tx.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/pci.h>
  11. #include <linux/tcp.h>
  12. #include <linux/ip.h>
  13. #include <linux/in.h>
  14. #include <linux/ipv6.h>
  15. #include <linux/slab.h>
  16. #include <net/ipv6.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/highmem.h>
  19. #include <linux/cache.h>
  20. #include "net_driver.h"
  21. #include "efx.h"
  22. #include "io.h"
  23. #include "nic.h"
  24. #include "tx.h"
  25. #include "workarounds.h"
  26. #include "ef10_regs.h"
  27. #ifdef EFX_USE_PIO
  28. #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
  29. unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
  30. #endif /* EFX_USE_PIO */
  31. static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
  32. struct efx_tx_buffer *buffer)
  33. {
  34. unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
  35. struct efx_buffer *page_buf =
  36. &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
  37. unsigned int offset =
  38. ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
  39. if (unlikely(!page_buf->addr) &&
  40. efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
  41. GFP_ATOMIC))
  42. return NULL;
  43. buffer->dma_addr = page_buf->dma_addr + offset;
  44. buffer->unmap_len = 0;
  45. return (u8 *)page_buf->addr + offset;
  46. }
  47. u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
  48. struct efx_tx_buffer *buffer, size_t len)
  49. {
  50. if (len > EFX_TX_CB_SIZE)
  51. return NULL;
  52. return efx_tx_get_copy_buffer(tx_queue, buffer);
  53. }
  54. static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
  55. struct efx_tx_buffer *buffer,
  56. unsigned int *pkts_compl,
  57. unsigned int *bytes_compl)
  58. {
  59. if (buffer->unmap_len) {
  60. struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  61. dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  62. if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
  63. dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  64. DMA_TO_DEVICE);
  65. else
  66. dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  67. DMA_TO_DEVICE);
  68. buffer->unmap_len = 0;
  69. }
  70. if (buffer->flags & EFX_TX_BUF_SKB) {
  71. struct sk_buff *skb = (struct sk_buff *)buffer->skb;
  72. EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
  73. (*pkts_compl)++;
  74. (*bytes_compl) += skb->len;
  75. if (tx_queue->timestamping &&
  76. (tx_queue->completed_timestamp_major ||
  77. tx_queue->completed_timestamp_minor)) {
  78. struct skb_shared_hwtstamps hwtstamp;
  79. hwtstamp.hwtstamp =
  80. efx_ptp_nic_to_kernel_time(tx_queue);
  81. skb_tstamp_tx(skb, &hwtstamp);
  82. tx_queue->completed_timestamp_major = 0;
  83. tx_queue->completed_timestamp_minor = 0;
  84. }
  85. dev_consume_skb_any((struct sk_buff *)buffer->skb);
  86. netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  87. "TX queue %d transmission id %x complete\n",
  88. tx_queue->queue, tx_queue->read_count);
  89. }
  90. buffer->len = 0;
  91. buffer->flags = 0;
  92. }
  93. unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
  94. {
  95. /* Header and payload descriptor for each output segment, plus
  96. * one for every input fragment boundary within a segment
  97. */
  98. unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
  99. /* Possibly one more per segment for option descriptors */
  100. if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
  101. max_descs += EFX_TSO_MAX_SEGS;
  102. /* Possibly more for PCIe page boundaries within input fragments */
  103. if (PAGE_SIZE > EFX_PAGE_SIZE)
  104. max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
  105. DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
  106. return max_descs;
  107. }
  108. static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
  109. {
  110. /* We need to consider both queues that the net core sees as one */
  111. struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
  112. struct efx_nic *efx = txq1->efx;
  113. unsigned int fill_level;
  114. fill_level = max(txq1->insert_count - txq1->old_read_count,
  115. txq2->insert_count - txq2->old_read_count);
  116. if (likely(fill_level < efx->txq_stop_thresh))
  117. return;
  118. /* We used the stale old_read_count above, which gives us a
  119. * pessimistic estimate of the fill level (which may even
  120. * validly be >= efx->txq_entries). Now try again using
  121. * read_count (more likely to be a cache miss).
