pwm-fsl-ftm.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /*
  2. * Freescale FlexTimer Module (FTM) PWM Driver
  3. *
  4. * Copyright 2012-2013 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/err.h>
  13. #include <linux/io.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/mutex.h>
  17. #include <linux/of_address.h>
  18. #include <linux/of_device.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/pm.h>
  21. #include <linux/pwm.h>
  22. #include <linux/regmap.h>
  23. #include <linux/slab.h>
  24. #define FTM_SC 0x00
  25. #define FTM_SC_CLK_MASK_SHIFT 3
  26. #define FTM_SC_CLK_MASK (3 << FTM_SC_CLK_MASK_SHIFT)
  27. #define FTM_SC_CLK(c) (((c) + 1) << FTM_SC_CLK_MASK_SHIFT)
  28. #define FTM_SC_PS_MASK 0x7
  29. #define FTM_CNT 0x04
  30. #define FTM_MOD 0x08
  31. #define FTM_CSC_BASE 0x0C
  32. #define FTM_CSC_MSB BIT(5)
  33. #define FTM_CSC_MSA BIT(4)
  34. #define FTM_CSC_ELSB BIT(3)
  35. #define FTM_CSC_ELSA BIT(2)
  36. #define FTM_CSC(_channel) (FTM_CSC_BASE + ((_channel) * 8))
  37. #define FTM_CV_BASE 0x10
  38. #define FTM_CV(_channel) (FTM_CV_BASE + ((_channel) * 8))
  39. #define FTM_CNTIN 0x4C
  40. #define FTM_STATUS 0x50
  41. #define FTM_MODE 0x54
  42. #define FTM_MODE_FTMEN BIT(0)
  43. #define FTM_MODE_INIT BIT(2)
  44. #define FTM_MODE_PWMSYNC BIT(3)
  45. #define FTM_SYNC 0x58
  46. #define FTM_OUTINIT 0x5C
  47. #define FTM_OUTMASK 0x60
  48. #define FTM_COMBINE 0x64
  49. #define FTM_DEADTIME 0x68
  50. #define FTM_EXTTRIG 0x6C
  51. #define FTM_POL 0x70
  52. #define FTM_FMS 0x74
  53. #define FTM_FILTER 0x78
  54. #define FTM_FLTCTRL 0x7C
  55. #define FTM_QDCTRL 0x80
  56. #define FTM_CONF 0x84
  57. #define FTM_FLTPOL 0x88
  58. #define FTM_SYNCONF 0x8C
  59. #define FTM_INVCTRL 0x90
  60. #define FTM_SWOCTRL 0x94
  61. #define FTM_PWMLOAD 0x98
  62. enum fsl_pwm_clk {
  63. FSL_PWM_CLK_SYS,
  64. FSL_PWM_CLK_FIX,
  65. FSL_PWM_CLK_EXT,
  66. FSL_PWM_CLK_CNTEN,
  67. FSL_PWM_CLK_MAX
  68. };
  69. struct fsl_ftm_soc {
  70. bool has_enable_bits;
  71. };
  72. struct fsl_pwm_chip {
  73. struct pwm_chip chip;
  74. struct mutex lock;
  75. unsigned int cnt_select;
  76. unsigned int clk_ps;
  77. struct regmap *regmap;
  78. int period_ns;
  79. struct clk *ipg_clk;
  80. struct clk *clk[FSL_PWM_CLK_MAX];
  81. const struct fsl_ftm_soc *soc;
  82. };
  83. static inline struct fsl_pwm_chip *to_fsl_chip(struct pwm_chip *chip)
  84. {
  85. return container_of(chip, struct fsl_pwm_chip, chip);
  86. }
  87. static int fsl_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
  88. {
  89. int ret;
  90. struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
  91. ret = clk_prepare_enable(fpc->ipg_clk);
  92. if (!ret && fpc->soc->has_enable_bits) {
  93. mutex_lock(&fpc->lock);
  94. regmap_update_bits(fpc->regmap, FTM_SC, BIT(pwm->hwpwm + 16),
  95. BIT(pwm->hwpwm + 16));
  96. mutex_unlock(&fpc->lock);
  97. }
  98. return ret;
  99. }
  100. static void fsl_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
  101. {
  102. struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
  103. if (fpc->soc->has_enable_bits) {
  104. mutex_lock(&fpc->lock);
  105. regmap_update_bits(fpc->regmap, FTM_SC, BIT(pwm->hwpwm + 16),
  106. 0);
  107. mutex_unlock(&fpc->lock);
  108. }
  109. clk_disable_unprepare(fpc->ipg_clk);
  110. }
  111. static int fsl_pwm_calculate_default_ps(struct fsl_pwm_chip *fpc,
