dm-verity-fec.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817
  1. /*
  2. * Copyright (C) 2015 Google, Inc.
  3. *
  4. * Author: Sami Tolvanen <samitolvanen@google.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. */
  11. #include "dm-verity-fec.h"
  12. #include <linux/math64.h>
  13. #define DM_MSG_PREFIX "verity-fec"
  14. /*
  15. * If error correction has been configured, returns true.
  16. */
  17. bool verity_fec_is_enabled(struct dm_verity *v)
  18. {
  19. return v->fec && v->fec->dev;
  20. }
  21. /*
  22. * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
  23. * length fields.
  24. */
  25. static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
  26. {
  27. return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
  28. }
  29. /*
  30. * Return an interleaved offset for a byte in RS block.
  31. */
  32. static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
  33. {
  34. u32 mod;
  35. mod = do_div(offset, v->fec->rsn);
  36. return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
  37. }
  38. /*
  39. * Decode an RS block using Reed-Solomon.
  40. */
  41. static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
  42. u8 *data, u8 *fec, int neras)
  43. {
  44. int i;
  45. uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
  46. for (i = 0; i < v->fec->roots; i++)
  47. par[i] = fec[i];
  48. return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
  49. fio->erasures, 0, NULL);
  50. }
  51. /*
  52. * Read error-correcting codes for the requested RS block. Returns a pointer
  53. * to the data block. Caller is responsible for releasing buf.
  54. */
  55. static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
  56. unsigned *offset, struct dm_buffer **buf)
  57. {
  58. u64 position, block;
  59. u8 *res;
  60. position = (index + rsb) * v->fec->roots;
  61. block = position >> v->data_dev_block_bits;
  62. *offset = (unsigned)(position - (block << v->data_dev_block_bits));
  63. res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
  64. if (unlikely(IS_ERR(res))) {
  65. DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
  66. v->data_dev->name, (unsigned long long)rsb,
  67. (unsigned long long)(v->fec->start + block),
  68. PTR_ERR(res));
  69. *buf = NULL;
  70. }
  71. return res;
  72. }
  73. /* Loop over each preallocated buffer slot. */
  74. #define fec_for_each_prealloc_buffer(__i) \
  75. for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
  76. /* Loop over each extra buffer slot. */
  77. #define fec_for_each_extra_buffer(io, __i) \
  78. for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
  79. /* Loop over each allocated buffer. */
  80. #define fec_for_each_buffer(io, __i) \
  81. for (__i = 0; __i < (io)->nbufs; __i++)
  82. /* Loop over each RS block in each allocated buffer. */
  83. #define fec_for_each_buffer_rs_block(io, __i, __j) \
  84. fec_for_each_buffer(io, __i) \
  85. for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
  86. /*
  87. * Return a pointer to the current RS block when called inside
  88. * fec_for_each_buffer_rs_block.
  89. */
  90. static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
  91. struct dm_verity_fec_io *fio,
  92. unsigned i, unsigned j)
  93. {
  94. return &fio->bufs[i][j * v->fec->rsn];
  95. }
  96. /*
  97. * Return an index to the current RS block when called inside
  98. * fec_for_each_buffer_rs_block.
  99. */
  100. static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
  101. {
  102. return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
  103. }
  104. /*
  105. * Decode all RS blocks from buffers and copy corrected bytes into fio->output
  106. * starting from block_offset.
  107. */
  108. static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
  109. u64 rsb, int byte_index, unsigned block_offset,
  110. int neras)
  111. {
  112. int r, corrected = 0, res;
  113. struct dm_buffer *buf;
  114. unsigned n, i, offset;
  115. u8 *par, *block;
  116. par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
  117. if (IS_ERR(par))
  118. return PTR_ERR(par);
  119. /*
  120. * Decode the RS blocks we have in bufs. Each RS block results in
  121. * one corrected target byte and consumes fec->roots parity bytes.
  122. */
  123. fec_for_each_buffer_rs_block(fio, n, i) {
  124. block = fec_buffer_rs_block(v, fio, n, i);
  125. res = fec_decode_rs8(v, fio, block, &par[offset], neras);
  126. if (res < 0) {
  127. r = res;
  128. goto error;
  129. }
  130. corrected += res;
  131. fio->output[block_offset] = block[byte_index];
  132. block_offset++;
  133. if (block_offset >= 1 << v->data_dev_block_bits)
  134. goto done;
  135. /* read the next block when we run out of parity bytes */
  136. offset += v->fec->roots;
  137. if (offset >= 1 << v->data_dev_block_bits) {
  138. dm_bufio_release(buf);
  139. par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
  140. if (unlikely(IS_ERR(par)))
  141. return PTR_ERR(par);
  142. }
  143. }
  144. done:
  145. r = corrected;
  146. error:
  147. dm_bufio_release(buf);
  148. if (r < 0 && neras)
  149. DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
  150. v->data_dev->name, (unsigned long long)rsb, r);
  151. else if (r > 0)
  152. DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
  153. v->data_dev->name, (unsigned long long)rsb, r);
  154. return r;
  155. }
  156. /*
  157. * Locate data block erasures using verity hashes.