  122. *
  123. * If we read read_count and then conditionally stop the
  124. * queue, it is possible for the completion path to race with
  125. * us and complete all outstanding descriptors in the middle,
  126. * after which there will be no more completions to wake it.
  127. * Therefore we stop the queue first, then read read_count
  128. * (with a memory barrier to ensure the ordering), then
  129. * restart the queue if the fill level turns out to be low
  130. * enough.
  131. */
  132. netif_tx_stop_queue(txq1->core_txq);
  133. smp_mb();
  134. txq1->old_read_count = READ_ONCE(txq1->read_count);
  135. txq2->old_read_count = READ_ONCE(txq2->read_count);
  136. fill_level = max(txq1->insert_count - txq1->old_read_count,
  137. txq2->insert_count - txq2->old_read_count);
  138. EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
  139. if (likely(fill_level < efx->txq_stop_thresh)) {
  140. smp_mb();
  141. if (likely(!efx->loopback_selftest))
  142. netif_tx_start_queue(txq1->core_txq);
  143. }
  144. }
  145. static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
  146. struct sk_buff *skb)
  147. {
  148. unsigned int copy_len = skb->len;
  149. struct efx_tx_buffer *buffer;
  150. u8 *copy_buffer;
  151. int rc;
  152. EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
  153. buffer = efx_tx_queue_get_insert_buffer(tx_queue);
  154. copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
  155. if (unlikely(!copy_buffer))
  156. return -ENOMEM;
  157. rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
  158. EFX_WARN_ON_PARANOID(rc);
  159. buffer->len = copy_len;
  160. buffer->skb = skb;
  161. buffer->flags = EFX_TX_BUF_SKB;
  162. ++tx_queue->insert_count;
  163. return rc;
  164. }
  165. #ifdef EFX_USE_PIO
  166. struct efx_short_copy_buffer {
  167. int used;
  168. u8 buf[L1_CACHE_BYTES];
  169. };
  170. /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
  171. * Advances piobuf pointer. Leaves additional data in the copy buffer.
  172. */
  173. static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
  174. u8 *data, int len,
  175. struct efx_short_copy_buffer *copy_buf)
  176. {
  177. int block_len = len & ~(sizeof(copy_buf->buf) - 1);
  178. __iowrite64_copy(*piobuf, data, block_len >> 3);
  179. *piobuf += block_len;
  180. len -= block_len;
  181. if (len) {
  182. data += block_len;
  183. BUG_ON(copy_buf->used);
  184. BUG_ON(len > sizeof(copy_buf->buf));
  185. memcpy(copy_buf->buf, data, len);
  186. copy_buf->used = len;
  187. }
  188. }
  189. /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
  190. * Advances piobuf pointer. Leaves additional data in the copy buffer.
  191. */
  192. static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
  193. u8 *data, int len,
  194. struct efx_short_copy_buffer *copy_buf)
  195. {
  196. if (copy_buf->used) {
  197. /* if the copy buffer is partially full, fill it up and write */
  198. int copy_to_buf =
  199. min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
  200. memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
  201. copy_buf->used += copy_to_buf;
  202. /* if we didn't fill it up then we're done for now */
  203. if (copy_buf->used < sizeof(copy_buf->buf))
  204. return;
  205. __iowrite64_copy(*piobuf, copy_buf->buf,
  206. sizeof(copy_buf->buf) >> 3);
  207. *piobuf += sizeof(copy_buf->buf);
  208. data += copy_to_buf;
  209. len -= copy_to_buf;
  210. copy_buf->used = 0;
  211. }
  212. efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
  213. }
  214. static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
  215. struct efx_short_copy_buffer *copy_buf)
  216. {
  217. /* if there's anything in it, write the whole buffer, including junk */
  218. if (copy_buf->used)
  219. __iowrite64_copy(piobuf, copy_buf->buf,
  220. sizeof(copy_buf->buf) >> 3);
  221. }
  222. /* Traverse skb structure and copy fragments in to PIO buffer.
  223. * Advances piobuf pointer.
