  739. return ret;
  740. }
  741. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  742. {
  743. /* src or dst can be unaligned, but not both */
  744. if ((unsigned long)src & 3) {
  745. while (words--) {
  746. *dst++ = swab32(get_unaligned(src));
  747. src++;
  748. }
  749. } else if ((unsigned long)dst & 3) {
  750. while (words--) {
  751. put_unaligned(swab32(*src++), dst);
  752. dst++;
  753. }
  754. } else {
  755. while (words--)
  756. *dst++ = swab32(*src++);
  757. }
  758. }
  759. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  760. {
  761. /* src or dst can be unaligned, but not both */
  762. if ((unsigned long)src & 3) {
  763. while (words--) {
  764. *dst++ = swahw32(get_unaligned(src));
  765. src++;
  766. }
  767. } else if ((unsigned long)dst & 3) {
  768. while (words--) {
  769. put_unaligned(swahw32(*src++), dst);
  770. dst++;
  771. }
  772. } else {
  773. while (words--)
  774. *dst++ = swahw32(*src++);
  775. }
  776. }
  777. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  778. {
  779. memcpy(dst, src, words * 4);
  780. }
  781. static int sh_msiof_transfer_one(struct spi_master *master,
  782. struct spi_device *spi,
  783. struct spi_transfer *t)
  784. {
  785. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  786. void (*copy32)(u32 *, const u32 *, unsigned int);
  787. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  788. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  789. const void *tx_buf = t->tx_buf;
  790. void *rx_buf = t->rx_buf;
  791. unsigned int len = t->len;
  792. unsigned int bits = t->bits_per_word;
  793. unsigned int bytes_per_word;
  794. unsigned int words;
  795. int n;
  796. bool swab;
  797. int ret;
  798. /* setup clocks (clock already enabled in chipselect()) */
  799. if (!spi_controller_is_slave(p->master))
  800. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  801. while (master->dma_tx && len > 15) {
  802. /*
  803. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  804. * words, with byte resp. word swapping.
  805. */
  806. unsigned int l = 0;
  807. if (tx_buf)
  808. l = min(len, p->tx_fifo_size * 4);
  809. if (rx_buf)
  810. l = min(len, p->rx_fifo_size * 4);
  811. if (bits <= 8) {
  812. if (l & 3)
  813. break;
  814. copy32 = copy_bswap32;
  815. } else if (bits <= 16) {
  816. if (l & 3)
  817. break;
  818. copy32 = copy_wswap32;
  819. } else {
  820. copy32 = copy_plain32;
  821. }
  822. if (tx_buf)
  823. copy32(p->tx_dma_page, tx_buf, l / 4);
  824. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  825. if (ret == -EAGAIN) {
  826. dev_warn_once(&p->pdev->dev,
  827. "DMA not available, falling back to PIO\n");
  828. break;
  829. }
  830. if (ret)
  831. return ret;
  832. if (rx_buf) {
  833. copy32(rx_buf, p->rx_dma_page, l / 4);
  834. rx_buf += l;
  835. }
  836. if (tx_buf)
  837. tx_buf += l;
  838. len -= l;
  839. if (!len)
  840. return 0;
  841. }
  842. if (bits <= 8 && len > 15 && !(len & 3)) {
  843. bits = 32;
  844. swab = true;
  845. } else {
  846. swab = false;
  847. }
  848. /* setup bytes per word and fifo read/write functions */
  849. if (bits <= 8) {
  850. bytes_per_word = 1;
  851. tx_fifo = sh_msiof_spi_write_fifo_8;
  852. rx_fifo = sh_msiof_spi_read_fifo_8;
  853. } else if (bits <= 16) {
  854. bytes_per_word = 2;
  855. if ((unsigned long)tx_buf & 0x01)
  856. tx_fifo = sh_msiof_spi_write_fifo_16u;
  857. else
  858. tx_fifo = sh_msiof_spi_write_fifo_16;
  859. if ((unsigned long)rx_buf & 0x01)
  860. rx_fifo = sh_msiof_spi_read_fifo_16u;
  861. else
  862. rx_fifo = sh_msiof_spi_read_fifo_16;
  863. } else if (swab) {
  864. bytes_per_word = 4;
  865. if ((unsigned long)tx_buf & 0x03)
  866. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  867. else
  868. tx_fifo = sh_msiof_spi_write_fifo_s32;
  869. if ((unsigned long)rx_buf & 0x03)
  870. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  871. else
  872. rx_fifo = sh_msiof_spi_read_fifo_s32;
  873. } else {
  874. bytes_per_word = 4;
  875. if ((unsigned long)tx_buf & 0x03)
  876. tx_fifo = sh_msiof_spi_write_fifo_32u;
  877. else
  878. tx_fifo = sh_msiof_spi_write_fifo_32;
  879. if ((unsigned long)rx_buf & 0x03)
  880. rx_fifo = sh_msiof_spi_read_fifo_32u;
  881. else
  882. rx_fifo = sh_msiof_spi_read_fifo_32;
  883. }
  884. /* transfer in fifo sized chunks */
  885. words = len / bytes_per_word;
