dl2k.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888
  1. /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
  2. /*
  3. Copyright (c) 2001, 2002 by D-Link Corporation
  4. Written by Edward Peng.<edward_peng@dlink.com.tw>
  5. Created 03-May-2001, base on Linux' sundance.c.
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. */
  11. #define DRV_NAME "DL2000/TC902x-based linux driver"
  12. #define DRV_VERSION "v1.19"
  13. #define DRV_RELDATE "2007/08/12"
  14. #include "dl2k.h"
  15. #include <linux/dma-mapping.h>
  16. #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
  17. #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
  18. #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
  19. #define dr32(reg) ioread32(ioaddr + (reg))
  20. #define dr16(reg) ioread16(ioaddr + (reg))
  21. #define dr8(reg) ioread8(ioaddr + (reg))
  22. static char version[] =
  23. KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  24. #define MAX_UNITS 8
  25. static int mtu[MAX_UNITS];
  26. static int vlan[MAX_UNITS];
  27. static int jumbo[MAX_UNITS];
  28. static char *media[MAX_UNITS];
  29. static int tx_flow=-1;
  30. static int rx_flow=-1;
  31. static int copy_thresh;
  32. static int rx_coalesce=10; /* Rx frame count each interrupt */
  33. static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
  34. static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
  35. MODULE_AUTHOR ("Edward Peng");
  36. MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  37. MODULE_LICENSE("GPL");
  38. module_param_array(mtu, int, NULL, 0);
  39. module_param_array(media, charp, NULL, 0);
  40. module_param_array(vlan, int, NULL, 0);
  41. module_param_array(jumbo, int, NULL, 0);
  42. module_param(tx_flow, int, 0);
  43. module_param(rx_flow, int, 0);
  44. module_param(copy_thresh, int, 0);
  45. module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
  46. module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
  47. module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  48. /* Enable the default interrupts */
  49. #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  50. UpdateStats | LinkEvent)
  51. static void dl2k_enable_int(struct netdev_private *np)
  52. {
  53. void __iomem *ioaddr = np->ioaddr;
  54. dw16(IntEnable, DEFAULT_INTR);
  55. }
  56. static const int max_intrloop = 50;
  57. static const int multicast_filter_limit = 0x40;
  58. static int rio_open (struct net_device *dev);
  59. static void rio_timer (struct timer_list *t);
  60. static void rio_tx_timeout (struct net_device *dev);
  61. static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  62. static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  63. static void rio_free_tx (struct net_device *dev, int irq);
  64. static void tx_error (struct net_device *dev, int tx_status);
  65. static int receive_packet (struct net_device *dev);
  66. static void rio_error (struct net_device *dev, int int_status);
  67. static void set_multicast (struct net_device *dev);
  68. static struct net_device_stats *get_stats (struct net_device *dev);
  69. static int clear_stats (struct net_device *dev);
  70. static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  71. static int rio_close (struct net_device *dev);
  72. static int find_miiphy (struct net_device *dev);
  73. static int parse_eeprom (struct net_device *dev);
  74. static int read_eeprom (struct netdev_private *, int eep_addr);
  75. static int mii_wait_link (struct net_device *dev, int wait);
  76. static int mii_set_media (struct net_device *dev);
  77. static int mii_get_media (struct net_device *dev);
  78. static int mii_set_media_pcs (struct net_device *dev);
  79. static int mii_get_media_pcs (struct net_device *dev);
  80. static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  81. static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  82. u16 data);
  83. static const struct ethtool_ops ethtool_ops;
  84. static const struct net_device_ops netdev_ops = {
  85. .ndo_open = rio_open,
  86. .ndo_start_xmit = start_xmit,
  87. .ndo_stop = rio_close,
  88. .ndo_get_stats = get_stats,
  89. .ndo_validate_addr = eth_validate_addr,
  90. .ndo_set_mac_address = eth_mac_addr,
  91. .ndo_set_rx_mode = set_multicast,
  92. .ndo_do_ioctl = rio_ioctl,
  93. .ndo_tx_timeout = rio_tx_timeout,
  94. };
  95. static int
  96. rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
  97. {
  98. struct net_device *dev;
  99. struct netdev_private *np;
  100. static int card_idx;
  101. int chip_idx = ent->driver_data;
  102. int err, irq;
  103. void __iomem *ioaddr;
  104. static int version_printed;
  105. void *ring_space;
  106. dma_addr_t ring_dma;
  107. if (!version_printed++)
  108. printk ("%s", version);
  109. err = pci_enable_device (pdev);
  110. if (err)
  111. return err;
  112. irq = pdev->irq;
  113. err = pci_request_regions (pdev, "dl2k");
  114. if (err)
  115. goto err_out_disable;
  116. pci_set_master (pdev);
  117. err = -ENOMEM;
  118. dev = alloc_etherdev (sizeof (*np));
  119. if (!dev)
  120. goto err_out_res;
  121. SET_NETDEV_DEV(dev, &pdev->dev);
  122. np = netdev_priv(dev);
  123. /* IO registers range. */
  124. ioaddr = pci_iomap(pdev, 0, 0);
  125. if (!ioaddr)
  126. goto err_out_dev;
  127. np->eeprom_addr = ioaddr;
  128. #ifdef MEM_MAPPING
  129. /* MM registers range. */
  130. ioaddr = pci_iomap(pdev, 1, 0);
  131. if (!ioaddr)
  132. goto err_out_iounmap;
  133. #endif
  134. np->ioaddr = ioaddr;
  135. np->chip_id = chip_idx;
  136. np->pdev = pdev;
  137. spin_lock_init (&np->tx_lock);
  138. spin_lock_init (&np->rx_lock);
  139. /* Parse manual configuration */
  140. np->an_enable = 1;
  141. np->tx_coalesce = 1;
  142. if (card_idx < MAX_UNITS) {
  143. if (media[card_idx] != NULL) {
  144. np->an_enable = 0;
  145. if (strcmp (media[card_idx], "auto") == 0 ||
  146. strcmp (media[card_idx], "autosense") == 0 ||
  147. strcmp (media[card_idx], "0") == 0 ) {
  148. np->an_enable = 2;
  149. } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
  150. strcmp (media[card_idx], "4") == 0) {
  151. np->speed = 100;
  152. np->full_duplex = 1;
  153. } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
  154. strcmp (media[card_idx], "3") == 0) {
  155. np->speed = 100;
  156. np->full_duplex = 0;
  157. } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
  158. strcmp (media[card_idx], "2") == 0) {
  159. np->speed = 10;
  160. np->full_duplex = 1;
  161. } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
  162. strcmp (media[card_idx], "1") == 0) {
  163. np->speed = 10;
  164. np->full_duplex = 0;
  165. } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
  166. strcmp (media[card_idx], "6") == 0) {
  167. np->speed=1000;
  168. np->full_duplex=1;
  169. } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
  170. strcmp (media[card_idx], "5") == 0) {
  171. np->speed = 1000;
  172. np->full_duplex = 0;
  173. } else {
  174. np->an_enable = 1;
  175. }
  176. }
  177. if (jumbo[card_idx] != 0) {
  178. np->jumbo = 1;
  179. dev->mtu = MAX_JUMBO;
  180. } else {
  181. np->jumbo = 0;
  182. if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