  112. enum fsl_pwm_clk index)
  113. {
  114. unsigned long sys_rate, cnt_rate;
  115. unsigned long long ratio;
  116. sys_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_SYS]);
  117. if (!sys_rate)
  118. return -EINVAL;
  119. cnt_rate = clk_get_rate(fpc->clk[fpc->cnt_select]);
  120. if (!cnt_rate)
  121. return -EINVAL;
  122. switch (index) {
  123. case FSL_PWM_CLK_SYS:
  124. fpc->clk_ps = 1;
  125. break;
  126. case FSL_PWM_CLK_FIX:
  127. ratio = 2 * cnt_rate - 1;
  128. do_div(ratio, sys_rate);
  129. fpc->clk_ps = ratio;
  130. break;
  131. case FSL_PWM_CLK_EXT:
  132. ratio = 4 * cnt_rate - 1;
  133. do_div(ratio, sys_rate);
  134. fpc->clk_ps = ratio;
  135. break;
  136. default:
  137. return -EINVAL;
  138. }
  139. return 0;
  140. }
  141. static unsigned long fsl_pwm_calculate_cycles(struct fsl_pwm_chip *fpc,
  142. unsigned long period_ns)
  143. {
  144. unsigned long long c, c0;
  145. c = clk_get_rate(fpc->clk[fpc->cnt_select]);
  146. c = c * period_ns;
  147. do_div(c, 1000000000UL);
  148. do {
  149. c0 = c;
  150. do_div(c0, (1 << fpc->clk_ps));
  151. if (c0 <= 0xFFFF)
  152. return (unsigned long)c0;
  153. } while (++fpc->clk_ps < 8);
  154. return 0;
  155. }
  156. static unsigned long fsl_pwm_calculate_period_cycles(struct fsl_pwm_chip *fpc,
  157. unsigned long period_ns,
  158. enum fsl_pwm_clk index)
  159. {
  160. int ret;
  161. ret = fsl_pwm_calculate_default_ps(fpc, index);
  162. if (ret) {
  163. dev_err(fpc->chip.dev,
  164. "failed to calculate default prescaler: %d\n",
  165. ret);
  166. return 0;
  167. }
  168. return fsl_pwm_calculate_cycles(fpc, period_ns);
  169. }
  170. static unsigned long fsl_pwm_calculate_period(struct fsl_pwm_chip *fpc,
  171. unsigned long period_ns)
  172. {
  173. enum fsl_pwm_clk m0, m1;
  174. unsigned long fix_rate, ext_rate, cycles;
  175. cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns,
  176. FSL_PWM_CLK_SYS);
  177. if (cycles) {
  178. fpc->cnt_select = FSL_PWM_CLK_SYS;
  179. return cycles;
  180. }
  181. fix_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_FIX]);
  182. ext_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_EXT]);
  183. if (fix_rate > ext_rate) {
  184. m0 = FSL_PWM_CLK_FIX;
  185. m1 = FSL_PWM_CLK_EXT;
  186. } else {
  187. m0 = FSL_PWM_CLK_EXT;
  188. m1 = FSL_PWM_CLK_FIX;
  189. }
  190. cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns, m0);
  191. if (cycles) {
  192. fpc->cnt_select = m0;
  193. return cycles;
  194. }
  195. fpc->cnt_select = m1;
  196. return fsl_pwm_calculate_period_cycles(fpc, period_ns, m1);
  197. }
  198. static unsigned long fsl_pwm_calculate_duty(struct fsl_pwm_chip *fpc,
  199. unsigned long period_ns,
  200. unsigned long duty_ns)
  201. {
  202. unsigned long long duty;
  203. u32 val;
  204. regmap_read(fpc->regmap, FTM_MOD, &val);
  205. duty = (unsigned long long)duty_ns * (val + 1);
  206. do_div(duty, period_ns);
  207. return (unsigned long)duty;
  208. }
  209. static int fsl_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
  210. int duty_ns, int period_ns)
  211. {
  212. struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
  213. u32 period, duty;
  214. mutex_lock(&fpc->lock);
  215. /*
  216. * The Freescale FTM controller supports only a single period for
  217. * all PWM channels, therefore incompatible changes need to be
  218. * refused.
