t4.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. * - Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials
  20. * provided with the distribution.
  21. *
  22. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29. * SOFTWARE.
  30. */
  31. #ifndef __T4_H__
  32. #define __T4_H__
  33. #include "t4_hw.h"
  34. #include "t4_regs.h"
  35. #include "t4_values.h"
  36. #include "t4_msg.h"
  37. #include "t4fw_ri_api.h"
  38. #define T4_MAX_NUM_PD 65536
  39. #define T4_MAX_MR_SIZE (~0ULL)
  40. #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
  41. #define T4_STAG_UNSET 0xffffffff
  42. #define T4_FW_MAJ 0
  43. #define PCIE_MA_SYNC_A 0x30b4
  44. struct t4_status_page {
  45. __be32 rsvd1; /* flit 0 - hw owns */
  46. __be16 rsvd2;
  47. __be16 qid;
  48. __be16 cidx;
  49. __be16 pidx;
  50. u8 qp_err; /* flit 1 - sw owns */
  51. u8 db_off;
  52. u8 pad[2];
  53. u16 host_wq_pidx;
  54. u16 host_cidx;
  55. u16 host_pidx;
  56. u16 pad2;
  57. u32 srqidx;
  58. };
  59. #define T4_RQT_ENTRY_SHIFT 6
  60. #define T4_RQT_ENTRY_SIZE BIT(T4_RQT_ENTRY_SHIFT)
  61. #define T4_EQ_ENTRY_SIZE 64
  62. #define T4_SQ_NUM_SLOTS 5
  63. #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  64. #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  65. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  66. #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  67. sizeof(struct fw_ri_immd)))
  68. #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  69. sizeof(struct fw_ri_rdma_write_wr) - \
  70. sizeof(struct fw_ri_immd)))
  71. #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  72. sizeof(struct fw_ri_rdma_write_wr) - \
  73. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  74. #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  75. sizeof(struct fw_ri_immd)) & ~31UL)
  76. #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  77. #define T4_MAX_FR_DSGL 1024
  78. #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  79. static inline int t4_max_fr_depth(int use_dsgl)
  80. {
  81. return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
  82. }
  83. #define T4_RQ_NUM_SLOTS 2
  84. #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  85. #define T4_MAX_RECV_SGE 4
  86. #define T4_WRITE_CMPL_MAX_SGL 4
  87. #define T4_WRITE_CMPL_MAX_CQE 16
  88. union t4_wr {
  89. struct fw_ri_res_wr res;
  90. struct fw_ri_wr ri;
  91. struct fw_ri_rdma_write_wr write;
  92. struct fw_ri_send_wr send;
  93. struct fw_ri_rdma_read_wr read;
  94. struct fw_ri_bind_mw_wr bind;
  95. struct fw_ri_fr_nsmr_wr fr;
  96. struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
  97. struct fw_ri_inv_lstag_wr inv;
  98. struct fw_ri_rdma_write_cmpl_wr write_cmpl;
  99. struct t4_status_page status;
  100. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
  101. };
  102. union t4_recv_wr {
  103. struct fw_ri_recv_wr recv;
  104. struct t4_status_page status;
  105. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
  106. };
  107. static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
  108. enum fw_wr_opcodes opcode, u8 flags, u8 len16)
  109. {
  110. wqe->send.opcode = (u8)opcode;
  111. wqe->send.flags = flags;
  112. wqe->send.wrid = wrid;
  113. wqe->send.r1[0] = 0;
  114. wqe->send.r1[1] = 0;
  115. wqe->send.r1[2] = 0;
  116. wqe->send.len16 = len16;
  117. }
  118. /* CQE/AE status codes */
  119. #define T4_ERR_SUCCESS 0x0
  120. #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
  121. /* STAG is offlimt, being 0, */
  122. /* or STAG_key mismatch */
  123. #define T4_ERR_PDID 0x2 /* PDID mismatch */
  124. #define T4_ERR_QPID 0x3 /* QPID mismatch */
  125. #define T4_ERR_ACCESS 0x4 /* Invalid access right */
  126. #define T4_ERR_WRAP 0x5 /* Wrap error */
  127. #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
  128. #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