  183. dev->mtu = mtu[card_idx];
  184. }
  185. np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
  186. vlan[card_idx] : 0;
  187. if (rx_coalesce > 0 && rx_timeout > 0) {
  188. np->rx_coalesce = rx_coalesce;
  189. np->rx_timeout = rx_timeout;
  190. np->coalesce = 1;
  191. }
  192. np->tx_flow = (tx_flow == 0) ? 0 : 1;
  193. np->rx_flow = (rx_flow == 0) ? 0 : 1;
  194. if (tx_coalesce < 1)
  195. tx_coalesce = 1;
  196. else if (tx_coalesce > TX_RING_SIZE-1)
  197. tx_coalesce = TX_RING_SIZE - 1;
  198. }
  199. dev->netdev_ops = &netdev_ops;
  200. dev->watchdog_timeo = TX_TIMEOUT;
  201. dev->ethtool_ops = &ethtool_ops;
  202. #if 0
  203. dev->features = NETIF_F_IP_CSUM;
  204. #endif
  205. /* MTU range: 68 - 1536 or 8000 */
  206. dev->min_mtu = ETH_MIN_MTU;
  207. dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
  208. pci_set_drvdata (pdev, dev);
  209. ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
  210. if (!ring_space)
  211. goto err_out_iounmap;
  212. np->tx_ring = ring_space;
  213. np->tx_ring_dma = ring_dma;
  214. ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
  215. if (!ring_space)
  216. goto err_out_unmap_tx;
  217. np->rx_ring = ring_space;
  218. np->rx_ring_dma = ring_dma;
  219. /* Parse eeprom data */
  220. parse_eeprom (dev);
  221. /* Find PHY address */
  222. err = find_miiphy (dev);
  223. if (err)
  224. goto err_out_unmap_rx;
  225. /* Fiber device? */
  226. np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
  227. np->link_status = 0;
  228. /* Set media and reset PHY */
  229. if (np->phy_media) {
  230. /* default Auto-Negotiation for fiber deivices */
  231. if (np->an_enable == 2) {
  232. np->an_enable = 1;
  233. }
  234. } else {
  235. /* Auto-Negotiation is mandatory for 1000BASE-T,
  236. IEEE 802.3ab Annex 28D page 14 */
  237. if (np->speed == 1000)
  238. np->an_enable = 1;
  239. }
  240. err = register_netdev (dev);
  241. if (err)
  242. goto err_out_unmap_rx;
  243. card_idx++;
  244. printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
  245. dev->name, np->name, dev->dev_addr, irq);
  246. if (tx_coalesce > 1)
  247. printk(KERN_INFO "tx_coalesce:\t%d packets\n",
  248. tx_coalesce);
  249. if (np->coalesce)
  250. printk(KERN_INFO
  251. "rx_coalesce:\t%d packets\n"
  252. "rx_timeout: \t%d ns\n",
  253. np->rx_coalesce, np->rx_timeout*640);
  254. if (np->vlan)
  255. printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
  256. return 0;
  257. err_out_unmap_rx:
  258. pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
  259. err_out_unmap_tx:
  260. pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
  261. err_out_iounmap:
  262. #ifdef MEM_MAPPING
  263. pci_iounmap(pdev, np->ioaddr);
  264. #endif
  265. pci_iounmap(pdev, np->eeprom_addr);
  266. err_out_dev:
  267. free_netdev (dev);
  268. err_out_res:
  269. pci_release_regions (pdev);
  270. err_out_disable:
  271. pci_disable_device (pdev);
  272. return err;
  273. }
  274. static int
  275. find_miiphy (struct net_device *dev)
  276. {
  277. struct netdev_private *np = netdev_priv(dev);
  278. int i, phy_found = 0;
  279. np->phy_addr = 1;
  280. for (i = 31; i >= 0; i--) {
  281. int mii_status = mii_read (dev, i, 1);
  282. if (mii_status != 0xffff && mii_status != 0x0000) {
  283. np->phy_addr = i;
  284. phy_found++;
  285. }
  286. }
  287. if (!phy_found) {
  288. printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
  289. return -ENODEV;
  290. }
  291. return 0;
  292. }
  293. static int
  294. parse_eeprom (struct net_device *dev)
  295. {
  296. struct netdev_private *np = netdev_priv(dev);
  297. void __iomem *ioaddr = np->ioaddr;
  298. int i, j;
  299. u8 sromdata[256];
  300. u8 *psib;
  301. u32 crc;
  302. PSROM_t psrom = (PSROM_t) sromdata;
  303. int cid, next;
  304. for (i = 0; i < 128; i++)
  305. ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
  306. if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
  307. /* Check CRC */
  308. crc = ~ether_crc_le (256 - 4, sromdata);
  309. if (psrom->crc != cpu_to_le32(crc)) {
  310. printk (KERN_ERR "%s: EEPROM data CRC error.\n",
  311. dev->name);
  312. return -1;
  313. }
  314. }
  315. /* Set MAC address */
  316. for (i = 0; i < 6; i++)
  317. dev->dev_addr[i] = psrom->mac_addr[i];
  318. if (np->chip_id == CHIP_IP1000A) {
  319. np->led_mode = psrom->led_mode;
  320. return 0;
  321. }
  322. if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
  323. return 0;
  324. }
  325. /* Parse Software Information Block */
  326. i = 0x30;
  327. psib = (u8 *) sromdata;
  328. do {
  329. cid = psib[i++];
  330. next = psib[i++];
  331. if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
  332. printk (KERN_ERR "Cell data error\n");
  333. return -1;
  334. }
  335. switch (cid) {
  336. case 0: /* Format version */
  337. break;
  338. case 1: /* End of cell */
  339. return 0;
  340. case 2: /* Duplex Polarity */
  341. np->duplex_polarity = psib[i];
  342. dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
  343. break;
  344. case 3: /* Wake Polarity */
  345. np->wake_polarity = psib[i];
  346. break;
  347. case 9: /* Adapter description */
  348. j = (next - i > 255) ? 255 : next - i;
  349. memcpy (np->name, &(psib[i]), j);
  350. break;
  351. case 4:
  352. case 5:
  353. case 6:
  354. case 7:
  355. case 8: /* Reversed */
  356. break;
  357. default: /* Unknown cell */
  358. return -1;
  359. }
  360. i = next;
  361. } while (1);
  362. return 0;
  363. }
  364. static void rio_set_led_mode(struct net_device *dev)
  365. {
  366. struct netdev_private *np = netdev_priv(dev);
  367. void __iomem *ioaddr = np->ioaddr;
  368. u32 mode;
  369. if (np->chip_id != CHIP_IP1000A)
  370. return;
  371. mode = dr32(ASICCtrl);
  372. mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
  373. if (np->led_mode & 0x01)
  374. mode |= IPG_AC_LED_MODE;
  375. if (np->led_mode & 0x02)
  376. mode |= IPG_AC_LED_MODE_BIT_1;
  377. if (np->led_mode & 0x08)
  378. mode |= IPG_AC_LED_SPEED;
  379. dw32(ASICCtrl, mode);
  380. }
  381. static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
  382. {
  383. return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
  384. }
  385. static void free_list(struct net_device *dev)
  386. {
  387. struct netdev_private *np = netdev_priv(dev);
  388. struct sk_buff *skb;
  389. int i;
  390. /* Free all the skbuffs in the queue. */
  391. for (i = 0; i < RX_RING_SIZE; i++) {
  392. skb = np->rx_skbuff[i];
  393. if (skb) {
  394. pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
  395. skb->len, PCI_DMA_FROMDEVICE);
  396. dev_kfree_skb(skb);
  397. np->rx_skbuff[i] = NULL;
  398. }
  399. np->rx_ring[i].status = 0;
  400. np->rx_ring[i].fraginfo = 0;
  401. }
  402. for (i = 0; i < TX_RING_SIZE; i++) {
  403. skb = np->tx_skbuff[i];
  404. if (skb) {
  405. pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
  406. skb->len, PCI_DMA_TODEVICE);
  407. dev_kfree_skb(skb);
  408. np->tx_skbuff[i] = NULL;
  409. }
  410. }
  411. }
  412. static void rio_reset_ring(struct netdev_private *np)
  413. {
  414. int i;
