rtc-pcf8523.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /*
  2. * Copyright (C) 2012 Avionic Design GmbH
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/bcd.h>
  9. #include <linux/i2c.h>
  10. #include <linux/module.h>
  11. #include <linux/rtc.h>
  12. #include <linux/of.h>
  13. #define DRIVER_NAME "rtc-pcf8523"
  14. #define REG_CONTROL1 0x00
  15. #define REG_CONTROL1_CAP_SEL (1 << 7)
  16. #define REG_CONTROL1_STOP (1 << 5)
  17. #define REG_CONTROL3 0x02
  18. #define REG_CONTROL3_PM_BLD (1 << 7) /* battery low detection disabled */
  19. #define REG_CONTROL3_PM_VDD (1 << 6) /* switch-over disabled */
  20. #define REG_CONTROL3_PM_DSM (1 << 5) /* direct switching mode */
  21. #define REG_CONTROL3_PM_MASK 0xe0
  22. #define REG_CONTROL3_BLF (1 << 2) /* battery low bit, read-only */
  23. #define REG_SECONDS 0x03
  24. #define REG_SECONDS_OS (1 << 7)
  25. #define REG_MINUTES 0x04
  26. #define REG_HOURS 0x05
  27. #define REG_DAYS 0x06
  28. #define REG_WEEKDAYS 0x07
  29. #define REG_MONTHS 0x08
  30. #define REG_YEARS 0x09
  31. #define REG_OFFSET 0x0e
  32. #define REG_OFFSET_MODE BIT(7)
  33. struct pcf8523 {
  34. struct rtc_device *rtc;
  35. };
  36. static int pcf8523_read(struct i2c_client *client, u8 reg, u8 *valuep)
  37. {
  38. struct i2c_msg msgs[2];
  39. u8 value = 0;
  40. int err;
  41. msgs[0].addr = client->addr;
  42. msgs[0].flags = 0;
  43. msgs[0].len = sizeof(reg);
  44. msgs[0].buf = &reg;
  45. msgs[1].addr = client->addr;
  46. msgs[1].flags = I2C_M_RD;
  47. msgs[1].len = sizeof(value);
  48. msgs[1].buf = &value;
  49. err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
  50. if (err < 0)
  51. return err;
  52. *valuep = value;
  53. return 0;
  54. }
  55. static int pcf8523_write(struct i2c_client *client, u8 reg, u8 value)
  56. {
  57. u8 buffer[2] = { reg, value };
  58. struct i2c_msg msg;
  59. int err;
  60. msg.addr = client->addr;
  61. msg.flags = 0;
  62. msg.len = sizeof(buffer);
  63. msg.buf = buffer;
  64. err = i2c_transfer(client->adapter, &msg, 1);
  65. if (err < 0)
  66. return err;
  67. return 0;
  68. }
  69. static int pcf8523_voltage_low(struct i2c_client *client)
  70. {
  71. u8 value;
  72. int err;
  73. err = pcf8523_read(client, REG_CONTROL3, &value);
  74. if (err < 0)
  75. return err;
  76. return !!(value & REG_CONTROL3_BLF);
  77. }
  78. static int pcf8523_load_capacitance(struct i2c_client *client)
  79. {
  80. u32 load;
  81. u8 value;
  82. int err;
  83. err = pcf8523_read(client, REG_CONTROL1, &value);
  84. if (err < 0)
  85. return err;
  86. load = 12500;
  87. of_property_read_u32(client->dev.of_node, "quartz-load-femtofarads",
  88. &load);
  89. switch (load) {
  90. default:
  91. dev_warn(&client->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 12500",
  92. load);
  93. /* fall through */
  94. case 12500:
  95. value |= REG_CONTROL1_CAP_SEL;
  96. break;
  97. case 7000:
  98. value &= ~REG_CONTROL1_CAP_SEL;
  99. break;
  100. }
  101. err = pcf8523_write(client, REG_CONTROL1, value);
  102. return err;
  103. }
  104. static int pcf8523_set_pm(struct i2c_client *client, u8 pm)
  105. {
  106. u8 value;
  107. int err;
  108. err = pcf8523_read(client, REG_CONTROL3, &value);
  109. if (err < 0)
  110. return err;
  111. value = (value & ~REG_CONTROL3_PM_MASK) | pm;
  112. err = pcf8523_write(client, REG_CONTROL3, value);
  113. if (err < 0)
  114. return err;
  115. return 0;