  224. */
  225. static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
  226. u8 __iomem **piobuf,
  227. struct efx_short_copy_buffer *copy_buf)
  228. {
  229. int i;
  230. efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
  231. copy_buf);
  232. for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
  233. skb_frag_t *f = &skb_shinfo(skb)->frags[i];
  234. u8 *vaddr;
  235. vaddr = kmap_atomic(skb_frag_page(f));
  236. efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
  237. skb_frag_size(f), copy_buf);
  238. kunmap_atomic(vaddr);
  239. }
  240. EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
  241. }
  242. static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
  243. struct sk_buff *skb)
  244. {
  245. struct efx_tx_buffer *buffer =
  246. efx_tx_queue_get_insert_buffer(tx_queue);
  247. u8 __iomem *piobuf = tx_queue->piobuf;
  248. /* Copy to PIO buffer. Ensure the writes are padded to the end
  249. * of a cache line, as this is required for write-combining to be
  250. * effective on at least x86.
  251. */
  252. if (skb_shinfo(skb)->nr_frags) {
  253. /* The size of the copy buffer will ensure all writes
  254. * are the size of a cache line.
  255. */
  256. struct efx_short_copy_buffer copy_buf;
  257. copy_buf.used = 0;
  258. efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
  259. &piobuf, &copy_buf);
  260. efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
  261. } else {
  262. /* Pad the write to the size of a cache line.
  263. * We can do this because we know the skb_shared_info struct is
  264. * after the source, and the destination buffer is big enough.
  265. */
  266. BUILD_BUG_ON(L1_CACHE_BYTES >
  267. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
  268. __iowrite64_copy(tx_queue->piobuf, skb->data,
  269. ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
  270. }
  271. buffer->skb = skb;
  272. buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
  273. EFX_POPULATE_QWORD_5(buffer->option,
  274. ESF_DZ_TX_DESC_IS_OPT, 1,
  275. ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
  276. ESF_DZ_TX_PIO_CONT, 0,
  277. ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
  278. ESF_DZ_TX_PIO_BUF_ADDR,
  279. tx_queue->piobuf_offset);
  280. ++tx_queue->insert_count;
  281. return 0;
  282. }
  283. #endif /* EFX_USE_PIO */
  284. static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
  285. dma_addr_t dma_addr,
  286. size_t len)
  287. {
  288. const struct efx_nic_type *nic_type = tx_queue->efx->type;
  289. struct efx_tx_buffer *buffer;
  290. unsigned int dma_len;
  291. /* Map the fragment taking account of NIC-dependent DMA limits. */
  292. do {
  293. buffer = efx_tx_queue_get_insert_buffer(tx_queue);
  294. dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
  295. buffer->len = dma_len;
  296. buffer->dma_addr = dma_addr;
  297. buffer->flags = EFX_TX_BUF_CONT;
  298. len -= dma_len;
  299. dma_addr += dma_len;
  300. ++tx_queue->insert_count;
  301. } while (len);
  302. return buffer;
  303. }
  304. /* Map all data from an SKB for DMA and create descriptors on the queue.
  305. */
  306. static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
  307. unsigned int segment_count)
  308. {
  309. struct efx_nic *efx = tx_queue->efx;
  310. struct device *dma_dev = &efx->pci_dev->dev;
  311. unsigned int frag_index, nr_frags;
  312. dma_addr_t dma_addr, unmap_addr;
  313. unsigned short dma_flags;
  314. size_t len, unmap_len;
  315. nr_frags = skb_shinfo(skb)->nr_frags;
  316. frag_index = 0;
  317. /* Map header data. */
  318. len = skb_headlen(skb);
  319. dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
  320. dma_flags = EFX_TX_BUF_MAP_SINGLE;
  321. unmap_len = len;
  322. unmap_addr = dma_addr;
  323. if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
  324. return -EIO;
  325. if (segment_count) {
  326. /* For TSO we need to put the header in to a separate
  327. * descriptor. Map this separately if necessary.