  415. np->cur_rx = 0;
  416. np->cur_tx = 0;
  417. np->old_rx = 0;
  418. np->old_tx = 0;
  419. for (i = 0; i < TX_RING_SIZE; i++)
  420. np->tx_ring[i].status = cpu_to_le64(TFDDone);
  421. for (i = 0; i < RX_RING_SIZE; i++)
  422. np->rx_ring[i].status = 0;
  423. }
  424. /* allocate and initialize Tx and Rx descriptors */
  425. static int alloc_list(struct net_device *dev)
  426. {
  427. struct netdev_private *np = netdev_priv(dev);
  428. int i;
  429. rio_reset_ring(np);
  430. np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
  431. /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
  432. for (i = 0; i < TX_RING_SIZE; i++) {
  433. np->tx_skbuff[i] = NULL;
  434. np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
  435. ((i + 1) % TX_RING_SIZE) *
  436. sizeof(struct netdev_desc));
  437. }
  438. /* Initialize Rx descriptors & allocate buffers */
  439. for (i = 0; i < RX_RING_SIZE; i++) {
  440. /* Allocated fixed size of skbuff */
  441. struct sk_buff *skb;
  442. skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
  443. np->rx_skbuff[i] = skb;
  444. if (!skb) {
  445. free_list(dev);
  446. return -ENOMEM;
  447. }
  448. np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
  449. ((i + 1) % RX_RING_SIZE) *
  450. sizeof(struct netdev_desc));
  451. /* Rubicon now supports 40 bits of addressing space. */
  452. np->rx_ring[i].fraginfo =
  453. cpu_to_le64(pci_map_single(
  454. np->pdev, skb->data, np->rx_buf_sz,
  455. PCI_DMA_FROMDEVICE));
  456. np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
  457. }
  458. return 0;
  459. }
  460. static void rio_hw_init(struct net_device *dev)
  461. {
  462. struct netdev_private *np = netdev_priv(dev);
  463. void __iomem *ioaddr = np->ioaddr;
  464. int i;
  465. u16 macctrl;
  466. /* Reset all logic functions */
  467. dw16(ASICCtrl + 2,
  468. GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
  469. mdelay(10);
  470. rio_set_led_mode(dev);
  471. /* DebugCtrl bit 4, 5, 9 must set */
  472. dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
  473. if (np->chip_id == CHIP_IP1000A &&
  474. (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
  475. /* PHY magic taken from ipg driver, undocumented registers */
  476. mii_write(dev, np->phy_addr, 31, 0x0001);
  477. mii_write(dev, np->phy_addr, 27, 0x01e0);
  478. mii_write(dev, np->phy_addr, 31, 0x0002);
  479. mii_write(dev, np->phy_addr, 27, 0xeb8e);
  480. mii_write(dev, np->phy_addr, 31, 0x0000);
  481. mii_write(dev, np->phy_addr, 30, 0x005e);
  482. /* advertise 1000BASE-T half & full duplex, prefer MASTER */
  483. mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
  484. }
  485. if (np->phy_media)
  486. mii_set_media_pcs(dev);
  487. else
  488. mii_set_media(dev);
  489. /* Jumbo frame */
  490. if (np->jumbo != 0)
  491. dw16(MaxFrameSize, MAX_JUMBO+14);
  492. /* Set RFDListPtr */
  493. dw32(RFDListPtr0, np->rx_ring_dma);
  494. dw32(RFDListPtr1, 0);
  495. /* Set station address */
  496. /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
  497. * too. However, it doesn't work on IP1000A so we use 16-bit access.
  498. */
  499. for (i = 0; i < 3; i++)
  500. dw16(StationAddr0 + 2 * i,
  501. cpu_to_le16(((u16 *)dev->dev_addr)[i]));
  502. set_multicast (dev);
  503. if (np->coalesce) {
  504. dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
  505. }
  506. /* Set RIO to poll every N*320nsec. */
  507. dw8(RxDMAPollPeriod, 0x20);
  508. dw8(TxDMAPollPeriod, 0xff);
  509. dw8(RxDMABurstThresh, 0x30);
  510. dw8(RxDMAUrgentThresh, 0x30);
  511. dw32(RmonStatMask, 0x0007ffff);
  512. /* clear statistics */
  513. clear_stats (dev);
  514. /* VLAN supported */
  515. if (np->vlan) {
  516. /* priority field in RxDMAIntCtrl */
  517. dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
  518. /* VLANId */
  519. dw16(VLANId, np->vlan);
  520. /* Length/Type should be 0x8100 */
  521. dw32(VLANTag, 0x8100 << 16 | np->vlan);
  522. /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
  523. VLAN information tagged by TFC' VID, CFI fields. */
  524. dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
  525. }
  526. /* Start Tx/Rx */
  527. dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
  528. macctrl = 0;
  529. macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
  530. macctrl |= (np->full_duplex) ? DuplexSelect : 0;
  531. macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
  532. macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
  533. dw16(MACCtrl, macctrl);
  534. }
  535. static void rio_hw_stop(struct net_device *dev)
  536. {
  537. struct netdev_private *np = netdev_priv(dev);
  538. void __iomem *ioaddr = np->ioaddr;
  539. /* Disable interrupts */
  540. dw16(IntEnable, 0);
  541. /* Stop Tx and Rx logics */
  542. dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
  543. }
  544. static int rio_open(struct net_device *dev)
  545. {
  546. struct netdev_private *np = netdev_priv(dev);
  547. const int irq = np->pdev->irq;
  548. int i;
  549. i = alloc_list(dev);
  550. if (i)
  551. return i;
  552. rio_hw_init(dev);
  553. i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
  554. if (i) {
  555. rio_hw_stop(dev);
  556. free_list(dev);
  557. return i;
  558. }
  559. timer_setup(&np->timer, rio_timer, 0);
  560. np->timer.expires = jiffies + 1 * HZ;
  561. add_timer(&np->timer);
  562. netif_start_queue (dev);
  563. dl2k_enable_int(np);
  564. return 0;
  565. }
  566. static void
  567. rio_timer (struct timer_list *t)
  568. {
  569. struct netdev_private *np = from_timer(np, t, timer);
  570. struct net_device *dev = pci_get_drvdata(np->pdev);
  571. unsigned int entry;
  572. int next_tick = 1*HZ;
  573. unsigned long flags;
  574. spin_lock_irqsave(&np->rx_lock, flags);
  575. /* Recover rx ring exhausted error */
  576. if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
  577. printk(KERN_INFO "Try to recover rx ring exhausted...\n");
  578. /* Re-allocate skbuffs to fill the descriptor ring */
  579. for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
  580. struct sk_buff *skb;
  581. entry = np->old_rx % RX_RING_SIZE;
  582. /* Dropped packets don't need to re-allocate */
  583. if (np->rx_skbuff[entry] == NULL) {
  584. skb = netdev_alloc_skb_ip_align(dev,
  585. np->rx_buf_sz);
  586. if (skb == NULL) {
  587. np->rx_ring[entry].fraginfo = 0;
  588. printk (KERN_INFO
  589. "%s: Still unable to re-allocate Rx skbuff.#%d\n",
  590. dev->name, entry);
  591. break;
  592. }
  593. np->rx_skbuff[entry] = skb;
  594. np->rx_ring[entry].fraginfo =
  595. cpu_to_le64 (pci_map_single
  596. (np->pdev, skb->data, np->rx_buf_sz,
  597. PCI_DMA_FROMDEVICE));
  598. }
  599. np->rx_ring[entry].fraginfo |=
  600. cpu_to_le64((u64)np->rx_buf_sz << 48);
  601. np->rx_ring[entry].status = 0;
  602. } /* end for */
  603. } /* end if */
  604. spin_unlock_irqrestore (&np->rx_lock, flags);
  605. np->timer.expires = jiffies + next_tick;
  606. add_timer(&np->timer);
  607. }
  608. static void
  609. rio_tx_timeout (struct net_device *dev)
  610. {
  611. struct netdev_private *np = netdev_priv(dev);
  612. void __iomem *ioaddr = np->ioaddr;