  129. /* shared memory region */
  130. #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
  131. /* shared memory region */
  132. #define T4_ERR_ECC 0x9 /* ECC error detected */
  133. #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
  134. /* reading PSTAG for a MW */
  135. /* Invalidate */
  136. #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
  137. /* software error */
  138. #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
  139. #define T4_ERR_CRC 0x10 /* CRC error */
  140. #define T4_ERR_MARKER 0x11 /* Marker error */
  141. #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
  142. #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
  143. #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
  144. #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
  145. #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
  146. #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
  147. #define T4_ERR_MSN 0x18 /* MSN error */
  148. #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
  149. #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
  150. /* or READ_REQ */
  151. #define T4_ERR_MSN_GAP 0x1B
  152. #define T4_ERR_MSN_RANGE 0x1C
  153. #define T4_ERR_IRD_OVERFLOW 0x1D
  154. #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
  155. /* software error */
  156. #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
  157. /* mismatch) */
  158. /*
  159. * CQE defs
  160. */
  161. struct t4_cqe {
  162. __be32 header;
  163. __be32 len;
  164. union {
  165. struct {
  166. __be32 stag;
  167. __be32 msn;
  168. } rcqe;
  169. struct {
  170. __be32 stag;
  171. u16 nada2;
  172. u16 cidx;
  173. } scqe;
  174. struct {
  175. __be32 wrid_hi;
  176. __be32 wrid_low;
  177. } gen;
  178. struct {
  179. __be32 stag;
  180. __be32 msn;
  181. __be32 reserved;
  182. __be32 abs_rqe_idx;
  183. } srcqe;
  184. struct {
  185. __be32 mo;
  186. __be32 msn;
  187. /*
  188. * Use union for immediate data to be consistent with
  189. * stack's 32 bit data and iWARP spec's 64 bit data.
  190. */
  191. union {
  192. struct {
  193. __be32 imm_data32;
  194. u32 reserved;
  195. } ib_imm_data;
  196. __be64 imm_data64;
  197. } iw_imm_data;
  198. } imm_data_rcqe;
  199. u64 drain_cookie;
  200. __be64 flits[3];
  201. } u;
  202. __be64 reserved[3];
  203. __be64 bits_type_ts;
  204. };
  205. /* macros for flit 0 of the cqe */
  206. #define CQE_QPID_S 12
  207. #define CQE_QPID_M 0xFFFFF
  208. #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
  209. #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
  210. #define CQE_SWCQE_S 11
  211. #define CQE_SWCQE_M 0x1
  212. #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
  213. #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
  214. #define CQE_DRAIN_S 10
  215. #define CQE_DRAIN_M 0x1
  216. #define CQE_DRAIN_G(x) ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
  217. #define CQE_DRAIN_V(x) ((x)<<CQE_DRAIN_S)
  218. #define CQE_STATUS_S 5
  219. #define CQE_STATUS_M 0x1F
  220. #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
  221. #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
  222. #define CQE_TYPE_S 4
  223. #define CQE_TYPE_M 0x1
  224. #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
  225. #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
  226. #define CQE_OPCODE_S 0
  227. #define CQE_OPCODE_M 0xF
  228. #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
  229. #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
  230. #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
  231. #define DRAIN_CQE(x) (CQE_DRAIN_G(be32_to_cpu((x)->header)))
  232. #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
  233. #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
  234. #define SQ_TYPE(x) (CQE_TYPE((x)))
  235. #define RQ_TYPE(x) (!CQE_TYPE((x)))