  158. */
  159. static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
  160. u8 *want_digest, u8 *data)
  161. {
  162. if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
  163. data, 1 << v->data_dev_block_bits,
  164. verity_io_real_digest(v, io))))
  165. return 0;
  166. return memcmp(verity_io_real_digest(v, io), want_digest,
  167. v->digest_size) != 0;
  168. }
  169. /*
  170. * Read data blocks that are part of the RS block and deinterleave as much as
  171. * fits into buffers. Check for erasure locations if @neras is non-NULL.
  172. */
  173. static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
  174. u64 rsb, u64 target, unsigned block_offset,
  175. int *neras)
  176. {
  177. bool is_zero;
  178. int i, j, target_index = -1;
  179. struct dm_buffer *buf;
  180. struct dm_bufio_client *bufio;
  181. struct dm_verity_fec_io *fio = fec_io(io);
  182. u64 block, ileaved;
  183. u8 *bbuf, *rs_block;
  184. u8 want_digest[v->digest_size];
  185. unsigned n, k;
  186. if (neras)
  187. *neras = 0;
  188. /*
  189. * read each of the rsn data blocks that are part of the RS block, and
  190. * interleave contents to available bufs
  191. */
  192. for (i = 0; i < v->fec->rsn; i++) {
  193. ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
  194. /*
  195. * target is the data block we want to correct, target_index is
  196. * the index of this block within the rsn RS blocks
  197. */
  198. if (ileaved == target)
  199. target_index = i;
  200. block = ileaved >> v->data_dev_block_bits;
  201. bufio = v->fec->data_bufio;
  202. if (block >= v->data_blocks) {
  203. block -= v->data_blocks;
  204. /*
  205. * blocks outside the area were assumed to contain
  206. * zeros when encoding data was generated
  207. */
  208. if (unlikely(block >= v->fec->hash_blocks))
  209. continue;
  210. block += v->hash_start;
  211. bufio = v->bufio;
  212. }
  213. bbuf = dm_bufio_read(bufio, block, &buf);
  214. if (unlikely(IS_ERR(bbuf))) {
  215. DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
  216. v->data_dev->name,
  217. (unsigned long long)rsb,
  218. (unsigned long long)block, PTR_ERR(bbuf));
  219. /* assume the block is corrupted */
  220. if (neras && *neras <= v->fec->roots)
  221. fio->erasures[(*neras)++] = i;
  222. continue;
  223. }
  224. /* locate erasures if the block is on the data device */
  225. if (bufio == v->fec->data_bufio &&
  226. verity_hash_for_block(v, io, block, want_digest,
  227. &is_zero) == 0) {
  228. /* skip known zero blocks entirely */
  229. if (is_zero)
  230. goto done;
  231. /*
  232. * skip if we have already found the theoretical
  233. * maximum number (i.e. fec->roots) of erasures
  234. */
  235. if (neras && *neras <= v->fec->roots &&
  236. fec_is_erasure(v, io, want_digest, bbuf))
  237. fio->erasures[(*neras)++] = i;
  238. }
  239. /*
  240. * deinterleave and copy the bytes that fit into bufs,
  241. * starting from block_offset
  242. */
  243. fec_for_each_buffer_rs_block(fio, n, j) {
  244. k = fec_buffer_rs_index(n, j) + block_offset;
  245. if (k >= 1 << v->data_dev_block_bits)
  246. goto done;
  247. rs_block = fec_buffer_rs_block(v, fio, n, j);
  248. rs_block[i] = bbuf[k];
  249. }
  250. done:
  251. dm_bufio_release(buf);
  252. }
  253. return target_index;
  254. }
  255. /*
  256. * Allocate RS control structure and FEC buffers from preallocated mempools,
  257. * and attempt to allocate as many extra buffers as available.