  613. printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
  614. dev->name, dr32(TxStatus));
  615. rio_free_tx(dev, 0);
  616. dev->if_port = 0;
  617. netif_trans_update(dev); /* prevent tx timeout */
  618. }
  619. static netdev_tx_t
  620. start_xmit (struct sk_buff *skb, struct net_device *dev)
  621. {
  622. struct netdev_private *np = netdev_priv(dev);
  623. void __iomem *ioaddr = np->ioaddr;
  624. struct netdev_desc *txdesc;
  625. unsigned entry;
  626. u64 tfc_vlan_tag = 0;
  627. if (np->link_status == 0) { /* Link Down */
  628. dev_kfree_skb(skb);
  629. return NETDEV_TX_OK;
  630. }
  631. entry = np->cur_tx % TX_RING_SIZE;
  632. np->tx_skbuff[entry] = skb;
  633. txdesc = &np->tx_ring[entry];
  634. #if 0
  635. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  636. txdesc->status |=
  637. cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
  638. IPChecksumEnable);
  639. }
  640. #endif
  641. if (np->vlan) {
  642. tfc_vlan_tag = VLANTagInsert |
  643. ((u64)np->vlan << 32) |
  644. ((u64)skb->priority << 45);
  645. }
  646. txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
  647. skb->len,
  648. PCI_DMA_TODEVICE));
  649. txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
  650. /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
  651. * Work around: Always use 1 descriptor in 10Mbps mode */
  652. if (entry % np->tx_coalesce == 0 || np->speed == 10)
  653. txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
  654. WordAlignDisable |
  655. TxDMAIndicate |
  656. (1 << FragCountShift));
  657. else
  658. txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
  659. WordAlignDisable |
  660. (1 << FragCountShift));
  661. /* TxDMAPollNow */
  662. dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
  663. /* Schedule ISR */
  664. dw32(CountDown, 10000);
  665. np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
  666. if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
  667. < TX_QUEUE_LEN - 1 && np->speed != 10) {
  668. /* do nothing */
  669. } else if (!netif_queue_stopped(dev)) {
  670. netif_stop_queue (dev);
  671. }
  672. /* The first TFDListPtr */
  673. if (!dr32(TFDListPtr0)) {
  674. dw32(TFDListPtr0, np->tx_ring_dma +
  675. entry * sizeof (struct netdev_desc));
  676. dw32(TFDListPtr1, 0);
  677. }
  678. return NETDEV_TX_OK;
  679. }
  680. static irqreturn_t
  681. rio_interrupt (int irq, void *dev_instance)
  682. {
  683. struct net_device *dev = dev_instance;
  684. struct netdev_private *np = netdev_priv(dev);
  685. void __iomem *ioaddr = np->ioaddr;
  686. unsigned int_status;
  687. int cnt = max_intrloop;
  688. int handled = 0;
  689. while (1) {
  690. int_status = dr16(IntStatus);
  691. dw16(IntStatus, int_status);
  692. int_status &= DEFAULT_INTR;
  693. if (int_status == 0 || --cnt < 0)
  694. break;
  695. handled = 1;
  696. /* Processing received packets */
  697. if (int_status & RxDMAComplete)
  698. receive_packet (dev);
  699. /* TxDMAComplete interrupt */
  700. if ((int_status & (TxDMAComplete|IntRequested))) {
  701. int tx_status;
  702. tx_status = dr32(TxStatus);
  703. if (tx_status & 0x01)
  704. tx_error (dev, tx_status);
  705. /* Free used tx skbuffs */
  706. rio_free_tx (dev, 1);
  707. }
  708. /* Handle uncommon events */
  709. if (int_status &
  710. (HostError | LinkEvent | UpdateStats))
  711. rio_error (dev, int_status);
  712. }
  713. if (np->cur_tx != np->old_tx)
  714. dw32(CountDown, 100);
  715. return IRQ_RETVAL(handled);
  716. }
  717. static void
  718. rio_free_tx (struct net_device *dev, int irq)
  719. {
  720. struct netdev_private *np = netdev_priv(dev);
  721. int entry = np->old_tx % TX_RING_SIZE;
  722. int tx_use = 0;
  723. unsigned long flag = 0;
  724. if (irq)
  725. spin_lock(&np->tx_lock);
  726. else
  727. spin_lock_irqsave(&np->tx_lock, flag);
  728. /* Free used tx skbuffs */
  729. while (entry != np->cur_tx) {
  730. struct sk_buff *skb;
  731. if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
  732. break;
  733. skb = np->tx_skbuff[entry];
  734. pci_unmap_single (np->pdev,
  735. desc_to_dma(&np->tx_ring[entry]),
  736. skb->len, PCI_DMA_TODEVICE);
  737. if (irq)
  738. dev_kfree_skb_irq (skb);
  739. else
  740. dev_kfree_skb (skb);
  741. np->tx_skbuff[entry] = NULL;
  742. entry = (entry + 1) % TX_RING_SIZE;
  743. tx_use++;
  744. }
  745. if (irq)
  746. spin_unlock(&np->tx_lock);
  747. else
  748. spin_unlock_irqrestore(&np->tx_lock, flag);
  749. np->old_tx = entry;
  750. /* If the ring is no longer full, clear tx_full and
  751. call netif_wake_queue() */
  752. if (netif_queue_stopped(dev) &&
  753. ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
  754. < TX_QUEUE_LEN - 1 || np->speed == 10)) {
  755. netif_wake_queue (dev);
  756. }
  757. }
  758. static void
  759. tx_error (struct net_device *dev, int tx_status)
  760. {
  761. struct netdev_private *np = netdev_priv(dev);
  762. void __iomem *ioaddr = np->ioaddr;
  763. int frame_id;
  764. int i;
  765. frame_id = (tx_status & 0xffff0000);
  766. printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
  767. dev->name, tx_status, frame_id);
  768. dev->stats.tx_errors++;
  769. /* Ttransmit Underrun */
  770. if (tx_status & 0x10) {
  771. dev->stats.tx_fifo_errors++;
  772. dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
  773. /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
  774. dw16(ASICCtrl + 2,
  775. TxReset | DMAReset | FIFOReset | NetworkReset);
  776. /* Wait for ResetBusy bit clear */
  777. for (i = 50; i > 0; i--) {
  778. if (!(dr16(ASICCtrl + 2) & ResetBusy))
  779. break;
  780. mdelay (1);
  781. }
  782. rio_set_led_mode(dev);
  783. rio_free_tx (dev, 1);
  784. /* Reset TFDListPtr */
  785. dw32(TFDListPtr0, np->tx_ring_dma +
  786. np->old_tx * sizeof (struct netdev_desc));
  787. dw32(TFDListPtr1, 0);
  788. /* Let TxStartThresh stay default value */
  789. }
  790. /* Late Collision */
  791. if (tx_status & 0x04) {
  792. dev->stats.tx_fifo_errors++;
  793. /* TxReset and clear FIFO */
  794. dw16(ASICCtrl + 2, TxReset | FIFOReset);
  795. /* Wait reset done */
  796. for (i = 50; i > 0; i--) {
  797. if (!(dr16(ASICCtrl + 2) & ResetBusy))
  798. break;
  799. mdelay (1);
  800. }
  801. rio_set_led_mode(dev);
  802. /* Let TxStartThresh stay default value */
  803. }
  804. /* Maximum Collisions */
  805. if (tx_status & 0x08)
  806. dev->stats.collisions++;
  807. /* Restart the Tx */
  808. dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
  809. }
  810. static int
  811. receive_packet (struct net_device *dev)
  812. {
  813. struct netdev_private *np = netdev_priv(dev);
  814. int entry = np->cur_rx % RX_RING_SIZE;
  815. int cnt = 30;
  816. /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
  817. while (1) {
  818. struct netdev_desc *desc = &np->rx_ring[entry];
  819. int pkt_len;
  820. u64 frame_status;
  821. if (!(desc->status & cpu_to_le64(RFDDone)) ||
  822. !(desc->status & cpu_to_le64(FrameStart)) ||
  823. !(desc->status & cpu_to_le64(FrameEnd)))
  824. break;
  825. /* Chip omits the CRC. */
  826. frame_status = le64_to_cpu(desc->status);
