aspeed-smc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. /*
  2. * ASPEED Static Memory Controller driver
  3. *
  4. * Copyright (c) 2015-2016, IBM Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/bug.h>
  12. #include <linux/device.h>
  13. #include <linux/io.h>
  14. #include <linux/module.h>
  15. #include <linux/mutex.h>
  16. #include <linux/mtd/mtd.h>
  17. #include <linux/mtd/partitions.h>
  18. #include <linux/mtd/spi-nor.h>
  19. #include <linux/of.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/sizes.h>
  22. #include <linux/sysfs.h>
  23. #define DEVICE_NAME "aspeed-smc"
  24. /*
  25. * The driver only support SPI flash
  26. */
  27. enum aspeed_smc_flash_type {
  28. smc_type_nor = 0,
  29. smc_type_nand = 1,
  30. smc_type_spi = 2,
  31. };
  32. struct aspeed_smc_chip;
  33. struct aspeed_smc_info {
  34. u32 maxsize; /* maximum size of chip window */
  35. u8 nce; /* number of chip enables */
  36. bool hastype; /* flash type field exists in config reg */
  37. u8 we0; /* shift for write enable bit for CE0 */
  38. u8 ctl0; /* offset in regs of ctl for CE0 */
  39. void (*set_4b)(struct aspeed_smc_chip *chip);
  40. };
  41. static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
  42. static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
  43. static const struct aspeed_smc_info fmc_2400_info = {
  44. .maxsize = 64 * 1024 * 1024,
  45. .nce = 5,
  46. .hastype = true,
  47. .we0 = 16,
  48. .ctl0 = 0x10,
  49. .set_4b = aspeed_smc_chip_set_4b,
  50. };
  51. static const struct aspeed_smc_info spi_2400_info = {
  52. .maxsize = 64 * 1024 * 1024,
  53. .nce = 1,
  54. .hastype = false,
  55. .we0 = 0,
  56. .ctl0 = 0x04,
  57. .set_4b = aspeed_smc_chip_set_4b_spi_2400,
  58. };
  59. static const struct aspeed_smc_info fmc_2500_info = {
  60. .maxsize = 256 * 1024 * 1024,
  61. .nce = 3,
  62. .hastype = true,
  63. .we0 = 16,
  64. .ctl0 = 0x10,
  65. .set_4b = aspeed_smc_chip_set_4b,
  66. };
  67. static const struct aspeed_smc_info spi_2500_info = {
  68. .maxsize = 128 * 1024 * 1024,
  69. .nce = 2,
  70. .hastype = false,
  71. .we0 = 16,
  72. .ctl0 = 0x10,
  73. .set_4b = aspeed_smc_chip_set_4b,
  74. };
  75. enum aspeed_smc_ctl_reg_value {
  76. smc_base, /* base value without mode for other commands */
  77. smc_read, /* command reg for (maybe fast) reads */
  78. smc_write, /* command reg for writes */
  79. smc_max,
  80. };
  81. struct aspeed_smc_controller;
  82. struct aspeed_smc_chip {
  83. int cs;
  84. struct aspeed_smc_controller *controller;
  85. void __iomem *ctl; /* control register */
  86. void __iomem *ahb_base; /* base of chip window */
  87. u32 ahb_window_size; /* chip mapping window size */
  88. u32 ctl_val[smc_max]; /* control settings */
  89. enum aspeed_smc_flash_type type; /* what type of flash */
  90. struct spi_nor nor;
  91. };
  92. struct aspeed_smc_controller {
  93. struct device *dev;
  94. struct mutex mutex; /* controller access mutex */
  95. const struct aspeed_smc_info *info; /* type info of controller */
  96. void __iomem *regs; /* controller registers */
  97. void __iomem *ahb_base; /* per-chip windows resource */
  98. u32 ahb_window_size; /* full mapping window size */
  99. struct aspeed_smc_chip *chips[0]; /* pointers to attached chips */
  100. };
  101. /*
  102. * SPI Flash Configuration Register (AST2500 SPI)
  103. * or
  104. * Type setting Register (AST2500 FMC).
  105. * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
  106. * driver does not support it.