  886. while (words > 0) {
  887. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  888. words, bits);
  889. if (n < 0)
  890. return n;
  891. if (tx_buf)
  892. tx_buf += n * bytes_per_word;
  893. if (rx_buf)
  894. rx_buf += n * bytes_per_word;
  895. words -= n;
  896. }
  897. return 0;
  898. }
  899. static const struct sh_msiof_chipdata sh_data = {
  900. .tx_fifo_size = 64,
  901. .rx_fifo_size = 64,
  902. .master_flags = 0,
  903. .min_div_pow = 0,
  904. };
  905. static const struct sh_msiof_chipdata rcar_gen2_data = {
  906. .tx_fifo_size = 64,
  907. .rx_fifo_size = 64,
  908. .master_flags = SPI_MASTER_MUST_TX,
  909. .min_div_pow = 0,
  910. };
  911. static const struct sh_msiof_chipdata rcar_gen3_data = {
  912. .tx_fifo_size = 64,
  913. .rx_fifo_size = 64,
  914. .master_flags = SPI_MASTER_MUST_TX,
  915. .min_div_pow = 1,
  916. };
  917. static const struct of_device_id sh_msiof_match[] = {
  918. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  919. { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
  920. { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
  921. { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
  922. { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
  923. { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
  924. { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
  925. { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
  926. { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
  927. { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
  928. { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
  929. { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
  930. {},
  931. };
  932. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  933. #ifdef CONFIG_OF
  934. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  935. {
  936. struct sh_msiof_spi_info *info;
  937. struct device_node *np = dev->of_node;
  938. u32 num_cs = 1;
  939. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  940. if (!info)
  941. return NULL;
  942. info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
  943. : MSIOF_SPI_MASTER;
  944. /* Parse the MSIOF properties */
  945. if (info->mode == MSIOF_SPI_MASTER)
  946. of_property_read_u32(np, "num-cs", &num_cs);
  947. of_property_read_u32(np, "renesas,tx-fifo-size",
  948. &info->tx_fifo_override);
  949. of_property_read_u32(np, "renesas,rx-fifo-size",
  950. &info->rx_fifo_override);
  951. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  952. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  953. info->num_chipselect = num_cs;
  954. return info;
  955. }
  956. #else
  957. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  958. {
  959. return NULL;
  960. }
  961. #endif
  962. static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
  963. {
  964. struct device *dev = &p->pdev->dev;
  965. unsigned int used_ss_mask = 0;
  966. unsigned int cs_gpios = 0;
  967. unsigned int num_cs, i;
  968. int ret;
  969. ret = gpiod_count(dev, "cs");
  970. if (ret <= 0)
  971. return 0;
  972. num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
  973. for (i = 0; i < num_cs; i++) {
  974. struct gpio_desc *gpiod;
  975. gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
  976. if (!IS_ERR(gpiod)) {
  977. cs_gpios++;
  978. continue;
  979. }
  980. if (PTR_ERR(gpiod) != -ENOENT)
  981. return PTR_ERR(gpiod);
  982. if (i >= MAX_SS) {
  983. dev_err(dev, "Invalid native chip select %d\n", i);
  984. return -EINVAL;
  985. }
  986. used_ss_mask |= BIT(i);
  987. }
  988. p->unused_ss = ffz(used_ss_mask);
  989. if (cs_gpios && p->unused_ss >= MAX_SS) {
  990. dev_err(dev, "No unused native chip select available\n");
  991. return -EINVAL;
  992. }
  993. return 0;
  994. }
  995. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  996. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  997. {
  998. dma_cap_mask_t mask;
  999. struct dma_chan *chan;
  1000. struct dma_slave_config cfg;
  1001. int ret;
  1002. dma_cap_zero(mask);
  1003. dma_cap_set(DMA_SLAVE, mask);
  1004. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  1005. (void *)(unsigned long)id, dev,
  1006. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  1007. if (!chan) {
  1008. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  1009. return NULL;
  1010. }
  1011. memset(&cfg, 0, sizeof(cfg));
  1012. cfg.direction = dir;