  827. pkt_len = frame_status & 0xffff;
  828. if (--cnt < 0)
  829. break;
  830. /* Update rx error statistics, drop packet. */
  831. if (frame_status & RFS_Errors) {
  832. dev->stats.rx_errors++;
  833. if (frame_status & (RxRuntFrame | RxLengthError))
  834. dev->stats.rx_length_errors++;
  835. if (frame_status & RxFCSError)
  836. dev->stats.rx_crc_errors++;
  837. if (frame_status & RxAlignmentError && np->speed != 1000)
  838. dev->stats.rx_frame_errors++;
  839. if (frame_status & RxFIFOOverrun)
  840. dev->stats.rx_fifo_errors++;
  841. } else {
  842. struct sk_buff *skb;
  843. /* Small skbuffs for short packets */
  844. if (pkt_len > copy_thresh) {
  845. pci_unmap_single (np->pdev,
  846. desc_to_dma(desc),
  847. np->rx_buf_sz,
  848. PCI_DMA_FROMDEVICE);
  849. skb_put (skb = np->rx_skbuff[entry], pkt_len);
  850. np->rx_skbuff[entry] = NULL;
  851. } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
  852. pci_dma_sync_single_for_cpu(np->pdev,
  853. desc_to_dma(desc),
  854. np->rx_buf_sz,
  855. PCI_DMA_FROMDEVICE);
  856. skb_copy_to_linear_data (skb,
  857. np->rx_skbuff[entry]->data,
  858. pkt_len);
  859. skb_put (skb, pkt_len);
  860. pci_dma_sync_single_for_device(np->pdev,
  861. desc_to_dma(desc),
  862. np->rx_buf_sz,
  863. PCI_DMA_FROMDEVICE);
  864. }
  865. skb->protocol = eth_type_trans (skb, dev);
  866. #if 0
  867. /* Checksum done by hw, but csum value unavailable. */
  868. if (np->pdev->pci_rev_id >= 0x0c &&
  869. !(frame_status & (TCPError | UDPError | IPError))) {
  870. skb->ip_summed = CHECKSUM_UNNECESSARY;
  871. }
  872. #endif
  873. netif_rx (skb);
  874. }
  875. entry = (entry + 1) % RX_RING_SIZE;
  876. }
  877. spin_lock(&np->rx_lock);
  878. np->cur_rx = entry;
  879. /* Re-allocate skbuffs to fill the descriptor ring */
  880. entry = np->old_rx;
  881. while (entry != np->cur_rx) {
  882. struct sk_buff *skb;
  883. /* Dropped packets don't need to re-allocate */
  884. if (np->rx_skbuff[entry] == NULL) {
  885. skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
  886. if (skb == NULL) {
  887. np->rx_ring[entry].fraginfo = 0;
  888. printk (KERN_INFO
  889. "%s: receive_packet: "
  890. "Unable to re-allocate Rx skbuff.#%d\n",
  891. dev->name, entry);
  892. break;
  893. }
  894. np->rx_skbuff[entry] = skb;
  895. np->rx_ring[entry].fraginfo =
  896. cpu_to_le64 (pci_map_single
  897. (np->pdev, skb->data, np->rx_buf_sz,
  898. PCI_DMA_FROMDEVICE));
  899. }
  900. np->rx_ring[entry].fraginfo |=
  901. cpu_to_le64((u64)np->rx_buf_sz << 48);
  902. np->rx_ring[entry].status = 0;
  903. entry = (entry + 1) % RX_RING_SIZE;
  904. }
  905. np->old_rx = entry;
  906. spin_unlock(&np->rx_lock);
  907. return 0;
  908. }
  909. static void
  910. rio_error (struct net_device *dev, int int_status)
  911. {
  912. struct netdev_private *np = netdev_priv(dev);
  913. void __iomem *ioaddr = np->ioaddr;
  914. u16 macctrl;
  915. /* Link change event */
  916. if (int_status & LinkEvent) {
  917. if (mii_wait_link (dev, 10) == 0) {
  918. printk (KERN_INFO "%s: Link up\n", dev->name);
  919. if (np->phy_media)
  920. mii_get_media_pcs (dev);
  921. else
  922. mii_get_media (dev);
  923. if (np->speed == 1000)
  924. np->tx_coalesce = tx_coalesce;
  925. else
  926. np->tx_coalesce = 1;
  927. macctrl = 0;
  928. macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
  929. macctrl |= (np->full_duplex) ? DuplexSelect : 0;
  930. macctrl |= (np->tx_flow) ?
  931. TxFlowControlEnable : 0;
  932. macctrl |= (np->rx_flow) ?
  933. RxFlowControlEnable : 0;
  934. dw16(MACCtrl, macctrl);
  935. np->link_status = 1;
  936. netif_carrier_on(dev);
  937. } else {
  938. printk (KERN_INFO "%s: Link off\n", dev->name);
  939. np->link_status = 0;
  940. netif_carrier_off(dev);
  941. }
  942. }
  943. /* UpdateStats statistics registers */
  944. if (int_status & UpdateStats) {
  945. get_stats (dev);
  946. }
  947. /* PCI Error, a catastronphic error related to the bus interface
  948. occurs, set GlobalReset and HostReset to reset. */
  949. if (int_status & HostError) {
  950. printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
  951. dev->name, int_status);
  952. dw16(ASICCtrl + 2, GlobalReset | HostReset);
  953. mdelay (500);
  954. rio_set_led_mode(dev);
  955. }
  956. }
  957. static struct net_device_stats *
  958. get_stats (struct net_device *dev)
  959. {
  960. struct netdev_private *np = netdev_priv(dev);
  961. void __iomem *ioaddr = np->ioaddr;
  962. #ifdef MEM_MAPPING
  963. int i;
  964. #endif
  965. unsigned int stat_reg;
  966. /* All statistics registers need to be acknowledged,
  967. else statistic overflow could cause problems */
  968. dev->stats.rx_packets += dr32(FramesRcvOk);
  969. dev->stats.tx_packets += dr32(FramesXmtOk);
  970. dev->stats.rx_bytes += dr32(OctetRcvOk);
  971. dev->stats.tx_bytes += dr32(OctetXmtOk);
  972. dev->stats.multicast = dr32(McstFramesRcvdOk);
  973. dev->stats.collisions += dr32(SingleColFrames)
  974. + dr32(MultiColFrames);
  975. /* detailed tx errors */
  976. stat_reg = dr16(FramesAbortXSColls);
  977. dev->stats.tx_aborted_errors += stat_reg;
  978. dev->stats.tx_errors += stat_reg;
  979. stat_reg = dr16(CarrierSenseErrors);
  980. dev->stats.tx_carrier_errors += stat_reg;
  981. dev->stats.tx_errors += stat_reg;
  982. /* Clear all other statistic register. */
  983. dr32(McstOctetXmtOk);
  984. dr16(BcstFramesXmtdOk);
  985. dr32(McstFramesXmtdOk);
  986. dr16(BcstFramesRcvdOk);
  987. dr16(MacControlFramesRcvd);
  988. dr16(FrameTooLongErrors);
  989. dr16(InRangeLengthErrors);
  990. dr16(FramesCheckSeqErrors);
  991. dr16(FramesLostRxErrors);
  992. dr32(McstOctetXmtOk);
  993. dr32(BcstOctetXmtOk);
  994. dr32(McstFramesXmtdOk);
  995. dr32(FramesWDeferredXmt);
  996. dr32(LateCollisions);
  997. dr16(BcstFramesXmtdOk);
  998. dr16(MacControlFramesXmtd);
  999. dr16(FramesWEXDeferal);
  1000. #ifdef MEM_MAPPING
  1001. for (i = 0x100; i <= 0x150; i += 4)
  1002. dr32(i);
  1003. #endif
  1004. dr16(TxJumboFrames);
  1005. dr16(RxJumboFrames);
  1006. dr16(TCPCheckSumErrors);
  1007. dr16(UDPCheckSumErrors);
  1008. dr16(IPCheckSumErrors);
  1009. return &dev->stats;
  1010. }
  1011. static int
  1012. clear_stats (struct net_device *dev)
  1013. {
  1014. struct netdev_private *np = netdev_priv(dev);
  1015. void __iomem *ioaddr = np->ioaddr;
  1016. #ifdef MEM_MAPPING
  1017. int i;
  1018. #endif
  1019. /* All statistics registers need to be acknowledged,
  1020. else statistic overflow could cause problems */
  1021. dr32(FramesRcvOk);
  1022. dr32(FramesXmtOk);
  1023. dr32(OctetRcvOk);
  1024. dr32(OctetXmtOk);
  1025. dr32(McstFramesRcvdOk);
  1026. dr32(SingleColFrames);
  1027. dr32(MultiColFrames);
  1028. dr32(LateCollisions);
  1029. /* detailed rx errors */
  1030. dr16(FrameTooLongErrors);
  1031. dr16(InRangeLengthErrors);
  1032. dr16(FramesCheckSeqErrors);
  1033. dr16(FramesLostRxErrors);
  1034. /* detailed tx errors */
  1035. dr16(FramesAbortXSColls);
  1036. dr16(CarrierSenseErrors);
  1037. /* Clear all other statistic register. */
  1038. dr32(McstOctetXmtOk);
  1039. dr16(BcstFramesXmtdOk);