  107. */
  108. #define CONFIG_REG 0x0
  109. #define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */
  110. #define CONFIG_CE2_WRITE BIT(18)
  111. #define CONFIG_CE1_WRITE BIT(17)
  112. #define CONFIG_CE0_WRITE BIT(16)
  113. #define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */
  114. #define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */
  115. #define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */
  116. /*
  117. * CE Control Register
  118. */
  119. #define CE_CONTROL_REG 0x4
  120. /*
  121. * CEx Control Register
  122. */
  123. #define CONTROL_AAF_MODE BIT(31)
  124. #define CONTROL_IO_MODE_MASK GENMASK(30, 28)
  125. #define CONTROL_IO_DUAL_DATA BIT(29)
  126. #define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28))
  127. #define CONTROL_IO_QUAD_DATA BIT(30)
  128. #define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28))
  129. #define CONTROL_CE_INACTIVE_SHIFT 24
  130. #define CONTROL_CE_INACTIVE_MASK GENMASK(27, \
  131. CONTROL_CE_INACTIVE_SHIFT)
  132. /* 0 = 16T ... 15 = 1T T=HCLK */
  133. #define CONTROL_COMMAND_SHIFT 16
  134. #define CONTROL_DUMMY_COMMAND_OUT BIT(15)
  135. #define CONTROL_IO_DUMMY_HI BIT(14)
  136. #define CONTROL_IO_DUMMY_HI_SHIFT 14
  137. #define CONTROL_CLK_DIV4 BIT(13) /* others */
  138. #define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */
  139. #define CONTROL_RW_MERGE BIT(12)
  140. #define CONTROL_IO_DUMMY_LO_SHIFT 6
  141. #define CONTROL_IO_DUMMY_LO GENMASK(7, \
  142. CONTROL_IO_DUMMY_LO_SHIFT)
  143. #define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \
  144. CONTROL_IO_DUMMY_LO)
  145. #define CONTROL_IO_DUMMY_SET(dummy) \
  146. (((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
  147. (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
  148. #define CONTROL_CLOCK_FREQ_SEL_SHIFT 8
  149. #define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \
  150. CONTROL_CLOCK_FREQ_SEL_SHIFT)
  151. #define CONTROL_LSB_FIRST BIT(5)
  152. #define CONTROL_CLOCK_MODE_3 BIT(4)
  153. #define CONTROL_IN_DUAL_DATA BIT(3)
  154. #define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2)
  155. #define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0)
  156. #define CONTROL_COMMAND_MODE_NORMAL 0
  157. #define CONTROL_COMMAND_MODE_FREAD 1
  158. #define CONTROL_COMMAND_MODE_WRITE 2
  159. #define CONTROL_COMMAND_MODE_USER 3
  160. #define CONTROL_KEEP_MASK \
  161. (CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
  162. CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
  163. /*
  164. * The Segment Register uses a 8MB unit to encode the start address
  165. * and the end address of the mapping window of a flash SPI slave :
  166. *
  167. * | byte 1 | byte 2 | byte 3 | byte 4 |
  168. * +--------+--------+--------+--------+
  169. * | end | start | 0 | 0 |
  170. */
  171. #define SEGMENT_ADDR_REG0 0x30
  172. #define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23)
  173. #define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23)
  174. #define SEGMENT_ADDR_VALUE(start, end) \
  175. (((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
  176. #define SEGMENT_ADDR_REG(controller, cs) \
  177. ((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
  178. /*
  179. * In user mode all data bytes read or written to the chip decode address
  180. * range are transferred to or from the SPI bus. The range is treated as a
  181. * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
  182. * to its size. The address within the multiple 8kB range is ignored when
  183. * sending bytes to the SPI bus.
  184. *
  185. * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
  186. * memcpy_toio on little endian targets use the optimized memcpy routines
  187. * that were designed for well behavied memory storage. These routines
  188. * have a stutter if the source and destination are not both word aligned,
  189. * once with a duplicate access to the source after aligning to the
  190. * destination to a word boundary, and again with a duplicate access to
  191. * the source when the final byte count is not word aligned.
  192. *
  193. * When writing or reading the fifo this stutter discards data or sends
  194. * too much data to the fifo and can not be used by this driver.