  1013. if (dir == DMA_MEM_TO_DEV) {
  1014. cfg.dst_addr = port_addr;
  1015. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  1016. } else {
  1017. cfg.src_addr = port_addr;
  1018. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  1019. }
  1020. ret = dmaengine_slave_config(chan, &cfg);
  1021. if (ret) {
  1022. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  1023. dma_release_channel(chan);
  1024. return NULL;
  1025. }
  1026. return chan;
  1027. }
  1028. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  1029. {
  1030. struct platform_device *pdev = p->pdev;
  1031. struct device *dev = &pdev->dev;
  1032. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  1033. unsigned int dma_tx_id, dma_rx_id;
  1034. const struct resource *res;
  1035. struct spi_master *master;
  1036. struct device *tx_dev, *rx_dev;
  1037. if (dev->of_node) {
  1038. /* In the OF case we will get the slave IDs from the DT */
  1039. dma_tx_id = 0;
  1040. dma_rx_id = 0;
  1041. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  1042. dma_tx_id = info->dma_tx_id;
  1043. dma_rx_id = info->dma_rx_id;
  1044. } else {
  1045. /* The driver assumes no error */
  1046. return 0;
  1047. }
  1048. /* The DMA engine uses the second register set, if present */
  1049. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1050. if (!res)
  1051. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1052. master = p->master;
  1053. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  1054. dma_tx_id,
  1055. res->start + TFDR);
  1056. if (!master->dma_tx)
  1057. return -ENODEV;
  1058. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  1059. dma_rx_id,
  1060. res->start + RFDR);
  1061. if (!master->dma_rx)
  1062. goto free_tx_chan;
  1063. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1064. if (!p->tx_dma_page)
  1065. goto free_rx_chan;
  1066. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1067. if (!p->rx_dma_page)
  1068. goto free_tx_page;
  1069. tx_dev = master->dma_tx->device->dev;
  1070. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  1071. DMA_TO_DEVICE);
  1072. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  1073. goto free_rx_page;
  1074. rx_dev = master->dma_rx->device->dev;
  1075. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  1076. DMA_FROM_DEVICE);
  1077. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  1078. goto unmap_tx_page;
  1079. dev_info(dev, "DMA available");
  1080. return 0;
  1081. unmap_tx_page:
  1082. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  1083. free_rx_page:
  1084. free_page((unsigned long)p->rx_dma_page);
  1085. free_tx_page:
  1086. free_page((unsigned long)p->tx_dma_page);
  1087. free_rx_chan:
  1088. dma_release_channel(master->dma_rx);
  1089. free_tx_chan:
  1090. dma_release_channel(master->dma_tx);
  1091. master->dma_tx = NULL;
  1092. return -ENODEV;
  1093. }
  1094. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  1095. {
  1096. struct spi_master *master = p->master;
  1097. if (!master->dma_tx)
  1098. return;
  1099. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  1100. PAGE_SIZE, DMA_FROM_DEVICE);
  1101. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  1102. PAGE_SIZE, DMA_TO_DEVICE);
  1103. free_page((unsigned long)p->rx_dma_page);
  1104. free_page((unsigned long)p->tx_dma_page);
  1105. dma_release_channel(master->dma_rx);
  1106. dma_release_channel(master->dma_tx);
  1107. }
  1108. static int sh_msiof_spi_probe(struct platform_device *pdev)
  1109. {
  1110. struct resource *r;
  1111. struct spi_master *master;
  1112. const struct sh_msiof_chipdata *chipdata;
  1113. struct sh_msiof_spi_info *info;
  1114. struct sh_msiof_spi_priv *p;
  1115. int i;
  1116. int ret;
  1117. chipdata = of_device_get_match_data(&pdev->dev);
  1118. if (chipdata) {
  1119. info = sh_msiof_spi_parse_dt(&pdev->dev);
  1120. } else {
  1121. chipdata = (const void *)pdev->id_entry->driver_data;
  1122. info = dev_get_platdata(&pdev->dev);
  1123. }
  1124. if (!info) {
  1125. dev_err(&pdev->dev, "failed to obtain device info\n");
  1126. return -ENXIO;
  1127. }
  1128. if (info->mode == MSIOF_SPI_SLAVE)
  1129. master = spi_alloc_slave(&pdev->dev,
  1130. sizeof(struct sh_msiof_spi_priv));
  1131. else
  1132. master = spi_alloc_master(&pdev->dev,
  1133. sizeof(struct sh_msiof_spi_priv));
  1134. if (master == NULL)