  258. */
  259. static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
  260. {
  261. unsigned n;
  262. if (!fio->rs)
  263. fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
  264. fec_for_each_prealloc_buffer(n) {
  265. if (fio->bufs[n])
  266. continue;
  267. fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
  268. if (unlikely(!fio->bufs[n])) {
  269. DMERR("failed to allocate FEC buffer");
  270. return -ENOMEM;
  271. }
  272. }
  273. /* try to allocate the maximum number of buffers */
  274. fec_for_each_extra_buffer(fio, n) {
  275. if (fio->bufs[n])
  276. continue;
  277. fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
  278. /* we can manage with even one buffer if necessary */
  279. if (unlikely(!fio->bufs[n]))
  280. break;
  281. }
  282. fio->nbufs = n;
  283. if (!fio->output)
  284. fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
  285. return 0;
  286. }
  287. /*
  288. * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
  289. * zeroed before deinterleaving.
  290. */
  291. static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
  292. {
  293. unsigned n;
  294. fec_for_each_buffer(fio, n)
  295. memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
  296. memset(fio->erasures, 0, sizeof(fio->erasures));
  297. }
  298. /*
  299. * Decode all RS blocks in a single data block and return the target block
  300. * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
  301. * hashes to locate erasures.
  302. */
  303. static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
  304. struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
  305. bool use_erasures)
  306. {
  307. int r, neras = 0;
  308. unsigned pos;
  309. r = fec_alloc_bufs(v, fio);
  310. if (unlikely(r < 0))
  311. return r;
  312. for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
  313. fec_init_bufs(v, fio);
  314. r = fec_read_bufs(v, io, rsb, offset, pos,
  315. use_erasures ? &neras : NULL);
  316. if (unlikely(r < 0))
  317. return r;
  318. r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
  319. if (r < 0)
  320. return r;
  321. pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
  322. }
  323. /* Always re-validate the corrected block against the expected hash */
  324. r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
  325. 1 << v->data_dev_block_bits,
  326. verity_io_real_digest(v, io));
  327. if (unlikely(r < 0))
  328. return r;
  329. if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
  330. v->digest_size)) {
  331. DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
  332. v->data_dev->name, (unsigned long long)rsb, neras);
  333. return -EILSEQ;
  334. }
  335. return 0;
  336. }
  337. static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
  338. size_t len)
  339. {
  340. struct dm_verity_fec_io *fio = fec_io(io);
  341. memcpy(data, &fio->output[fio->output_pos], len);
  342. fio->output_pos += len;
  343. return 0;
  344. }
  345. /*
  346. * Correct errors in a block. Copies corrected block to dest if non-NULL,
  347. * otherwise to a bio_vec starting from iter.
  348. */
  349. int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
  350. enum verity_block_type type, sector_t block, u8 *dest,
  351. struct bvec_iter *iter)
  352. {
  353. int r;
  354. struct dm_verity_fec_io *fio = fec_io(io);
  355. u64 offset, res, rsb;
  356. if (!verity_fec_is_enabled(v))
  357. return -EOPNOTSUPP;
  358. if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
  359. DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
  360. return -EIO;
  361. }
  362. fio->level++;
  363. if (type == DM_VERITY_BLOCK_TYPE_METADATA)
  364. block += v->data_blocks;
  365. /*
  366. * For RS(M, N), the continuous FEC data is divided into blocks of N
  367. * bytes. Since block size may not be divisible by N, the last block
  368. * is zero padded when decoding.
  369. *
  370. * Each byte of the block is covered by a different RS(M, N) code,
  371. * and each code is interleaved over N blocks to make it less likely
  372. * that bursty corruption will leave us in unrecoverable state.
  373. */
  374. offset = block << v->data_dev_block_bits;
  375. res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
  376. /*
  377. * The base RS block we can feed to the interleaver to find out all
  378. * blocks required for decoding.
  379. */
  380. rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
  381. /*
  382. * Locating erasures is slow, so attempt to recover the block without
  383. * them first. Do a second attempt with erasures if the corruption is
  384. * bad enough.
  385. */
  386. r = fec_decode_rsb(v, io, fio, rsb, offset, false);
  387. if (r < 0) {
  388. r = fec_decode_rsb(v, io, fio, rsb, offset, true);
  389. if (r < 0)
  390. goto done;
  391. }
  392. if (dest)
  393. memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
  394. else if (iter) {
  395. fio->output_pos = 0;
  396. r = verity_for_bv_block(v, io, iter, fec_bv_copy);
  397. }
  398. done:
  399. fio->level--;
  400. return r;
  401. }
  402. /*
  403. * Clean up per-bio data.