  1040. dr32(McstFramesXmtdOk);
  1041. dr16(BcstFramesRcvdOk);
  1042. dr16(MacControlFramesRcvd);
  1043. dr32(McstOctetXmtOk);
  1044. dr32(BcstOctetXmtOk);
  1045. dr32(McstFramesXmtdOk);
  1046. dr32(FramesWDeferredXmt);
  1047. dr16(BcstFramesXmtdOk);
  1048. dr16(MacControlFramesXmtd);
  1049. dr16(FramesWEXDeferal);
  1050. #ifdef MEM_MAPPING
  1051. for (i = 0x100; i <= 0x150; i += 4)
  1052. dr32(i);
  1053. #endif
  1054. dr16(TxJumboFrames);
  1055. dr16(RxJumboFrames);
  1056. dr16(TCPCheckSumErrors);
  1057. dr16(UDPCheckSumErrors);
  1058. dr16(IPCheckSumErrors);
  1059. return 0;
  1060. }
  1061. static void
  1062. set_multicast (struct net_device *dev)
  1063. {
  1064. struct netdev_private *np = netdev_priv(dev);
  1065. void __iomem *ioaddr = np->ioaddr;
  1066. u32 hash_table[2];
  1067. u16 rx_mode = 0;
  1068. hash_table[0] = hash_table[1] = 0;
  1069. /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
  1070. hash_table[1] |= 0x02000000;
  1071. if (dev->flags & IFF_PROMISC) {
  1072. /* Receive all frames promiscuously. */
  1073. rx_mode = ReceiveAllFrames;
  1074. } else if ((dev->flags & IFF_ALLMULTI) ||
  1075. (netdev_mc_count(dev) > multicast_filter_limit)) {
  1076. /* Receive broadcast and multicast frames */
  1077. rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
  1078. } else if (!netdev_mc_empty(dev)) {
  1079. struct netdev_hw_addr *ha;
  1080. /* Receive broadcast frames and multicast frames filtering
  1081. by Hashtable */
  1082. rx_mode =
  1083. ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
  1084. netdev_for_each_mc_addr(ha, dev) {
  1085. int bit, index = 0;
  1086. int crc = ether_crc_le(ETH_ALEN, ha->addr);
  1087. /* The inverted high significant 6 bits of CRC are
  1088. used as an index to hashtable */
  1089. for (bit = 0; bit < 6; bit++)
  1090. if (crc & (1 << (31 - bit)))
  1091. index |= (1 << bit);
  1092. hash_table[index / 32] |= (1 << (index % 32));
  1093. }
  1094. } else {
  1095. rx_mode = ReceiveBroadcast | ReceiveUnicast;
  1096. }
  1097. if (np->vlan) {
  1098. /* ReceiveVLANMatch field in ReceiveMode */
  1099. rx_mode |= ReceiveVLANMatch;
  1100. }
  1101. dw32(HashTable0, hash_table[0]);
  1102. dw32(HashTable1, hash_table[1]);
  1103. dw16(ReceiveMode, rx_mode);
  1104. }
  1105. static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1106. {
  1107. struct netdev_private *np = netdev_priv(dev);
  1108. strlcpy(info->driver, "dl2k", sizeof(info->driver));
  1109. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  1110. strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
  1111. }
  1112. static int rio_get_link_ksettings(struct net_device *dev,
  1113. struct ethtool_link_ksettings *cmd)
  1114. {
  1115. struct netdev_private *np = netdev_priv(dev);
  1116. u32 supported, advertising;
  1117. if (np->phy_media) {
  1118. /* fiber device */
  1119. supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
  1120. advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
  1121. cmd->base.port = PORT_FIBRE;
  1122. } else {
  1123. /* copper device */
  1124. supported = SUPPORTED_10baseT_Half |
  1125. SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
  1126. | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
  1127. SUPPORTED_Autoneg | SUPPORTED_MII;
  1128. advertising = ADVERTISED_10baseT_Half |
  1129. ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
  1130. ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
  1131. ADVERTISED_Autoneg | ADVERTISED_MII;
  1132. cmd->base.port = PORT_MII;
  1133. }
  1134. if (np->link_status) {
  1135. cmd->base.speed = np->speed;
  1136. cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
  1137. } else {
  1138. cmd->base.speed = SPEED_UNKNOWN;
  1139. cmd->base.duplex = DUPLEX_UNKNOWN;
  1140. }
  1141. if (np->an_enable)
  1142. cmd->base.autoneg = AUTONEG_ENABLE;
  1143. else
  1144. cmd->base.autoneg = AUTONEG_DISABLE;
  1145. cmd->base.phy_address = np->phy_addr;
  1146. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  1147. supported);
  1148. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  1149. advertising);
  1150. return 0;
  1151. }
  1152. static int rio_set_link_ksettings(struct net_device *dev,
  1153. const struct ethtool_link_ksettings *cmd)
  1154. {
  1155. struct netdev_private *np = netdev_priv(dev);
  1156. u32 speed = cmd->base.speed;
  1157. u8 duplex = cmd->base.duplex;
  1158. netif_carrier_off(dev);
  1159. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  1160. if (np->an_enable) {
  1161. return 0;
  1162. } else {
  1163. np->an_enable = 1;
  1164. mii_set_media(dev);
  1165. return 0;
  1166. }
  1167. } else {
  1168. np->an_enable = 0;
  1169. if (np->speed == 1000) {
  1170. speed = SPEED_100;
  1171. duplex = DUPLEX_FULL;
  1172. printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
  1173. }
  1174. switch (speed) {
  1175. case SPEED_10:
  1176. np->speed = 10;
  1177. np->full_duplex = (duplex == DUPLEX_FULL);
  1178. break;
  1179. case SPEED_100:
  1180. np->speed = 100;
  1181. np->full_duplex = (duplex == DUPLEX_FULL);
  1182. break;
  1183. case SPEED_1000: /* not supported */
  1184. default:
  1185. return -EINVAL;
  1186. }
  1187. mii_set_media(dev);
  1188. }
  1189. return 0;
  1190. }
  1191. static u32 rio_get_link(struct net_device *dev)
  1192. {
  1193. struct netdev_private *np = netdev_priv(dev);
  1194. return np->link_status;
  1195. }
  1196. static const struct ethtool_ops ethtool_ops = {
  1197. .get_drvinfo = rio_get_drvinfo,
  1198. .get_link = rio_get_link,
  1199. .get_link_ksettings = rio_get_link_ksettings,
  1200. .set_link_ksettings = rio_set_link_ksettings,
  1201. };
  1202. static int
  1203. rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
  1204. {
  1205. int phy_addr;
  1206. struct netdev_private *np = netdev_priv(dev);
  1207. struct mii_ioctl_data *miidata = if_mii(rq);
  1208. phy_addr = np->phy_addr;
  1209. switch (cmd) {
  1210. case SIOCGMIIPHY:
  1211. miidata->phy_id = phy_addr;
  1212. break;
  1213. case SIOCGMIIREG:
  1214. miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
  1215. break;
  1216. case SIOCSMIIREG:
  1217. if (!capable(CAP_NET_ADMIN))
  1218. return -EPERM;
  1219. mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
  1220. break;
  1221. default:
  1222. return -EOPNOTSUPP;
  1223. }
  1224. return 0;
  1225. }
  1226. #define EEP_READ 0x0200
  1227. #define EEP_BUSY 0x8000
  1228. /* Read the EEPROM word */
  1229. /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
  1230. static int read_eeprom(struct netdev_private *np, int eep_addr)
  1231. {
  1232. void __iomem *ioaddr = np->eeprom_addr;
  1233. int i = 1000;
  1234. dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
  1235. while (i-- > 0) {
  1236. if (!(dr16(EepromCtrl) & EEP_BUSY))
  1237. return dr16(EepromData);
  1238. }
  1239. return 0;
  1240. }
  1241. enum phy_ctrl_bits {
  1242. MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
  1243. MII_DUPLEX = 0x08,
  1244. };
  1245. #define mii_delay() dr8(PhyCtrl)
  1246. static void
  1247. mii_sendbit (struct net_device *dev, u32 data)