  116. }
  117. static int pcf8523_stop_rtc(struct i2c_client *client)
  118. {
  119. u8 value;
  120. int err;
  121. err = pcf8523_read(client, REG_CONTROL1, &value);
  122. if (err < 0)
  123. return err;
  124. value |= REG_CONTROL1_STOP;
  125. err = pcf8523_write(client, REG_CONTROL1, value);
  126. if (err < 0)
  127. return err;
  128. return 0;
  129. }
  130. static int pcf8523_start_rtc(struct i2c_client *client)
  131. {
  132. u8 value;
  133. int err;
  134. err = pcf8523_read(client, REG_CONTROL1, &value);
  135. if (err < 0)
  136. return err;
  137. value &= ~REG_CONTROL1_STOP;
  138. err = pcf8523_write(client, REG_CONTROL1, value);
  139. if (err < 0)
  140. return err;
  141. return 0;
  142. }
  143. static int pcf8523_rtc_read_time(struct device *dev, struct rtc_time *tm)
  144. {
  145. struct i2c_client *client = to_i2c_client(dev);
  146. u8 start = REG_SECONDS, regs[7];
  147. struct i2c_msg msgs[2];
  148. int err;
  149. err = pcf8523_voltage_low(client);
  150. if (err < 0) {
  151. return err;
  152. } else if (err > 0) {
  153. dev_err(dev, "low voltage detected, time is unreliable\n");
  154. return -EINVAL;
  155. }
  156. msgs[0].addr = client->addr;
  157. msgs[0].flags = 0;
  158. msgs[0].len = 1;
  159. msgs[0].buf = &start;
  160. msgs[1].addr = client->addr;
  161. msgs[1].flags = I2C_M_RD;
  162. msgs[1].len = sizeof(regs);
  163. msgs[1].buf = regs;
  164. err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
  165. if (err < 0)
  166. return err;
  167. if (regs[0] & REG_SECONDS_OS)
  168. return -EINVAL;
  169. tm->tm_sec = bcd2bin(regs[0] & 0x7f);
  170. tm->tm_min = bcd2bin(regs[1] & 0x7f);
  171. tm->tm_hour = bcd2bin(regs[2] & 0x3f);
  172. tm->tm_mday = bcd2bin(regs[3] & 0x3f);
  173. tm->tm_wday = regs[4] & 0x7;
  174. tm->tm_mon = bcd2bin(regs[5] & 0x1f) - 1;
  175. tm->tm_year = bcd2bin(regs[6]) + 100;
  176. return 0;
  177. }
  178. static int pcf8523_rtc_set_time(struct device *dev, struct rtc_time *tm)
  179. {
  180. struct i2c_client *client = to_i2c_client(dev);
  181. struct i2c_msg msg;
  182. u8 regs[8];
  183. int err;
  184. /*
  185. * The hardware can only store values between 0 and 99 in it's YEAR
  186. * register (with 99 overflowing to 0 on increment).
  187. * After 2100-02-28 we could start interpreting the year to be in the
  188. * interval [2100, 2199], but there is no path to switch in a smooth way
  189. * because the chip handles YEAR=0x00 (and the out-of-spec
  190. * YEAR=0xa0) as a leap year, but 2100 isn't.
  191. */
  192. if (tm->tm_year < 100 || tm->tm_year >= 200)
  193. return -EINVAL;
  194. err = pcf8523_stop_rtc(client);
  195. if (err < 0)
  196. return err;
  197. regs[0] = REG_SECONDS;
  198. /* This will purposely overwrite REG_SECONDS_OS */
  199. regs[1] = bin2bcd(tm->tm_sec);
  200. regs[2] = bin2bcd(tm->tm_min);
  201. regs[3] = bin2bcd(tm->tm_hour);
  202. regs[4] = bin2bcd(tm->tm_mday);
  203. regs[5] = tm->tm_wday;
  204. regs[6] = bin2bcd(tm->tm_mon + 1);
  205. regs[7] = bin2bcd(tm->tm_year - 100);
  206. msg.addr = client->addr;
  207. msg.flags = 0;
  208. msg.len = sizeof(regs);
  209. msg.buf = regs;
  210. err = i2c_transfer(client->adapter, &msg, 1);
  211. if (err < 0) {
  212. /*
  213. * If the time cannot be set, restart the RTC anyway. Note
  214. * that errors are ignored if the RTC cannot be started so
  215. * that we have a chance to propagate the original error.