  195. *
  196. * While the low level io string routines that implement the insl family do
  197. * the desired accesses and memory increments, the cross architecture io
  198. * macros make them essentially impossible to use on a memory mapped address
  199. * instead of a a token from the call to iomap of an io port.
  200. *
  201. * These fifo routines use readl and friends to a constant io port and update
  202. * the memory buffer pointer and count via explicit code. The final updates
  203. * to len are optimistically suppressed.
  204. */
  205. static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
  206. {
  207. size_t offset = 0;
  208. if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
  209. IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
  210. ioread32_rep(src, buf, len >> 2);
  211. offset = len & ~0x3;
  212. len -= offset;
  213. }
  214. ioread8_rep(src, (u8 *)buf + offset, len);
  215. return 0;
  216. }
  217. static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
  218. size_t len)
  219. {
  220. size_t offset = 0;
  221. if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
  222. IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
  223. iowrite32_rep(dst, buf, len >> 2);
  224. offset = len & ~0x3;
  225. len -= offset;
  226. }
  227. iowrite8_rep(dst, (const u8 *)buf + offset, len);
  228. return 0;
  229. }
  230. static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
  231. {
  232. return BIT(chip->controller->info->we0 + chip->cs);
  233. }
  234. static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
  235. {
  236. struct aspeed_smc_controller *controller = chip->controller;
  237. u32 reg;
  238. reg = readl(controller->regs + CONFIG_REG);
  239. if (reg & aspeed_smc_chip_write_bit(chip))
  240. return;
  241. dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
  242. controller->regs + CONFIG_REG, reg);
  243. reg |= aspeed_smc_chip_write_bit(chip);
  244. writel(reg, controller->regs + CONFIG_REG);
  245. }
  246. static void aspeed_smc_start_user(struct spi_nor *nor)
  247. {
  248. struct aspeed_smc_chip *chip = nor->priv;
  249. u32 ctl = chip->ctl_val[smc_base];
  250. /*
  251. * When the chip is controlled in user mode, we need write
  252. * access to send the opcodes to it. So check the config.
  253. */
  254. aspeed_smc_chip_check_config(chip);
  255. ctl |= CONTROL_COMMAND_MODE_USER |
  256. CONTROL_CE_STOP_ACTIVE_CONTROL;
  257. writel(ctl, chip->ctl);
  258. ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
  259. writel(ctl, chip->ctl);
  260. }
  261. static void aspeed_smc_stop_user(struct spi_nor *nor)
  262. {
  263. struct aspeed_smc_chip *chip = nor->priv;
  264. u32 ctl = chip->ctl_val[smc_read];
  265. u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
  266. CONTROL_CE_STOP_ACTIVE_CONTROL;
  267. writel(ctl2, chip->ctl); /* stop user CE control */
  268. writel(ctl, chip->ctl); /* default to fread or read mode */
  269. }
  270. static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  271. {
  272. struct aspeed_smc_chip *chip = nor->priv;
  273. mutex_lock(&chip->controller->mutex);
  274. return 0;
  275. }
  276. static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  277. {
  278. struct aspeed_smc_chip *chip = nor->priv;
  279. mutex_unlock(&chip->controller->mutex);
  280. }
  281. static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  282. {
  283. struct aspeed_smc_chip *chip = nor->priv;
  284. aspeed_smc_start_user(nor);
  285. aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
  286. aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
  287. aspeed_smc_stop_user(nor);
  288. return 0;
  289. }
  290. static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
  291. int len)
  292. {
  293. struct aspeed_smc_chip *chip = nor->priv;
  294. aspeed_smc_start_user(nor);
  295. aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
  296. aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
  297. aspeed_smc_stop_user(nor);
  298. return 0;
  299. }
  300. static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
  301. {
  302. struct aspeed_smc_chip *chip = nor->priv;
  303. __be32 temp;
  304. u32 cmdaddr;
  305. switch (nor->addr_width) {
  306. default:
  307. WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
  308. nor->addr_width);
  309. /* FALLTHROUGH */
  310. case 3:
  311. cmdaddr = addr & 0xFFFFFF;
  312. cmdaddr |= cmd << 24;
  313. temp = cpu_to_be32(cmdaddr);
  314. aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
  315. break;
  316. case 4:
  317. temp = cpu_to_be32(addr);
  318. aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
  319. aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
  320. break;
  321. }
  322. }