  236. #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
  237. #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
  238. #define CQE_SEND_OPCODE(x)( \
  239. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
  240. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
  241. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
  242. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
  243. #define CQE_LEN(x) (be32_to_cpu((x)->len))
  244. /* used for RQ completion processing */
  245. #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
  246. #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
  247. #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
  248. #define CQE_IMM_DATA(x)( \
  249. (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
  250. /* used for SQ completion processing */
  251. #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
  252. #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
  253. /* generic accessor macros */
  254. #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
  255. #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
  256. #define CQE_DRAIN_COOKIE(x) ((x)->u.drain_cookie)
  257. /* macros for flit 3 of the cqe */
  258. #define CQE_GENBIT_S 63
  259. #define CQE_GENBIT_M 0x1
  260. #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
  261. #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
  262. #define CQE_OVFBIT_S 62
  263. #define CQE_OVFBIT_M 0x1
  264. #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
  265. #define CQE_IQTYPE_S 60
  266. #define CQE_IQTYPE_M 0x3
  267. #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
  268. #define CQE_TS_M 0x0fffffffffffffffULL
  269. #define CQE_TS_G(x) ((x) & CQE_TS_M)
  270. #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
  271. #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
  272. #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
  273. struct t4_swsqe {
  274. u64 wr_id;
  275. struct t4_cqe cqe;
  276. int read_len;
  277. int opcode;
  278. int complete;
  279. int signaled;
  280. u16 idx;
  281. int flushed;
  282. ktime_t host_time;
  283. u64 sge_ts;
  284. };
  285. static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
  286. {
  287. #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  288. return pgprot_writecombine(prot);
  289. #else
  290. return pgprot_noncached(prot);
  291. #endif
  292. }
  293. enum {
  294. T4_SQ_ONCHIP = (1<<0),
  295. };
  296. struct t4_sq {
  297. union t4_wr *queue;
  298. dma_addr_t dma_addr;
  299. DEFINE_DMA_UNMAP_ADDR(mapping);
  300. unsigned long phys_addr;
  301. struct t4_swsqe *sw_sq;
  302. struct t4_swsqe *oldest_read;
  303. void __iomem *bar2_va;
  304. u64 bar2_pa;
  305. size_t memsize;
  306. u32 bar2_qid;
  307. u32 qid;
  308. u16 in_use;
  309. u16 size;
  310. u16 cidx;
  311. u16 pidx;
  312. u16 wq_pidx;
  313. u16 wq_pidx_inc;
  314. u16 flags;
  315. short flush_cidx;
  316. };
  317. struct t4_swrqe {
  318. u64 wr_id;
  319. ktime_t host_time;
  320. u64 sge_ts;
  321. int valid;
  322. };
  323. struct t4_rq {
  324. union t4_recv_wr *queue;
  325. dma_addr_t dma_addr;
  326. DEFINE_DMA_UNMAP_ADDR(mapping);
  327. struct t4_swrqe *sw_rq;
  328. void __iomem *bar2_va;
  329. u64 bar2_pa;
  330. size_t memsize;
  331. u32 bar2_qid;
  332. u32 qid;
  333. u32 msn;
  334. u32 rqt_hwaddr;
  335. u16 rqt_size;
  336. u16 in_use;
  337. u16 size;
  338. u16 cidx;
  339. u16 pidx;
  340. u16 wq_pidx;
  341. u16 wq_pidx_inc;
  342. };
  343. struct t4_wq {
  344. struct t4_sq sq;
  345. struct t4_rq rq;
  346. void __iomem *db;
  347. struct c4iw_rdev *rdev;
  348. int flushed;
  349. u8 *qp_errp;
  350. u32 *srqidxp;
  351. };
  352. struct t4_srq_pending_wr {
  353. u64 wr_id;
  354. union t4_recv_wr wqe;
  355. u8 len16;
  356. };
  357. struct t4_srq {
  358. union t4_recv_wr *queue;