  328. */
  329. size_t header_len = skb_transport_header(skb) - skb->data +
  330. (tcp_hdr(skb)->doff << 2u);
  331. if (header_len != len) {
  332. tx_queue->tso_long_headers++;
  333. efx_tx_map_chunk(tx_queue, dma_addr, header_len);
  334. len -= header_len;
  335. dma_addr += header_len;
  336. }
  337. }
  338. /* Add descriptors for each fragment. */
  339. do {
  340. struct efx_tx_buffer *buffer;
  341. skb_frag_t *fragment;
  342. buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
  343. /* The final descriptor for a fragment is responsible for
  344. * unmapping the whole fragment.
  345. */
  346. buffer->flags = EFX_TX_BUF_CONT | dma_flags;
  347. buffer->unmap_len = unmap_len;
  348. buffer->dma_offset = buffer->dma_addr - unmap_addr;
  349. if (frag_index >= nr_frags) {
  350. /* Store SKB details with the final buffer for
  351. * the completion.
  352. */
  353. buffer->skb = skb;
  354. buffer->flags = EFX_TX_BUF_SKB | dma_flags;
  355. return 0;
  356. }
  357. /* Move on to the next fragment. */
  358. fragment = &skb_shinfo(skb)->frags[frag_index++];
  359. len = skb_frag_size(fragment);
  360. dma_addr = skb_frag_dma_map(dma_dev, fragment,
  361. 0, len, DMA_TO_DEVICE);
  362. dma_flags = 0;
  363. unmap_len = len;
  364. unmap_addr = dma_addr;
  365. if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
  366. return -EIO;
  367. } while (1);
  368. }
  369. /* Remove buffers put into a tx_queue for the current packet.
  370. * None of the buffers must have an skb attached.
  371. */
  372. static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
  373. unsigned int insert_count)
  374. {
  375. struct efx_tx_buffer *buffer;
  376. unsigned int bytes_compl = 0;
  377. unsigned int pkts_compl = 0;
  378. /* Work backwards until we hit the original insert pointer value */
  379. while (tx_queue->insert_count != insert_count) {
  380. --tx_queue->insert_count;
  381. buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
  382. efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
  383. }
  384. }
  385. /*
  386. * Fallback to software TSO.
  387. *
  388. * This is used if we are unable to send a GSO packet through hardware TSO.
  389. * This should only ever happen due to per-queue restrictions - unsupported
  390. * packets should first be filtered by the feature flags.
  391. *
  392. * Returns 0 on success, error code otherwise.
  393. */
  394. static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
  395. struct sk_buff *skb)
  396. {
  397. struct sk_buff *segments, *next;
  398. segments = skb_gso_segment(skb, 0);
  399. if (IS_ERR(segments))
  400. return PTR_ERR(segments);
  401. dev_kfree_skb_any(skb);
  402. skb = segments;
  403. while (skb) {
  404. next = skb->next;
  405. skb->next = NULL;
  406. if (next)
  407. skb->xmit_more = true;
  408. efx_enqueue_skb(tx_queue, skb);
  409. skb = next;
  410. }
  411. return 0;
  412. }
  413. /*
  414. * Add a socket buffer to a TX queue
  415. *
  416. * This maps all fragments of a socket buffer for DMA and adds them to
  417. * the TX queue. The queue's insert pointer will be incremented by
  418. * the number of fragments in the socket buffer.
  419. *
  420. * If any DMA mapping fails, any mapped fragments will be unmapped,
  421. * the queue's insert pointer will be restored to its original value.
  422. *
  423. * This function is split out from efx_hard_start_xmit to allow the
  424. * loopback test to direct packets via specific TX queues.
  425. *
  426. * Returns NETDEV_TX_OK.
  427. * You must hold netif_tx_lock() to call this function.
  428. */
  429. netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
  430. {
  431. unsigned int old_insert_count = tx_queue->insert_count;
  432. bool xmit_more = skb->xmit_more;
  433. bool data_mapped = false;
  434. unsigned int segments;
  435. unsigned int skb_len;
  436. int rc;
  437. skb_len = skb->len;
  438. segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
  439. if (segments == 1)
  440. segments = 0; /* Don't use TSO for a single segment. */
  441. /* Handle TSO first - it's *possible* (although unlikely) that we might
  442. * be passed a packet to segment that's smaller than the copybreak/PIO
  443. * size limit.