  323. static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
  324. size_t len, u_char *read_buf)
  325. {
  326. struct aspeed_smc_chip *chip = nor->priv;
  327. int i;
  328. u8 dummy = 0xFF;
  329. aspeed_smc_start_user(nor);
  330. aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
  331. for (i = 0; i < chip->nor.read_dummy / 8; i++)
  332. aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
  333. aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
  334. aspeed_smc_stop_user(nor);
  335. return len;
  336. }
  337. static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
  338. size_t len, const u_char *write_buf)
  339. {
  340. struct aspeed_smc_chip *chip = nor->priv;
  341. aspeed_smc_start_user(nor);
  342. aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
  343. aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
  344. aspeed_smc_stop_user(nor);
  345. return len;
  346. }
  347. static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
  348. {
  349. struct aspeed_smc_chip *chip;
  350. int n;
  351. for (n = 0; n < controller->info->nce; n++) {
  352. chip = controller->chips[n];
  353. if (chip)
  354. mtd_device_unregister(&chip->nor.mtd);
  355. }
  356. return 0;
  357. }
  358. static int aspeed_smc_remove(struct platform_device *dev)
  359. {
  360. return aspeed_smc_unregister(platform_get_drvdata(dev));
  361. }
  362. static const struct of_device_id aspeed_smc_matches[] = {
  363. { .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
  364. { .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
  365. { .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
  366. { .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
  367. { }
  368. };
  369. MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
  370. /*
  371. * Each chip has a mapping window defined by a segment address
  372. * register defining a start and an end address on the AHB bus. These
  373. * addresses can be configured to fit the chip size and offer a
  374. * contiguous memory region across chips. For the moment, we only
  375. * check that each chip segment is valid.
  376. */
  377. static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
  378. struct resource *res)
  379. {
  380. struct aspeed_smc_controller *controller = chip->controller;
  381. u32 offset = 0;
  382. u32 reg;
  383. if (controller->info->nce > 1) {
  384. reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
  385. if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
  386. return NULL;
  387. offset = SEGMENT_ADDR_START(reg) - res->start;
  388. }
  389. return controller->ahb_base + offset;
  390. }
  391. static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
  392. {
  393. u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
  394. return SEGMENT_ADDR_START(seg0_val);
  395. }
  396. static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
  397. u32 size)
  398. {
  399. struct aspeed_smc_controller *controller = chip->controller;
  400. void __iomem *seg_reg;
  401. u32 seg_oldval, seg_newval, ahb_base_phy, end;
  402. ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
  403. seg_reg = SEGMENT_ADDR_REG(controller, cs);
  404. seg_oldval = readl(seg_reg);
  405. /*
  406. * If the chip size is not specified, use the default segment
  407. * size, but take into account the possible overlap with the
  408. * previous segment
  409. */
  410. if (!size)
  411. size = SEGMENT_ADDR_END(seg_oldval) - start;
  412. /*
  413. * The segment cannot exceed the maximum window size of the
  414. * controller.
  415. */
  416. if (start + size > ahb_base_phy + controller->ahb_window_size) {
  417. size = ahb_base_phy + controller->ahb_window_size - start;
  418. dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
  419. cs, size >> 20);
  420. }
  421. end = start + size;
  422. seg_newval = SEGMENT_ADDR_VALUE(start, end);
  423. writel(seg_newval, seg_reg);
  424. /*
  425. * Restore default value if something goes wrong. The chip
  426. * might have set some bogus value and we would loose access
  427. * to the chip.
  428. */
  429. if (seg_newval != readl(seg_reg)) {
  430. dev_err(chip->nor.dev, "CE%d window invalid", cs);
  431. writel(seg_oldval, seg_reg);
  432. start = SEGMENT_ADDR_START(seg_oldval);
  433. end = SEGMENT_ADDR_END(seg_oldval);
  434. size = end - start;
  435. }
  436. dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
  437. cs, start, end, size >> 20);
  438. return size;
  439. }
  440. /*
  441. * The segment register defines the mapping window on the AHB bus and
  442. * it needs to be configured depending on the chip size. The segment
  443. * register of the following CE also needs to be tuned in order to
  444. * provide a contiguous window across multiple chips.