  1248. {
  1249. struct netdev_private *np = netdev_priv(dev);
  1250. void __iomem *ioaddr = np->ioaddr;
  1251. data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
  1252. dw8(PhyCtrl, data);
  1253. mii_delay ();
  1254. dw8(PhyCtrl, data | MII_CLK);
  1255. mii_delay ();
  1256. }
  1257. static int
  1258. mii_getbit (struct net_device *dev)
  1259. {
  1260. struct netdev_private *np = netdev_priv(dev);
  1261. void __iomem *ioaddr = np->ioaddr;
  1262. u8 data;
  1263. data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
  1264. dw8(PhyCtrl, data);
  1265. mii_delay ();
  1266. dw8(PhyCtrl, data | MII_CLK);
  1267. mii_delay ();
  1268. return (dr8(PhyCtrl) >> 1) & 1;
  1269. }
  1270. static void
  1271. mii_send_bits (struct net_device *dev, u32 data, int len)
  1272. {
  1273. int i;
  1274. for (i = len - 1; i >= 0; i--) {
  1275. mii_sendbit (dev, data & (1 << i));
  1276. }
  1277. }
  1278. static int
  1279. mii_read (struct net_device *dev, int phy_addr, int reg_num)
  1280. {
  1281. u32 cmd;
  1282. int i;
  1283. u32 retval = 0;
  1284. /* Preamble */
  1285. mii_send_bits (dev, 0xffffffff, 32);
  1286. /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
  1287. /* ST,OP = 0110'b for read operation */
  1288. cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
  1289. mii_send_bits (dev, cmd, 14);
  1290. /* Turnaround */
  1291. if (mii_getbit (dev))
  1292. goto err_out;
  1293. /* Read data */
  1294. for (i = 0; i < 16; i++) {
  1295. retval |= mii_getbit (dev);
  1296. retval <<= 1;
  1297. }
  1298. /* End cycle */
  1299. mii_getbit (dev);
  1300. return (retval >> 1) & 0xffff;
  1301. err_out:
  1302. return 0;
  1303. }
  1304. static int
  1305. mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
  1306. {
  1307. u32 cmd;
  1308. /* Preamble */
  1309. mii_send_bits (dev, 0xffffffff, 32);
  1310. /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
  1311. /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
  1312. cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
  1313. mii_send_bits (dev, cmd, 32);
  1314. /* End cycle */
  1315. mii_getbit (dev);
  1316. return 0;
  1317. }
  1318. static int
  1319. mii_wait_link (struct net_device *dev, int wait)
  1320. {
  1321. __u16 bmsr;
  1322. int phy_addr;
  1323. struct netdev_private *np;
  1324. np = netdev_priv(dev);
  1325. phy_addr = np->phy_addr;
  1326. do {
  1327. bmsr = mii_read (dev, phy_addr, MII_BMSR);
  1328. if (bmsr & BMSR_LSTATUS)
  1329. return 0;
  1330. mdelay (1);
  1331. } while (--wait > 0);
  1332. return -1;
  1333. }
  1334. static int
  1335. mii_get_media (struct net_device *dev)
  1336. {
  1337. __u16 negotiate;
  1338. __u16 bmsr;
  1339. __u16 mscr;
  1340. __u16 mssr;
  1341. int phy_addr;
  1342. struct netdev_private *np;
  1343. np = netdev_priv(dev);
  1344. phy_addr = np->phy_addr;
  1345. bmsr = mii_read (dev, phy_addr, MII_BMSR);
  1346. if (np->an_enable) {
  1347. if (!(bmsr & BMSR_ANEGCOMPLETE)) {
  1348. /* Auto-Negotiation not completed */
  1349. return -1;
  1350. }
  1351. negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
  1352. mii_read (dev, phy_addr, MII_LPA);
  1353. mscr = mii_read (dev, phy_addr, MII_CTRL1000);
  1354. mssr = mii_read (dev, phy_addr, MII_STAT1000);
  1355. if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
  1356. np->speed = 1000;
  1357. np->full_duplex = 1;
  1358. printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
  1359. } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
  1360. np->speed = 1000;
  1361. np->full_duplex = 0;
  1362. printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
  1363. } else if (negotiate & ADVERTISE_100FULL) {
  1364. np->speed = 100;
  1365. np->full_duplex = 1;
  1366. printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
  1367. } else if (negotiate & ADVERTISE_100HALF) {
  1368. np->speed = 100;
  1369. np->full_duplex = 0;
  1370. printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
  1371. } else if (negotiate & ADVERTISE_10FULL) {
  1372. np->speed = 10;
  1373. np->full_duplex = 1;
  1374. printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
  1375. } else if (negotiate & ADVERTISE_10HALF) {
  1376. np->speed = 10;
  1377. np->full_duplex = 0;
  1378. printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
  1379. }
  1380. if (negotiate & ADVERTISE_PAUSE_CAP) {
  1381. np->tx_flow &= 1;
  1382. np->rx_flow &= 1;
  1383. } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
  1384. np->tx_flow = 0;
  1385. np->rx_flow &= 1;
  1386. }
  1387. /* else tx_flow, rx_flow = user select */
  1388. } else {
  1389. __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
  1390. switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
  1391. case BMCR_SPEED1000:
  1392. printk (KERN_INFO "Operating at 1000 Mbps, ");
  1393. break;
  1394. case BMCR_SPEED100:
  1395. printk (KERN_INFO "Operating at 100 Mbps, ");
  1396. break;
  1397. case 0:
  1398. printk (KERN_INFO "Operating at 10 Mbps, ");
  1399. }
  1400. if (bmcr & BMCR_FULLDPLX) {
  1401. printk (KERN_CONT "Full duplex\n");
  1402. } else {
  1403. printk (KERN_CONT "Half duplex\n");
  1404. }
  1405. }
  1406. if (np->tx_flow)
  1407. printk(KERN_INFO "Enable Tx Flow Control\n");
  1408. else
  1409. printk(KERN_INFO "Disable Tx Flow Control\n");
  1410. if (np->rx_flow)
  1411. printk(KERN_INFO "Enable Rx Flow Control\n");
  1412. else
  1413. printk(KERN_INFO "Disable Rx Flow Control\n");
  1414. return 0;
  1415. }
  1416. static int
  1417. mii_set_media (struct net_device *dev)
  1418. {
  1419. __u16 pscr;
  1420. __u16 bmcr;
  1421. __u16 bmsr;
  1422. __u16 anar;
  1423. int phy_addr;
  1424. struct netdev_private *np;
  1425. np = netdev_priv(dev);
  1426. phy_addr = np->phy_addr;
  1427. /* Does user set speed? */
  1428. if (np->an_enable) {
  1429. /* Advertise capabilities */
  1430. bmsr = mii_read (dev, phy_addr, MII_BMSR);
  1431. anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
  1432. ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
  1433. ADVERTISE_100HALF | ADVERTISE_10HALF |
  1434. ADVERTISE_100BASE4);
  1435. if (bmsr & BMSR_100FULL)
  1436. anar |= ADVERTISE_100FULL;
  1437. if (bmsr & BMSR_100HALF)
  1438. anar |= ADVERTISE_100HALF;
  1439. if (bmsr & BMSR_100BASE4)
  1440. anar |= ADVERTISE_100BASE4;
  1441. if (bmsr & BMSR_10FULL)
  1442. anar |= ADVERTISE_10FULL;
  1443. if (bmsr & BMSR_10HALF)
  1444. anar |= ADVERTISE_10HALF;
  1445. anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1446. mii_write (dev, phy_addr, MII_ADVERTISE, anar);
  1447. /* Enable Auto crossover */
  1448. pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
  1449. pscr |= 3 << 5; /* 11'b */
  1450. mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
  1451. /* Soft reset PHY */
  1452. mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
  1453. bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
  1454. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1455. mdelay(1);
  1456. } else {
  1457. /* Force speed setting */
  1458. /* 1) Disable Auto crossover */