  359. dma_addr_t dma_addr;
  360. DECLARE_PCI_UNMAP_ADDR(mapping);
  361. struct t4_swrqe *sw_rq;
  362. void __iomem *bar2_va;
  363. u64 bar2_pa;
  364. size_t memsize;
  365. u32 bar2_qid;
  366. u32 qid;
  367. u32 msn;
  368. u32 rqt_hwaddr;
  369. u32 rqt_abs_idx;
  370. u16 rqt_size;
  371. u16 size;
  372. u16 cidx;
  373. u16 pidx;
  374. u16 wq_pidx;
  375. u16 wq_pidx_inc;
  376. u16 in_use;
  377. struct t4_srq_pending_wr *pending_wrs;
  378. u16 pending_cidx;
  379. u16 pending_pidx;
  380. u16 pending_in_use;
  381. u16 ooo_count;
  382. };
  383. static inline u32 t4_srq_avail(struct t4_srq *srq)
  384. {
  385. return srq->size - 1 - srq->in_use;
  386. }
  387. static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
  388. {
  389. srq->in_use++;
  390. if (++srq->pidx == srq->size)
  391. srq->pidx = 0;
  392. srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
  393. if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
  394. srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
  395. srq->queue[srq->size].status.host_pidx = srq->pidx;
  396. }
  397. static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
  398. {
  399. srq->pending_in_use++;
  400. srq->in_use++;
  401. if (++srq->pending_pidx == srq->size)
  402. srq->pending_pidx = 0;
  403. }
  404. static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
  405. {
  406. srq->pending_in_use--;
  407. srq->in_use--;
  408. if (++srq->pending_cidx == srq->size)
  409. srq->pending_cidx = 0;
  410. }
  411. static inline void t4_srq_produce_ooo(struct t4_srq *srq)
  412. {
  413. srq->in_use--;
  414. srq->ooo_count++;
  415. }
  416. static inline void t4_srq_consume_ooo(struct t4_srq *srq)
  417. {
  418. srq->cidx++;
  419. if (srq->cidx == srq->size)
  420. srq->cidx = 0;
  421. srq->queue[srq->size].status.host_cidx = srq->cidx;
  422. srq->ooo_count--;
  423. }
  424. static inline void t4_srq_consume(struct t4_srq *srq)
  425. {
  426. srq->in_use--;
  427. if (++srq->cidx == srq->size)
  428. srq->cidx = 0;
  429. srq->queue[srq->size].status.host_cidx = srq->cidx;
  430. }
  431. static inline int t4_rqes_posted(struct t4_wq *wq)
  432. {
  433. return wq->rq.in_use;
  434. }
  435. static inline int t4_rq_empty(struct t4_wq *wq)
  436. {
  437. return wq->rq.in_use == 0;
  438. }
  439. static inline int t4_rq_full(struct t4_wq *wq)
  440. {
  441. return wq->rq.in_use == (wq->rq.size - 1);
  442. }
  443. static inline u32 t4_rq_avail(struct t4_wq *wq)
  444. {
  445. return wq->rq.size - 1 - wq->rq.in_use;
  446. }
  447. static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
  448. {
  449. wq->rq.in_use++;
  450. if (++wq->rq.pidx == wq->rq.size)
  451. wq->rq.pidx = 0;
  452. wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  453. if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
  454. wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
  455. }
  456. static inline void t4_rq_consume(struct t4_wq *wq)
  457. {
  458. wq->rq.in_use--;
  459. if (++wq->rq.cidx == wq->rq.size)
  460. wq->rq.cidx = 0;
  461. }
  462. static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
  463. {
  464. return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
  465. }
  466. static inline u16 t4_rq_wq_size(struct t4_wq *wq)
  467. {
  468. return wq->rq.size * T4_RQ_NUM_SLOTS;
  469. }
  470. static inline int t4_sq_onchip(struct t4_sq *sq)
  471. {
  472. return sq->flags & T4_SQ_ONCHIP;
  473. }
  474. static inline int t4_sq_empty(struct t4_wq *wq)
  475. {
  476. return wq->sq.in_use == 0;
  477. }
  478. static inline int t4_sq_full(struct t4_wq *wq)
  479. {
  480. return wq->sq.in_use == (wq->sq.size - 1);
  481. }
  482. static inline u32 t4_sq_avail(struct t4_wq *wq)
  483. {
  484. return wq->sq.size - 1 - wq->sq.in_use;
  485. }
  486. static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