  445. *
  446. * This is expected to be called in increasing CE order
  447. */
  448. static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
  449. {
  450. struct aspeed_smc_controller *controller = chip->controller;
  451. u32 ahb_base_phy, start;
  452. u32 size = chip->nor.mtd.size;
  453. /*
  454. * Each controller has a chip size limit for direct memory
  455. * access
  456. */
  457. if (size > controller->info->maxsize)
  458. size = controller->info->maxsize;
  459. /*
  460. * The AST2400 SPI controller only handles one chip and does
  461. * not have segment registers. Let's use the chip size for the
  462. * AHB window.
  463. */
  464. if (controller->info == &spi_2400_info)
  465. goto out;
  466. /*
  467. * The AST2500 SPI controller has a HW bug when the CE0 chip
  468. * size reaches 128MB. Enforce a size limit of 120MB to
  469. * prevent the controller from using bogus settings in the
  470. * segment register.
  471. */
  472. if (chip->cs == 0 && controller->info == &spi_2500_info &&
  473. size == SZ_128M) {
  474. size = 120 << 20;
  475. dev_info(chip->nor.dev,
  476. "CE%d window resized to %dMB (AST2500 HW quirk)",
  477. chip->cs, size >> 20);
  478. }
  479. ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
  480. /*
  481. * As a start address for the current segment, use the default
  482. * start address if we are handling CE0 or use the previous
  483. * segment ending address
  484. */
  485. if (chip->cs) {
  486. u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
  487. start = SEGMENT_ADDR_END(prev);
  488. } else {
  489. start = ahb_base_phy;
  490. }
  491. size = chip_set_segment(chip, chip->cs, start, size);
  492. /* Update chip base address on the AHB bus */
  493. chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
  494. /*
  495. * Now, make sure the next segment does not overlap with the
  496. * current one we just configured, even if there is no
  497. * available chip. That could break access in Command Mode.
  498. */
  499. if (chip->cs < controller->info->nce - 1)
  500. chip_set_segment(chip, chip->cs + 1, start + size, 0);
  501. out:
  502. if (size < chip->nor.mtd.size)
  503. dev_warn(chip->nor.dev,
  504. "CE%d window too small for chip %dMB",
  505. chip->cs, (u32)chip->nor.mtd.size >> 20);
  506. return size;
  507. }
  508. static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
  509. {
  510. struct aspeed_smc_controller *controller = chip->controller;
  511. u32 reg;
  512. reg = readl(controller->regs + CONFIG_REG);
  513. reg |= aspeed_smc_chip_write_bit(chip);
  514. writel(reg, controller->regs + CONFIG_REG);
  515. }
  516. static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
  517. {
  518. struct aspeed_smc_controller *controller = chip->controller;
  519. u32 reg;
  520. chip->type = type;
  521. reg = readl(controller->regs + CONFIG_REG);
  522. reg &= ~(3 << (chip->cs * 2));
  523. reg |= chip->type << (chip->cs * 2);
  524. writel(reg, controller->regs + CONFIG_REG);
  525. }
  526. /*
  527. * The first chip of the AST2500 FMC flash controller is strapped by
  528. * hardware, or autodetected, but other chips need to be set. Enforce
  529. * the 4B setting for all chips.
  530. */
  531. static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
  532. {
  533. struct aspeed_smc_controller *controller = chip->controller;
  534. u32 reg;
  535. reg = readl(controller->regs + CE_CONTROL_REG);
  536. reg |= 1 << chip->cs;
  537. writel(reg, controller->regs + CE_CONTROL_REG);
  538. }
  539. /*
  540. * The AST2400 SPI flash controller does not have a CE Control
  541. * register. It uses the CE0 control register to set 4Byte mode at the
  542. * controller level.