  1135. return -ENOMEM;
  1136. p = spi_master_get_devdata(master);
  1137. platform_set_drvdata(pdev, p);
  1138. p->master = master;
  1139. p->info = info;
  1140. p->min_div_pow = chipdata->min_div_pow;
  1141. init_completion(&p->done);
  1142. init_completion(&p->done_txdma);
  1143. p->clk = devm_clk_get(&pdev->dev, NULL);
  1144. if (IS_ERR(p->clk)) {
  1145. dev_err(&pdev->dev, "cannot get clock\n");
  1146. ret = PTR_ERR(p->clk);
  1147. goto err1;
  1148. }
  1149. i = platform_get_irq(pdev, 0);
  1150. if (i < 0) {
  1151. dev_err(&pdev->dev, "cannot get IRQ\n");
  1152. ret = i;
  1153. goto err1;
  1154. }
  1155. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1156. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  1157. if (IS_ERR(p->mapbase)) {
  1158. ret = PTR_ERR(p->mapbase);
  1159. goto err1;
  1160. }
  1161. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1162. dev_name(&pdev->dev), p);
  1163. if (ret) {
  1164. dev_err(&pdev->dev, "unable to request irq\n");
  1165. goto err1;
  1166. }
  1167. p->pdev = pdev;
  1168. pm_runtime_enable(&pdev->dev);
  1169. /* Platform data may override FIFO sizes */
  1170. p->tx_fifo_size = chipdata->tx_fifo_size;
  1171. p->rx_fifo_size = chipdata->rx_fifo_size;
  1172. if (p->info->tx_fifo_override)
  1173. p->tx_fifo_size = p->info->tx_fifo_override;
  1174. if (p->info->rx_fifo_override)
  1175. p->rx_fifo_size = p->info->rx_fifo_override;
  1176. /* Setup GPIO chip selects */
  1177. master->num_chipselect = p->info->num_chipselect;
  1178. ret = sh_msiof_get_cs_gpios(p);
  1179. if (ret)
  1180. goto err1;
  1181. /* init master code */
  1182. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1183. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1184. master->flags = chipdata->master_flags;
  1185. master->bus_num = pdev->id;
  1186. master->dev.of_node = pdev->dev.of_node;
  1187. master->setup = sh_msiof_spi_setup;
  1188. master->prepare_message = sh_msiof_prepare_message;
  1189. master->slave_abort = sh_msiof_slave_abort;
  1190. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1191. master->auto_runtime_pm = true;
  1192. master->transfer_one = sh_msiof_transfer_one;
  1193. ret = sh_msiof_request_dma(p);
  1194. if (ret < 0)
  1195. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1196. ret = devm_spi_register_master(&pdev->dev, master);
  1197. if (ret < 0) {
  1198. dev_err(&pdev->dev, "spi_register_master error.\n");
  1199. goto err2;
  1200. }
  1201. return 0;
  1202. err2:
  1203. sh_msiof_release_dma(p);
  1204. pm_runtime_disable(&pdev->dev);
  1205. err1:
  1206. spi_master_put(master);
  1207. return ret;
  1208. }
  1209. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1210. {
  1211. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1212. sh_msiof_release_dma(p);
  1213. pm_runtime_disable(&pdev->dev);
  1214. return 0;
  1215. }
  1216. static const struct platform_device_id spi_driver_ids[] = {
  1217. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1218. {},
  1219. };
  1220. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1221. #ifdef CONFIG_PM_SLEEP
  1222. static int sh_msiof_spi_suspend(struct device *dev)
  1223. {
  1224. struct platform_device *pdev = to_platform_device(dev);
  1225. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1226. return spi_master_suspend(p->master);
  1227. }
  1228. static int sh_msiof_spi_resume(struct device *dev)
  1229. {
  1230. struct platform_device *pdev = to_platform_device(dev);
  1231. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1232. return spi_master_resume(p->master);
  1233. }
  1234. static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
  1235. sh_msiof_spi_resume);
  1236. #define DEV_PM_OPS &sh_msiof_spi_pm_ops
  1237. #else
  1238. #define DEV_PM_OPS NULL
  1239. #endif /* CONFIG_PM_SLEEP */
  1240. static struct platform_driver sh_msiof_spi_drv = {
  1241. .probe = sh_msiof_spi_probe,
  1242. .remove = sh_msiof_spi_remove,
  1243. .id_table = spi_driver_ids,
  1244. .driver = {
  1245. .name = "spi_sh_msiof",
  1246. .pm = DEV_PM_OPS,
  1247. .of_match_table = of_match_ptr(sh_msiof_match),
  1248. },
  1249. };
  1250. module_platform_driver(sh_msiof_spi_drv);
  1251. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1252. MODULE_AUTHOR("Magnus Damm");
  1253. MODULE_LICENSE("GPL v2");
  1254. MODULE_ALIAS("platform:spi_sh_msiof");