  444. */
  445. if (segments) {
  446. EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
  447. rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
  448. if (rc == -EINVAL) {
  449. rc = efx_tx_tso_fallback(tx_queue, skb);
  450. tx_queue->tso_fallbacks++;
  451. if (rc == 0)
  452. return 0;
  453. }
  454. if (rc)
  455. goto err;
  456. #ifdef EFX_USE_PIO
  457. } else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
  458. efx_nic_may_tx_pio(tx_queue)) {
  459. /* Use PIO for short packets with an empty queue. */
  460. if (efx_enqueue_skb_pio(tx_queue, skb))
  461. goto err;
  462. tx_queue->pio_packets++;
  463. data_mapped = true;
  464. #endif
  465. } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
  466. /* Pad short packets or coalesce short fragmented packets. */
  467. if (efx_enqueue_skb_copy(tx_queue, skb))
  468. goto err;
  469. tx_queue->cb_packets++;
  470. data_mapped = true;
  471. }
  472. /* Map for DMA and create descriptors if we haven't done so already. */
  473. if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
  474. goto err;
  475. /* Update BQL */
  476. netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
  477. efx_tx_maybe_stop_queue(tx_queue);
  478. /* Pass off to hardware */
  479. if (!xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
  480. struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
  481. /* There could be packets left on the partner queue if those
  482. * SKBs had skb->xmit_more set. If we do not push those they
  483. * could be left for a long time and cause a netdev watchdog.
  484. */
  485. if (txq2->xmit_more_available)
  486. efx_nic_push_buffers(txq2);
  487. efx_nic_push_buffers(tx_queue);
  488. } else {
  489. tx_queue->xmit_more_available = skb->xmit_more;
  490. }
  491. if (segments) {
  492. tx_queue->tso_bursts++;
  493. tx_queue->tso_packets += segments;
  494. tx_queue->tx_packets += segments;
  495. } else {
  496. tx_queue->tx_packets++;
  497. }
  498. return NETDEV_TX_OK;
  499. err:
  500. efx_enqueue_unwind(tx_queue, old_insert_count);
  501. dev_kfree_skb_any(skb);
  502. /* If we're not expecting another transmit and we had something to push
  503. * on this queue or a partner queue then we need to push here to get the
  504. * previous packets out.
  505. */
  506. if (!xmit_more) {
  507. struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
  508. if (txq2->xmit_more_available)
  509. efx_nic_push_buffers(txq2);
  510. efx_nic_push_buffers(tx_queue);
  511. }
  512. return NETDEV_TX_OK;
  513. }
  514. /* Remove packets from the TX queue
  515. *
  516. * This removes packets from the TX queue, up to and including the
  517. * specified index.
  518. */
  519. static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
  520. unsigned int index,
  521. unsigned int *pkts_compl,
  522. unsigned int *bytes_compl)
  523. {
  524. struct efx_nic *efx = tx_queue->efx;
  525. unsigned int stop_index, read_ptr;
  526. stop_index = (index + 1) & tx_queue->ptr_mask;
  527. read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
  528. while (read_ptr != stop_index) {
  529. struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
  530. if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
  531. unlikely(buffer->len == 0)) {
  532. netif_err(efx, tx_err, efx->net_dev,
  533. "TX queue %d spurious TX completion id %x\n",
  534. tx_queue->queue, read_ptr);
  535. efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
  536. return;
  537. }
  538. efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
  539. ++tx_queue->read_count;
  540. read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
  541. }
  542. }
  543. /* Initiate a packet transmission. We use one channel per CPU
  544. * (sharing when we have more CPUs than channels). On Falcon, the TX
  545. * completion events will be directed back to the CPU that transmitted
  546. * the packet, which should be cache-efficient.
  547. *
  548. * Context: non-blocking.
  549. * Note that returning anything other than NETDEV_TX_OK will cause the
  550. * OS to free the skb.