  543. */
  544. static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
  545. {
  546. chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
  547. chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
  548. }
  549. static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
  550. struct resource *res)
  551. {
  552. struct aspeed_smc_controller *controller = chip->controller;
  553. const struct aspeed_smc_info *info = controller->info;
  554. u32 reg, base_reg;
  555. /*
  556. * Always turn on the write enable bit to allow opcodes to be
  557. * sent in user mode.
  558. */
  559. aspeed_smc_chip_enable_write(chip);
  560. /* The driver only supports SPI type flash */
  561. if (info->hastype)
  562. aspeed_smc_chip_set_type(chip, smc_type_spi);
  563. /*
  564. * Configure chip base address in memory
  565. */
  566. chip->ahb_base = aspeed_smc_chip_base(chip, res);
  567. if (!chip->ahb_base) {
  568. dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
  569. return -EINVAL;
  570. }
  571. /*
  572. * Get value of the inherited control register. U-Boot usually
  573. * does some timing calibration on the FMC chip, so it's good
  574. * to keep them. In the future, we should handle calibration
  575. * from Linux.
  576. */
  577. reg = readl(chip->ctl);
  578. dev_dbg(controller->dev, "control register: %08x\n", reg);
  579. base_reg = reg & CONTROL_KEEP_MASK;
  580. if (base_reg != reg) {
  581. dev_dbg(controller->dev,
  582. "control register changed to: %08x\n",
  583. base_reg);
  584. }
  585. chip->ctl_val[smc_base] = base_reg;
  586. /*
  587. * Retain the prior value of the control register as the
  588. * default if it was normal access mode. Otherwise start with
  589. * the sanitized base value set to read mode.
  590. */
  591. if ((reg & CONTROL_COMMAND_MODE_MASK) ==
  592. CONTROL_COMMAND_MODE_NORMAL)
  593. chip->ctl_val[smc_read] = reg;
  594. else
  595. chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
  596. CONTROL_COMMAND_MODE_NORMAL;
  597. dev_dbg(controller->dev, "default control register: %08x\n",
  598. chip->ctl_val[smc_read]);
  599. return 0;
  600. }
  601. static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
  602. {
  603. struct aspeed_smc_controller *controller = chip->controller;
  604. const struct aspeed_smc_info *info = controller->info;
  605. u32 cmd;
  606. if (chip->nor.addr_width == 4 && info->set_4b)
  607. info->set_4b(chip);
  608. /* This is for direct AHB access when using Command Mode. */
  609. chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
  610. /*
  611. * base mode has not been optimized yet. use it for writes.
  612. */
  613. chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
  614. chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
  615. CONTROL_COMMAND_MODE_WRITE;
  616. dev_dbg(controller->dev, "write control register: %08x\n",
  617. chip->ctl_val[smc_write]);
  618. /*
  619. * TODO: Adjust clocks if fast read is supported and interpret
  620. * SPI-NOR flags to adjust controller settings.
  621. */
  622. if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
  623. if (chip->nor.read_dummy == 0)
  624. cmd = CONTROL_COMMAND_MODE_NORMAL;
  625. else
  626. cmd = CONTROL_COMMAND_MODE_FREAD;
  627. } else {
  628. dev_err(chip->nor.dev, "unsupported SPI read mode\n");
  629. return -EINVAL;
  630. }
  631. chip->ctl_val[smc_read] |= cmd |
  632. CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
  633. dev_dbg(controller->dev, "base control register: %08x\n",
  634. chip->ctl_val[smc_read]);
  635. return 0;
  636. }
  637. static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
  638. struct device_node *np, struct resource *r)
  639. {
  640. const struct spi_nor_hwcaps hwcaps = {
  641. .mask = SNOR_HWCAPS_READ |
  642. SNOR_HWCAPS_READ_FAST |
  643. SNOR_HWCAPS_PP,
  644. };
  645. const struct aspeed_smc_info *info = controller->info;
  646. struct device *dev = controller->dev;