  404. */
  405. void verity_fec_finish_io(struct dm_verity_io *io)
  406. {
  407. unsigned n;
  408. struct dm_verity_fec *f = io->v->fec;
  409. struct dm_verity_fec_io *fio = fec_io(io);
  410. if (!verity_fec_is_enabled(io->v))
  411. return;
  412. mempool_free(fio->rs, &f->rs_pool);
  413. fec_for_each_prealloc_buffer(n)
  414. mempool_free(fio->bufs[n], &f->prealloc_pool);
  415. fec_for_each_extra_buffer(fio, n)
  416. mempool_free(fio->bufs[n], &f->extra_pool);
  417. mempool_free(fio->output, &f->output_pool);
  418. }
  419. /*
  420. * Initialize per-bio data.
  421. */
  422. void verity_fec_init_io(struct dm_verity_io *io)
  423. {
  424. struct dm_verity_fec_io *fio = fec_io(io);
  425. if (!verity_fec_is_enabled(io->v))
  426. return;
  427. fio->rs = NULL;
  428. memset(fio->bufs, 0, sizeof(fio->bufs));
  429. fio->nbufs = 0;
  430. fio->output = NULL;
  431. fio->level = 0;
  432. }
  433. /*
  434. * Append feature arguments and values to the status table.
  435. */
  436. unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
  437. char *result, unsigned maxlen)
  438. {
  439. if (!verity_fec_is_enabled(v))
  440. return sz;
  441. DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
  442. DM_VERITY_OPT_FEC_BLOCKS " %llu "
  443. DM_VERITY_OPT_FEC_START " %llu "
  444. DM_VERITY_OPT_FEC_ROOTS " %d",
  445. v->fec->dev->name,
  446. (unsigned long long)v->fec->blocks,
  447. (unsigned long long)v->fec->start,
  448. v->fec->roots);
  449. return sz;
  450. }
  451. void verity_fec_dtr(struct dm_verity *v)
  452. {
  453. struct dm_verity_fec *f = v->fec;
  454. if (!verity_fec_is_enabled(v))
  455. goto out;
  456. mempool_exit(&f->rs_pool);
  457. mempool_exit(&f->prealloc_pool);
  458. mempool_exit(&f->extra_pool);
  459. kmem_cache_destroy(f->cache);
  460. if (f->data_bufio)
  461. dm_bufio_client_destroy(f->data_bufio);
  462. if (f->bufio)
  463. dm_bufio_client_destroy(f->bufio);
  464. if (f->dev)
  465. dm_put_device(v->ti, f->dev);
  466. out:
  467. kfree(f);
  468. v->fec = NULL;
  469. }
  470. static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
  471. {
  472. struct dm_verity *v = (struct dm_verity *)pool_data;
  473. return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
  474. }
  475. static void fec_rs_free(void *element, void *pool_data)
  476. {
  477. struct rs_control *rs = (struct rs_control *)element;
  478. if (rs)
  479. free_rs(rs);
  480. }
  481. bool verity_is_fec_opt_arg(const char *arg_name)
  482. {
  483. return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
  484. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
  485. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
  486. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
  487. }
  488. int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
  489. unsigned *argc, const char *arg_name)
  490. {
  491. int r;
  492. struct dm_target *ti = v->ti;
  493. const char *arg_value;
  494. unsigned long long num_ll;
  495. unsigned char num_c;
  496. char dummy;
  497. if (!*argc) {
  498. ti->error = "FEC feature arguments require a value";
  499. return -EINVAL;
  500. }
  501. arg_value = dm_shift_arg(as);
  502. (*argc)--;
  503. if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
  504. r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
  505. if (r) {
  506. ti->error = "FEC device lookup failed";
  507. return r;
  508. }
  509. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
  510. if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
  511. ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
  512. >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
  513. ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
  514. return -EINVAL;
  515. }
  516. v->fec->blocks = num_ll;
  517. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
  518. if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
  519. ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
  520. (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
  521. ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
  522. return -EINVAL;
  523. }
  524. v->fec->start = num_ll;
  525. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
  526. if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
  527. num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
  528. num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
  529. ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
  530. return -EINVAL;
  531. }
  532. v->fec->roots = num_c;
  533. } else {
  534. ti->error = "Unrecognized verity FEC feature request";
  535. return -EINVAL;
  536. }
  537. return 0;
  538. }
  539. /*
  540. * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
  541. */
  542. int verity_fec_ctr_alloc(struct dm_verity *v)
  543. {
  544. struct dm_verity_fec *f;
  545. f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
  546. if (!f) {
  547. v->ti->error = "Cannot allocate FEC structure";
  548. return -ENOMEM;
  549. }
  550. v->fec = f;
  551. return 0;
  552. }
  553. /*
  554. * Validate arguments and preallocate memory. Must be called after arguments
  555. * have been parsed using verity_fec_parse_opt_args.