  1459. pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
  1460. pscr &= ~(3 << 5);
  1461. mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
  1462. /* 2) PHY Reset */
  1463. bmcr = mii_read (dev, phy_addr, MII_BMCR);
  1464. bmcr |= BMCR_RESET;
  1465. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1466. /* 3) Power Down */
  1467. bmcr = 0x1940; /* must be 0x1940 */
  1468. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1469. mdelay (100); /* wait a certain time */
  1470. /* 4) Advertise nothing */
  1471. mii_write (dev, phy_addr, MII_ADVERTISE, 0);
  1472. /* 5) Set media and Power Up */
  1473. bmcr = BMCR_PDOWN;
  1474. if (np->speed == 100) {
  1475. bmcr |= BMCR_SPEED100;
  1476. printk (KERN_INFO "Manual 100 Mbps, ");
  1477. } else if (np->speed == 10) {
  1478. printk (KERN_INFO "Manual 10 Mbps, ");
  1479. }
  1480. if (np->full_duplex) {
  1481. bmcr |= BMCR_FULLDPLX;
  1482. printk (KERN_CONT "Full duplex\n");
  1483. } else {
  1484. printk (KERN_CONT "Half duplex\n");
  1485. }
  1486. #if 0
  1487. /* Set 1000BaseT Master/Slave setting */
  1488. mscr = mii_read (dev, phy_addr, MII_CTRL1000);
  1489. mscr |= MII_MSCR_CFG_ENABLE;
  1490. mscr &= ~MII_MSCR_CFG_VALUE = 0;
  1491. #endif
  1492. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1493. mdelay(10);
  1494. }
  1495. return 0;
  1496. }
  1497. static int
  1498. mii_get_media_pcs (struct net_device *dev)
  1499. {
  1500. __u16 negotiate;
  1501. __u16 bmsr;
  1502. int phy_addr;
  1503. struct netdev_private *np;
  1504. np = netdev_priv(dev);
  1505. phy_addr = np->phy_addr;
  1506. bmsr = mii_read (dev, phy_addr, PCS_BMSR);
  1507. if (np->an_enable) {
  1508. if (!(bmsr & BMSR_ANEGCOMPLETE)) {
  1509. /* Auto-Negotiation not completed */
  1510. return -1;
  1511. }
  1512. negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
  1513. mii_read (dev, phy_addr, PCS_ANLPAR);
  1514. np->speed = 1000;
  1515. if (negotiate & PCS_ANAR_FULL_DUPLEX) {
  1516. printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
  1517. np->full_duplex = 1;
  1518. } else {
  1519. printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
  1520. np->full_duplex = 0;
  1521. }
  1522. if (negotiate & PCS_ANAR_PAUSE) {
  1523. np->tx_flow &= 1;
  1524. np->rx_flow &= 1;
  1525. } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
  1526. np->tx_flow = 0;
  1527. np->rx_flow &= 1;
  1528. }
  1529. /* else tx_flow, rx_flow = user select */
  1530. } else {
  1531. __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
  1532. printk (KERN_INFO "Operating at 1000 Mbps, ");
  1533. if (bmcr & BMCR_FULLDPLX) {
  1534. printk (KERN_CONT "Full duplex\n");
  1535. } else {
  1536. printk (KERN_CONT "Half duplex\n");
  1537. }
  1538. }
  1539. if (np->tx_flow)
  1540. printk(KERN_INFO "Enable Tx Flow Control\n");
  1541. else
  1542. printk(KERN_INFO "Disable Tx Flow Control\n");
  1543. if (np->rx_flow)
  1544. printk(KERN_INFO "Enable Rx Flow Control\n");
  1545. else
  1546. printk(KERN_INFO "Disable Rx Flow Control\n");
  1547. return 0;
  1548. }
  1549. static int
  1550. mii_set_media_pcs (struct net_device *dev)
  1551. {
  1552. __u16 bmcr;
  1553. __u16 esr;
  1554. __u16 anar;
  1555. int phy_addr;
  1556. struct netdev_private *np;
  1557. np = netdev_priv(dev);
  1558. phy_addr = np->phy_addr;
  1559. /* Auto-Negotiation? */
  1560. if (np->an_enable) {
  1561. /* Advertise capabilities */
  1562. esr = mii_read (dev, phy_addr, PCS_ESR);
  1563. anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
  1564. ~PCS_ANAR_HALF_DUPLEX &
  1565. ~PCS_ANAR_FULL_DUPLEX;
  1566. if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
  1567. anar |= PCS_ANAR_HALF_DUPLEX;
  1568. if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
  1569. anar |= PCS_ANAR_FULL_DUPLEX;
  1570. anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
  1571. mii_write (dev, phy_addr, MII_ADVERTISE, anar);
  1572. /* Soft reset PHY */
  1573. mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
  1574. bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
  1575. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1576. mdelay(1);
  1577. } else {
  1578. /* Force speed setting */
  1579. /* PHY Reset */
  1580. bmcr = BMCR_RESET;
  1581. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1582. mdelay(10);
  1583. if (np->full_duplex) {
  1584. bmcr = BMCR_FULLDPLX;
  1585. printk (KERN_INFO "Manual full duplex\n");
  1586. } else {
  1587. bmcr = 0;
  1588. printk (KERN_INFO "Manual half duplex\n");
  1589. }
  1590. mii_write (dev, phy_addr, MII_BMCR, bmcr);
  1591. mdelay(10);
  1592. /* Advertise nothing */
  1593. mii_write (dev, phy_addr, MII_ADVERTISE, 0);
  1594. }
  1595. return 0;
  1596. }
  1597. static int
  1598. rio_close (struct net_device *dev)
  1599. {
  1600. struct netdev_private *np = netdev_priv(dev);
  1601. struct pci_dev *pdev = np->pdev;
  1602. netif_stop_queue (dev);
  1603. rio_hw_stop(dev);
  1604. free_irq(pdev->irq, dev);
  1605. del_timer_sync (&np->timer);
  1606. free_list(dev);
  1607. return 0;
  1608. }
  1609. static void
  1610. rio_remove1 (struct pci_dev *pdev)
  1611. {
  1612. struct net_device *dev = pci_get_drvdata (pdev);
  1613. if (dev) {
  1614. struct netdev_private *np = netdev_priv(dev);
  1615. unregister_netdev (dev);
  1616. pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
  1617. np->rx_ring_dma);
  1618. pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
  1619. np->tx_ring_dma);
  1620. #ifdef MEM_MAPPING
  1621. pci_iounmap(pdev, np->ioaddr);
  1622. #endif
  1623. pci_iounmap(pdev, np->eeprom_addr);
  1624. free_netdev (dev);
  1625. pci_release_regions (pdev);
  1626. pci_disable_device (pdev);
  1627. }
  1628. }
  1629. #ifdef CONFIG_PM_SLEEP
  1630. static int rio_suspend(struct device *device)
  1631. {
  1632. struct net_device *dev = dev_get_drvdata(device);
  1633. struct netdev_private *np = netdev_priv(dev);
  1634. if (!netif_running(dev))
  1635. return 0;
  1636. netif_device_detach(dev);
  1637. del_timer_sync(&np->timer);
  1638. rio_hw_stop(dev);
  1639. return 0;
  1640. }
  1641. static int rio_resume(struct device *device)
  1642. {
  1643. struct net_device *dev = dev_get_drvdata(device);
  1644. struct netdev_private *np = netdev_priv(dev);
  1645. if (!netif_running(dev))
  1646. return 0;
  1647. rio_reset_ring(np);
  1648. rio_hw_init(dev);
  1649. np->timer.expires = jiffies + 1 * HZ;
  1650. add_timer(&np->timer);
  1651. netif_device_attach(dev);
  1652. dl2k_enable_int(np);
  1653. return 0;
  1654. }
  1655. static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
  1656. #define RIO_PM_OPS (&rio_pm_ops)
  1657. #else
  1658. #define RIO_PM_OPS NULL
  1659. #endif /* CONFIG_PM_SLEEP */
  1660. static struct pci_driver rio_driver = {
  1661. .name = "dl2k",
  1662. .id_table = rio_pci_tbl,
  1663. .probe = rio_probe1,
  1664. .remove = rio_remove1,
  1665. .driver.pm = RIO_PM_OPS,
  1666. };
  1667. module_pci_driver(rio_driver);
  1668. /*
  1669. Compile command:
  1670. gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
  1671. Read Documentation/networking/dl2k.txt for details.
  1672. */