  647. struct device_node *child;
  648. unsigned int cs;
  649. int ret = -ENODEV;
  650. for_each_available_child_of_node(np, child) {
  651. struct aspeed_smc_chip *chip;
  652. struct spi_nor *nor;
  653. struct mtd_info *mtd;
  654. /* This driver does not support NAND or NOR flash devices. */
  655. if (!of_device_is_compatible(child, "jedec,spi-nor"))
  656. continue;
  657. ret = of_property_read_u32(child, "reg", &cs);
  658. if (ret) {
  659. dev_err(dev, "Couldn't not read chip select.\n");
  660. break;
  661. }
  662. if (cs >= info->nce) {
  663. dev_err(dev, "Chip select %d out of range.\n",
  664. cs);
  665. ret = -ERANGE;
  666. break;
  667. }
  668. if (controller->chips[cs]) {
  669. dev_err(dev, "Chip select %d already in use by %s\n",
  670. cs, dev_name(controller->chips[cs]->nor.dev));
  671. ret = -EBUSY;
  672. break;
  673. }
  674. chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
  675. if (!chip) {
  676. ret = -ENOMEM;
  677. break;
  678. }
  679. chip->controller = controller;
  680. chip->ctl = controller->regs + info->ctl0 + cs * 4;
  681. chip->cs = cs;
  682. nor = &chip->nor;
  683. mtd = &nor->mtd;
  684. nor->dev = dev;
  685. nor->priv = chip;
  686. spi_nor_set_flash_node(nor, child);
  687. nor->read = aspeed_smc_read_user;
  688. nor->write = aspeed_smc_write_user;
  689. nor->read_reg = aspeed_smc_read_reg;
  690. nor->write_reg = aspeed_smc_write_reg;
  691. nor->prepare = aspeed_smc_prep;
  692. nor->unprepare = aspeed_smc_unprep;
  693. ret = aspeed_smc_chip_setup_init(chip, r);
  694. if (ret)
  695. break;
  696. /*
  697. * TODO: Add support for Dual and Quad SPI protocols
  698. * attach when board support is present as determined
  699. * by of property.
  700. */
  701. ret = spi_nor_scan(nor, NULL, &hwcaps);
  702. if (ret)
  703. break;
  704. ret = aspeed_smc_chip_setup_finish(chip);
  705. if (ret)
  706. break;
  707. ret = mtd_device_register(mtd, NULL, 0);
  708. if (ret)
  709. break;
  710. controller->chips[cs] = chip;
  711. }
  712. if (ret)
  713. aspeed_smc_unregister(controller);
  714. return ret;
  715. }
  716. static int aspeed_smc_probe(struct platform_device *pdev)
  717. {
  718. struct device_node *np = pdev->dev.of_node;
  719. struct device *dev = &pdev->dev;
  720. struct aspeed_smc_controller *controller;
  721. const struct of_device_id *match;
  722. const struct aspeed_smc_info *info;
  723. struct resource *res;
  724. int ret;
  725. match = of_match_device(aspeed_smc_matches, &pdev->dev);
  726. if (!match || !match->data)
  727. return -ENODEV;
  728. info = match->data;
  729. controller = devm_kzalloc(&pdev->dev,
  730. struct_size(controller, chips, info->nce),
  731. GFP_KERNEL);
  732. if (!controller)
  733. return -ENOMEM;
  734. controller->info = info;
  735. controller->dev = dev;
  736. mutex_init(&controller->mutex);
  737. platform_set_drvdata(pdev, controller);
  738. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  739. controller->regs = devm_ioremap_resource(dev, res);
  740. if (IS_ERR(controller->regs))
  741. return PTR_ERR(controller->regs);
  742. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  743. controller->ahb_base = devm_ioremap_resource(dev, res);
  744. if (IS_ERR(controller->ahb_base))
  745. return PTR_ERR(controller->ahb_base);
  746. controller->ahb_window_size = resource_size(res);
  747. ret = aspeed_smc_setup_flash(controller, np, res);
  748. if (ret)
  749. dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
  750. return ret;
  751. }
  752. static struct platform_driver aspeed_smc_driver = {
  753. .probe = aspeed_smc_probe,
  754. .remove = aspeed_smc_remove,
  755. .driver = {
  756. .name = DEVICE_NAME,
  757. .of_match_table = aspeed_smc_matches,
  758. }
  759. };
  760. module_platform_driver(aspeed_smc_driver);
  761. MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
  762. MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
  763. MODULE_LICENSE("GPL v2");