  551. */
  552. netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
  553. struct net_device *net_dev)
  554. {
  555. struct efx_nic *efx = netdev_priv(net_dev);
  556. struct efx_tx_queue *tx_queue;
  557. unsigned index, type;
  558. EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
  559. /* PTP "event" packet */
  560. if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
  561. unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
  562. return efx_ptp_tx(efx, skb);
  563. }
  564. index = skb_get_queue_mapping(skb);
  565. type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
  566. if (index >= efx->n_tx_channels) {
  567. index -= efx->n_tx_channels;
  568. type |= EFX_TXQ_TYPE_HIGHPRI;
  569. }
  570. tx_queue = efx_get_tx_queue(efx, index, type);
  571. return efx_enqueue_skb(tx_queue, skb);
  572. }
  573. void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
  574. {
  575. struct efx_nic *efx = tx_queue->efx;
  576. /* Must be inverse of queue lookup in efx_hard_start_xmit() */
  577. tx_queue->core_txq =
  578. netdev_get_tx_queue(efx->net_dev,
  579. tx_queue->queue / EFX_TXQ_TYPES +
  580. ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
  581. efx->n_tx_channels : 0));
  582. }
  583. int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
  584. void *type_data)
  585. {
  586. struct efx_nic *efx = netdev_priv(net_dev);
  587. struct tc_mqprio_qopt *mqprio = type_data;
  588. struct efx_channel *channel;
  589. struct efx_tx_queue *tx_queue;
  590. unsigned tc, num_tc;
  591. int rc;
  592. if (type != TC_SETUP_QDISC_MQPRIO)
  593. return -EOPNOTSUPP;
  594. num_tc = mqprio->num_tc;
  595. if (num_tc > EFX_MAX_TX_TC)
  596. return -EINVAL;
  597. mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
  598. if (num_tc == net_dev->num_tc)
  599. return 0;
  600. for (tc = 0; tc < num_tc; tc++) {
  601. net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
  602. net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
  603. }
  604. if (num_tc > net_dev->num_tc) {
  605. /* Initialise high-priority queues as necessary */
  606. efx_for_each_channel(channel, efx) {
  607. efx_for_each_possible_channel_tx_queue(tx_queue,
  608. channel) {
  609. if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
  610. continue;
  611. if (!tx_queue->buffer) {
  612. rc = efx_probe_tx_queue(tx_queue);
  613. if (rc)
  614. return rc;
  615. }
  616. if (!tx_queue->initialised)
  617. efx_init_tx_queue(tx_queue);
  618. efx_init_tx_queue_core_txq(tx_queue);
  619. }
  620. }
  621. } else {
  622. /* Reduce number of classes before number of queues */
  623. net_dev->num_tc = num_tc;
  624. }
  625. rc = netif_set_real_num_tx_queues(net_dev,
  626. max_t(int, num_tc, 1) *
  627. efx->n_tx_channels);
  628. if (rc)
  629. return rc;
  630. /* Do not destroy high-priority queues when they become
  631. * unused. We would have to flush them first, and it is
  632. * fairly difficult to flush a subset of TX queues. Leave
  633. * it to efx_fini_channels().
  634. */
  635. net_dev->num_tc = num_tc;
  636. return 0;
  637. }
  638. void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
  639. {
  640. unsigned fill_level;
  641. struct efx_nic *efx = tx_queue->efx;
  642. struct efx_tx_queue *txq2;
  643. unsigned int pkts_compl = 0, bytes_compl = 0;
  644. EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
  645. efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
  646. tx_queue->pkts_compl += pkts_compl;
  647. tx_queue->bytes_compl += bytes_compl;
  648. if (pkts_compl > 1)
  649. ++tx_queue->merge_events;
  650. /* See if we need to restart the netif queue. This memory
  651. * barrier ensures that we write read_count (inside
  652. * efx_dequeue_buffers()) before reading the queue status.