  219. */
  220. if (fpc->period_ns && fpc->period_ns != period_ns) {
  221. dev_err(fpc->chip.dev,
  222. "conflicting period requested for PWM %u\n",
  223. pwm->hwpwm);
  224. mutex_unlock(&fpc->lock);
  225. return -EBUSY;
  226. }
  227. if (!fpc->period_ns && duty_ns) {
  228. period = fsl_pwm_calculate_period(fpc, period_ns);
  229. if (!period) {
  230. dev_err(fpc->chip.dev, "failed to calculate period\n");
  231. mutex_unlock(&fpc->lock);
  232. return -EINVAL;
  233. }
  234. regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_PS_MASK,
  235. fpc->clk_ps);
  236. regmap_write(fpc->regmap, FTM_MOD, period - 1);
  237. fpc->period_ns = period_ns;
  238. }
  239. mutex_unlock(&fpc->lock);
  240. duty = fsl_pwm_calculate_duty(fpc, period_ns, duty_ns);
  241. regmap_write(fpc->regmap, FTM_CSC(pwm->hwpwm),
  242. FTM_CSC_MSB | FTM_CSC_ELSB);
  243. regmap_write(fpc->regmap, FTM_CV(pwm->hwpwm), duty);
  244. return 0;
  245. }
  246. static int fsl_pwm_set_polarity(struct pwm_chip *chip,
  247. struct pwm_device *pwm,
  248. enum pwm_polarity polarity)
  249. {
  250. struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
  251. u32 val;
  252. regmap_read(fpc->regmap, FTM_POL, &val);
  253. if (polarity == PWM_POLARITY_INVERSED)
  254. val |= BIT(pwm->hwpwm);
  255. else
  256. val &= ~BIT(pwm->hwpwm);
  257. regmap_write(fpc->regmap, FTM_POL, val);
  258. return 0;
  259. }
  260. static int fsl_counter_clock_enable(struct fsl_pwm_chip *fpc)
  261. {
  262. int ret;
  263. /* select counter clock source */
  264. regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_CLK_MASK,
  265. FTM_SC_CLK(fpc->cnt_select));
  266. ret = clk_prepare_enable(fpc->clk[fpc->cnt_select]);
  267. if (ret)
  268. return ret;
  269. ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]);
  270. if (ret) {
  271. clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
  272. return ret;
  273. }
  274. return 0;
  275. }
  276. static int fsl_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
  277. {
  278. struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
  279. int ret;
  280. mutex_lock(&fpc->lock);
  281. regmap_update_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm), 0);
  282. ret = fsl_counter_clock_enable(fpc);
  283. mutex_unlock(&fpc->lock);
  284. return ret;
  285. }
  286. static void fsl_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
  287. {
  288. struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
  289. u32 val;
  290. mutex_lock(&fpc->lock);
  291. regmap_update_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm),
  292. BIT(pwm->hwpwm));
  293. clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]);
  294. clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
  295. regmap_read(fpc->regmap, FTM_OUTMASK, &val);
  296. if ((val & 0xFF) == 0xFF)
  297. fpc->period_ns = 0;
  298. mutex_unlock(&fpc->lock);