  216. */
  217. pcf8523_start_rtc(client);
  218. return err;
  219. }
  220. return pcf8523_start_rtc(client);
  221. }
  222. #ifdef CONFIG_RTC_INTF_DEV
  223. static int pcf8523_rtc_ioctl(struct device *dev, unsigned int cmd,
  224. unsigned long arg)
  225. {
  226. struct i2c_client *client = to_i2c_client(dev);
  227. int ret;
  228. switch (cmd) {
  229. case RTC_VL_READ:
  230. ret = pcf8523_voltage_low(client);
  231. if (ret < 0)
  232. return ret;
  233. if (copy_to_user((void __user *)arg, &ret, sizeof(int)))
  234. return -EFAULT;
  235. return 0;
  236. default:
  237. return -ENOIOCTLCMD;
  238. }
  239. }
  240. #else
  241. #define pcf8523_rtc_ioctl NULL
  242. #endif
  243. static int pcf8523_rtc_read_offset(struct device *dev, long *offset)
  244. {
  245. struct i2c_client *client = to_i2c_client(dev);
  246. int err;
  247. u8 value;
  248. s8 val;
  249. err = pcf8523_read(client, REG_OFFSET, &value);
  250. if (err < 0)
  251. return err;
  252. /* sign extend the 7-bit offset value */
  253. val = value << 1;
  254. *offset = (value & REG_OFFSET_MODE ? 4069 : 4340) * (val >> 1);
  255. return 0;
  256. }
  257. static int pcf8523_rtc_set_offset(struct device *dev, long offset)
  258. {
  259. struct i2c_client *client = to_i2c_client(dev);
  260. long reg_m0, reg_m1;
  261. u8 value;
  262. reg_m0 = clamp(DIV_ROUND_CLOSEST(offset, 4340), -64L, 63L);
  263. reg_m1 = clamp(DIV_ROUND_CLOSEST(offset, 4069), -64L, 63L);
  264. if (abs(reg_m0 * 4340 - offset) < abs(reg_m1 * 4069 - offset))
  265. value = reg_m0 & 0x7f;
  266. else
  267. value = (reg_m1 & 0x7f) | REG_OFFSET_MODE;
  268. return pcf8523_write(client, REG_OFFSET, value);
  269. }
  270. static const struct rtc_class_ops pcf8523_rtc_ops = {
  271. .read_time = pcf8523_rtc_read_time,
  272. .set_time = pcf8523_rtc_set_time,
  273. .ioctl = pcf8523_rtc_ioctl,
  274. .read_offset = pcf8523_rtc_read_offset,
  275. .set_offset = pcf8523_rtc_set_offset,
  276. };
  277. static int pcf8523_probe(struct i2c_client *client,
  278. const struct i2c_device_id *id)
  279. {
  280. struct pcf8523 *pcf;
  281. int err;
  282. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
  283. return -ENODEV;
  284. pcf = devm_kzalloc(&client->dev, sizeof(*pcf), GFP_KERNEL);
  285. if (!pcf)
  286. return -ENOMEM;
  287. err = pcf8523_load_capacitance(client);
  288. if (err < 0)
  289. dev_warn(&client->dev, "failed to set xtal load capacitance: %d",
  290. err);
  291. err = pcf8523_set_pm(client, 0);
  292. if (err < 0)
  293. return err;
  294. pcf->rtc = devm_rtc_device_register(&client->dev, DRIVER_NAME,
  295. &pcf8523_rtc_ops, THIS_MODULE);
  296. if (IS_ERR(pcf->rtc))
  297. return PTR_ERR(pcf->rtc);
  298. i2c_set_clientdata(client, pcf);
  299. return 0;
  300. }
  301. static const struct i2c_device_id pcf8523_id[] = {
  302. { "pcf8523", 0 },
  303. { }
  304. };
  305. MODULE_DEVICE_TABLE(i2c, pcf8523_id);
  306. #ifdef CONFIG_OF
  307. static const struct of_device_id pcf8523_of_match[] = {
  308. { .compatible = "nxp,pcf8523" },
  309. { }
  310. };
  311. MODULE_DEVICE_TABLE(of, pcf8523_of_match);
  312. #endif
  313. static struct i2c_driver pcf8523_driver = {
  314. .driver = {
  315. .name = DRIVER_NAME,
  316. .of_match_table = of_match_ptr(pcf8523_of_match),
  317. },
  318. .probe = pcf8523_probe,
  319. .id_table = pcf8523_id,
  320. };
  321. module_i2c_driver(pcf8523_driver);
  322. MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
  323. MODULE_DESCRIPTION("NXP PCF8523 RTC driver");
  324. MODULE_LICENSE("GPL v2");