  653. */
  654. smp_mb();
  655. if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
  656. likely(efx->port_enabled) &&
  657. likely(netif_device_present(efx->net_dev))) {
  658. txq2 = efx_tx_queue_partner(tx_queue);
  659. fill_level = max(tx_queue->insert_count - tx_queue->read_count,
  660. txq2->insert_count - txq2->read_count);
  661. if (fill_level <= efx->txq_wake_thresh)
  662. netif_tx_wake_queue(tx_queue->core_txq);
  663. }
  664. /* Check whether the hardware queue is now empty */
  665. if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
  666. tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
  667. if (tx_queue->read_count == tx_queue->old_write_count) {
  668. smp_mb();
  669. tx_queue->empty_read_count =
  670. tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
  671. }
  672. }
  673. }
  674. static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
  675. {
  676. return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
  677. }
  678. int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
  679. {
  680. struct efx_nic *efx = tx_queue->efx;
  681. unsigned int entries;
  682. int rc;
  683. /* Create the smallest power-of-two aligned ring */
  684. entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
  685. EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  686. tx_queue->ptr_mask = entries - 1;
  687. netif_dbg(efx, probe, efx->net_dev,
  688. "creating TX queue %d size %#x mask %#x\n",
  689. tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
  690. /* Allocate software ring */
  691. tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
  692. GFP_KERNEL);
  693. if (!tx_queue->buffer)
  694. return -ENOMEM;
  695. tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
  696. sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
  697. if (!tx_queue->cb_page) {
  698. rc = -ENOMEM;
  699. goto fail1;
  700. }
  701. /* Allocate hardware ring */
  702. rc = efx_nic_probe_tx(tx_queue);
  703. if (rc)
  704. goto fail2;
  705. return 0;
  706. fail2:
  707. kfree(tx_queue->cb_page);
  708. tx_queue->cb_page = NULL;
  709. fail1:
  710. kfree(tx_queue->buffer);
  711. tx_queue->buffer = NULL;
  712. return rc;
  713. }
  714. void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
  715. {
  716. struct efx_nic *efx = tx_queue->efx;
  717. netif_dbg(efx, drv, efx->net_dev,
  718. "initialising TX queue %d\n", tx_queue->queue);
  719. tx_queue->insert_count = 0;
  720. tx_queue->write_count = 0;
  721. tx_queue->packet_write_count = 0;
  722. tx_queue->old_write_count = 0;
  723. tx_queue->read_count = 0;
  724. tx_queue->old_read_count = 0;
  725. tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
  726. tx_queue->xmit_more_available = false;
  727. tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
  728. tx_queue->channel == efx_ptp_channel(efx));
  729. tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
  730. tx_queue->completed_timestamp_major = 0;
  731. tx_queue->completed_timestamp_minor = 0;
  732. /* Set up default function pointers. These may get replaced by
  733. * efx_nic_init_tx() based off NIC/queue capabilities.
  734. */
  735. tx_queue->handle_tso = efx_enqueue_skb_tso;
  736. /* Set up TX descriptor ring */
  737. efx_nic_init_tx(tx_queue);
  738. tx_queue->initialised = true;
  739. }
  740. void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
  741. {
  742. struct efx_tx_buffer *buffer;
  743. netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
  744. "shutting down TX queue %d\n", tx_queue->queue);
  745. if (!tx_queue->buffer)
  746. return;
  747. /* Free any buffers left in the ring */
  748. while (tx_queue->read_count != tx_queue->write_count) {
  749. unsigned int pkts_compl = 0, bytes_compl = 0;
  750. buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
  751. efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
  752. ++tx_queue->read_count;
  753. }
  754. tx_queue->xmit_more_available = false;
  755. netdev_tx_reset_queue(tx_queue->core_txq);
  756. }
  757. void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
  758. {
  759. int i;
  760. if (!tx_queue->buffer)
  761. return;
  762. netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
  763. "destroying TX queue %d\n", tx_queue->queue);
  764. efx_nic_remove_tx(tx_queue);
  765. if (tx_queue->cb_page) {
  766. for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
  767. efx_nic_free_buffer(tx_queue->efx,
  768. &tx_queue->cb_page[i]);
  769. kfree(tx_queue->cb_page);
  770. tx_queue->cb_page = NULL;
  771. }
  772. kfree(tx_queue->buffer);
  773. tx_queue->buffer = NULL;
  774. }