  556. */
  557. int verity_fec_ctr(struct dm_verity *v)
  558. {
  559. struct dm_verity_fec *f = v->fec;
  560. struct dm_target *ti = v->ti;
  561. u64 hash_blocks;
  562. int ret;
  563. if (!verity_fec_is_enabled(v)) {
  564. verity_fec_dtr(v);
  565. return 0;
  566. }
  567. /*
  568. * FEC is computed over data blocks, possible metadata, and
  569. * hash blocks. In other words, FEC covers total of fec_blocks
  570. * blocks consisting of the following:
  571. *
  572. * data blocks | hash blocks | metadata (optional)
  573. *
  574. * We allow metadata after hash blocks to support a use case
  575. * where all data is stored on the same device and FEC covers
  576. * the entire area.
  577. *
  578. * If metadata is included, we require it to be available on the
  579. * hash device after the hash blocks.
  580. */
  581. hash_blocks = v->hash_blocks - v->hash_start;
  582. /*
  583. * Require matching block sizes for data and hash devices for
  584. * simplicity.
  585. */
  586. if (v->data_dev_block_bits != v->hash_dev_block_bits) {
  587. ti->error = "Block sizes must match to use FEC";
  588. return -EINVAL;
  589. }
  590. if (!f->roots) {
  591. ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
  592. return -EINVAL;
  593. }
  594. f->rsn = DM_VERITY_FEC_RSM - f->roots;
  595. if (!f->blocks) {
  596. ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
  597. return -EINVAL;
  598. }
  599. f->rounds = f->blocks;
  600. if (sector_div(f->rounds, f->rsn))
  601. f->rounds++;
  602. /*
  603. * Due to optional metadata, f->blocks can be larger than
  604. * data_blocks and hash_blocks combined.
  605. */
  606. if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
  607. ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
  608. return -EINVAL;
  609. }
  610. /*
  611. * Metadata is accessed through the hash device, so we require
  612. * it to be large enough.
  613. */
  614. f->hash_blocks = f->blocks - v->data_blocks;
  615. if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
  616. ti->error = "Hash device is too small for "
  617. DM_VERITY_OPT_FEC_BLOCKS;
  618. return -E2BIG;
  619. }
  620. f->bufio = dm_bufio_client_create(f->dev->bdev,
  621. 1 << v->data_dev_block_bits,
  622. 1, 0, NULL, NULL);
  623. if (IS_ERR(f->bufio)) {
  624. ti->error = "Cannot initialize FEC bufio client";
  625. return PTR_ERR(f->bufio);
  626. }
  627. if (dm_bufio_get_device_size(f->bufio) <
  628. ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
  629. ti->error = "FEC device is too small";
  630. return -E2BIG;
  631. }
  632. f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
  633. 1 << v->data_dev_block_bits,
  634. 1, 0, NULL, NULL);
  635. if (IS_ERR(f->data_bufio)) {
  636. ti->error = "Cannot initialize FEC data bufio client";
  637. return PTR_ERR(f->data_bufio);
  638. }
  639. if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
  640. ti->error = "Data device is too small";
  641. return -E2BIG;
  642. }
  643. /* Preallocate an rs_control structure for each worker thread */
  644. ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
  645. fec_rs_free, (void *) v);
  646. if (ret) {
  647. ti->error = "Cannot allocate RS pool";
  648. return ret;
  649. }
  650. f->cache = kmem_cache_create("dm_verity_fec_buffers",
  651. f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
  652. 0, 0, NULL);
  653. if (!f->cache) {
  654. ti->error = "Cannot create FEC buffer cache";
  655. return -ENOMEM;
  656. }
  657. /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
  658. ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
  659. DM_VERITY_FEC_BUF_PREALLOC,
  660. f->cache);
  661. if (ret) {
  662. ti->error = "Cannot allocate FEC buffer prealloc pool";
  663. return ret;
  664. }
  665. ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
  666. if (ret) {
  667. ti->error = "Cannot allocate FEC buffer extra pool";
  668. return ret;
  669. }
  670. /* Preallocate an output buffer for each thread */
  671. ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
  672. 1 << v->data_dev_block_bits);
  673. if (ret) {
  674. ti->error = "Cannot allocate FEC output pool";
  675. return ret;
  676. }
  677. /* Reserve space for our per-bio data */
  678. ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
  679. return 0;
  680. }