  299. }
  300. static const struct pwm_ops fsl_pwm_ops = {
  301. .request = fsl_pwm_request,
  302. .free = fsl_pwm_free,
  303. .config = fsl_pwm_config,
  304. .set_polarity = fsl_pwm_set_polarity,
  305. .enable = fsl_pwm_enable,
  306. .disable = fsl_pwm_disable,
  307. .owner = THIS_MODULE,
  308. };
  309. static int fsl_pwm_init(struct fsl_pwm_chip *fpc)
  310. {
  311. int ret;
  312. ret = clk_prepare_enable(fpc->ipg_clk);
  313. if (ret)
  314. return ret;
  315. regmap_write(fpc->regmap, FTM_CNTIN, 0x00);
  316. regmap_write(fpc->regmap, FTM_OUTINIT, 0x00);
  317. regmap_write(fpc->regmap, FTM_OUTMASK, 0xFF);
  318. clk_disable_unprepare(fpc->ipg_clk);
  319. return 0;
  320. }
  321. static bool fsl_pwm_volatile_reg(struct device *dev, unsigned int reg)
  322. {
  323. switch (reg) {
  324. case FTM_CNT:
  325. return true;
  326. }
  327. return false;
  328. }
  329. static const struct regmap_config fsl_pwm_regmap_config = {
  330. .reg_bits = 32,
  331. .reg_stride = 4,
  332. .val_bits = 32,
  333. .max_register = FTM_PWMLOAD,
  334. .volatile_reg = fsl_pwm_volatile_reg,
  335. .cache_type = REGCACHE_FLAT,
  336. };
  337. static int fsl_pwm_probe(struct platform_device *pdev)
  338. {
  339. struct fsl_pwm_chip *fpc;
  340. struct resource *res;
  341. void __iomem *base;
  342. int ret;
  343. fpc = devm_kzalloc(&pdev->dev, sizeof(*fpc), GFP_KERNEL);
  344. if (!fpc)
  345. return -ENOMEM;
  346. mutex_init(&fpc->lock);
  347. fpc->soc = of_device_get_match_data(&pdev->dev);
  348. fpc->chip.dev = &pdev->dev;
  349. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  350. base = devm_ioremap_resource(&pdev->dev, res);
  351. if (IS_ERR(base))
  352. return PTR_ERR(base);
  353. fpc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "ftm_sys", base,
  354. &fsl_pwm_regmap_config);
  355. if (IS_ERR(fpc->regmap)) {
  356. dev_err(&pdev->dev, "regmap init failed\n");
  357. return PTR_ERR(fpc->regmap);
  358. }
  359. fpc->clk[FSL_PWM_CLK_SYS] = devm_clk_get(&pdev->dev, "ftm_sys");
  360. if (IS_ERR(fpc->clk[FSL_PWM_CLK_SYS])) {
  361. dev_err(&pdev->dev, "failed to get \"ftm_sys\" clock\n");
  362. return PTR_ERR(fpc->clk[FSL_PWM_CLK_SYS]);
  363. }
  364. fpc->clk[FSL_PWM_CLK_FIX] = devm_clk_get(fpc->chip.dev, "ftm_fix");
  365. if (IS_ERR(fpc->clk[FSL_PWM_CLK_FIX]))
  366. return PTR_ERR(fpc->clk[FSL_PWM_CLK_FIX]);
  367. fpc->clk[FSL_PWM_CLK_EXT] = devm_clk_get(fpc->chip.dev, "ftm_ext");
  368. if (IS_ERR(fpc->clk[FSL_PWM_CLK_EXT]))
  369. return PTR_ERR(fpc->clk[FSL_PWM_CLK_EXT]);
  370. fpc->clk[FSL_PWM_CLK_CNTEN] =
  371. devm_clk_get(fpc->chip.dev, "ftm_cnt_clk_en");
  372. if (IS_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]))
  373. return PTR_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]);
  374. /*
  375. * ipg_clk is the interface clock for the IP. If not provided, use the
  376. * ftm_sys clock as the default.
  377. */
  378. fpc->ipg_clk = devm_clk_get(&pdev->dev, "ipg");
  379. if (IS_ERR(fpc->ipg_clk))
  380. fpc->ipg_clk = fpc->clk[FSL_PWM_CLK_SYS];
  381. fpc->chip.ops = &fsl_pwm_ops;
  382. fpc->chip.of_xlate = of_pwm_xlate_with_flags;
  383. fpc->chip.of_pwm_n_cells = 3;
  384. fpc->chip.base = -1;
  385. fpc->chip.npwm = 8;
  386. ret = pwmchip_add(&fpc->chip);
  387. if (ret < 0) {
  388. dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
  389. return ret;
  390. }
  391. platform_set_drvdata(pdev, fpc);
  392. return fsl_pwm_init(fpc);
  393. }
  394. static int fsl_pwm_remove(struct platform_device *pdev)
  395. {
  396. struct fsl_pwm_chip *fpc = platform_get_drvdata(pdev);
  397. return pwmchip_remove(&fpc->chip);
  398. }
  399. #ifdef CONFIG_PM_SLEEP
  400. static int fsl_pwm_suspend(struct device *dev)
  401. {
  402. struct fsl_pwm_chip *fpc = dev_get_drvdata(dev);
  403. int i;
  404. regcache_cache_only(fpc->regmap, true);
  405. regcache_mark_dirty(fpc->regmap);
  406. for (i = 0; i < fpc->chip.npwm; i++) {
  407. struct pwm_device *pwm = &fpc->chip.pwms[i];
  408. if (!test_bit(PWMF_REQUESTED, &pwm->flags))
  409. continue;
  410. clk_disable_unprepare(fpc->ipg_clk);
  411. if (!pwm_is_enabled(pwm))
  412. continue;
  413. clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]);
  414. clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
  415. }
  416. return 0;
  417. }
  418. static int fsl_pwm_resume(struct device *dev)
  419. {
  420. struct fsl_pwm_chip *fpc = dev_get_drvdata(dev);
  421. int i;
  422. for (i = 0; i < fpc->chip.npwm; i++) {
  423. struct pwm_device *pwm = &fpc->chip.pwms[i];
  424. if (!test_bit(PWMF_REQUESTED, &pwm->flags))
  425. continue;
  426. clk_prepare_enable(fpc->ipg_clk);
  427. if (!pwm_is_enabled(pwm))
  428. continue;
  429. clk_prepare_enable(fpc->clk[fpc->cnt_select]);
  430. clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]);
  431. }
  432. /* restore all registers from cache */
  433. regcache_cache_only(fpc->regmap, false);
  434. regcache_sync(fpc->regmap);
  435. return 0;
  436. }
  437. #endif
  438. static const struct dev_pm_ops fsl_pwm_pm_ops = {
  439. SET_SYSTEM_SLEEP_PM_OPS(fsl_pwm_suspend, fsl_pwm_resume)
  440. };
  441. static const struct fsl_ftm_soc vf610_ftm_pwm = {
  442. .has_enable_bits = false,
  443. };
  444. static const struct fsl_ftm_soc imx8qm_ftm_pwm = {
  445. .has_enable_bits = true,
  446. };
  447. static const struct of_device_id fsl_pwm_dt_ids[] = {
  448. { .compatible = "fsl,vf610-ftm-pwm", .data = &vf610_ftm_pwm },
  449. { .compatible = "fsl,imx8qm-ftm-pwm", .data = &imx8qm_ftm_pwm },
  450. { /* sentinel */ }
  451. };
  452. MODULE_DEVICE_TABLE(of, fsl_pwm_dt_ids);
  453. static struct platform_driver fsl_pwm_driver = {
  454. .driver = {
  455. .name = "fsl-ftm-pwm",
  456. .of_match_table = fsl_pwm_dt_ids,
  457. .pm = &fsl_pwm_pm_ops,
  458. },
  459. .probe = fsl_pwm_probe,
  460. .remove = fsl_pwm_remove,
  461. };
  462. module_platform_driver(fsl_pwm_driver);
  463. MODULE_DESCRIPTION("Freescale FlexTimer Module PWM Driver");
  464. MODULE_AUTHOR("Xiubo Li <Li.Xiubo@freescale.com>");
  465. MODULE_ALIAS("platform:fsl-ftm-pwm");
  466. MODULE_LICENSE("GPL");