  487. {
  488. wq->sq.in_use++;
  489. if (++wq->sq.pidx == wq->sq.size)
  490. wq->sq.pidx = 0;
  491. wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  492. if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
  493. wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
  494. }
  495. static inline void t4_sq_consume(struct t4_wq *wq)
  496. {
  497. if (wq->sq.cidx == wq->sq.flush_cidx)
  498. wq->sq.flush_cidx = -1;
  499. wq->sq.in_use--;
  500. if (++wq->sq.cidx == wq->sq.size)
  501. wq->sq.cidx = 0;
  502. }
  503. static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
  504. {
  505. return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
  506. }
  507. static inline u16 t4_sq_wq_size(struct t4_wq *wq)
  508. {
  509. return wq->sq.size * T4_SQ_NUM_SLOTS;
  510. }
  511. /* This function copies 64 byte coalesced work request to memory
  512. * mapped BAR2 space. For coalesced WRs, the SGE fetches data
  513. * from the FIFO instead of from Host.
  514. */
  515. static inline void pio_copy(u64 __iomem *dst, u64 *src)
  516. {
  517. int count = 8;
  518. while (count) {
  519. writeq(*src, dst);
  520. src++;
  521. dst++;
  522. count--;
  523. }
  524. }
  525. static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
  526. union t4_recv_wr *wqe)
  527. {
  528. /* Flush host queue memory writes. */
  529. wmb();
  530. if (inc == 1 && srq->bar2_qid == 0 && wqe) {
  531. pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
  532. __func__, srq->pidx, len16);
  533. pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
  534. } else {
  535. pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
  536. __func__, srq->pidx, len16);
  537. writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
  538. srq->bar2_va + SGE_UDB_KDOORBELL);
  539. }
  540. /* Flush user doorbell area writes. */
  541. wmb();
  542. }
  543. static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
  544. {
  545. /* Flush host queue memory writes. */
  546. wmb();
  547. if (wq->sq.bar2_va) {
  548. if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
  549. pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
  550. pio_copy((u64 __iomem *)
  551. (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
  552. (u64 *)wqe);
  553. } else {
  554. pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
  555. writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
  556. wq->sq.bar2_va + SGE_UDB_KDOORBELL);
  557. }
  558. /* Flush user doorbell area writes. */
  559. wmb();
  560. return;
  561. }
  562. writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
  563. }
  564. static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
  565. union t4_recv_wr *wqe)
  566. {
  567. /* Flush host queue memory writes. */
  568. wmb();
  569. if (wq->rq.bar2_va) {
  570. if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
  571. pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
  572. pio_copy((u64 __iomem *)
  573. (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
  574. (void *)wqe);
  575. } else {
  576. pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
  577. writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
  578. wq->rq.bar2_va + SGE_UDB_KDOORBELL);
  579. }
  580. /* Flush user doorbell area writes. */
  581. wmb();
  582. return;
  583. }
  584. writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
  585. }
  586. static inline int t4_wq_in_error(struct t4_wq *wq)
  587. {
  588. return *wq->qp_errp;
  589. }
  590. static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
  591. {
  592. if (srqidx)
  593. *wq->srqidxp = srqidx;
  594. *wq->qp_errp = 1;
  595. }
  596. static inline void t4_disable_wq_db(struct t4_wq *wq)
  597. {
  598. wq->rq.queue[wq->rq.size].status.db_off = 1;
  599. }
  600. static inline void t4_enable_wq_db(struct t4_wq *wq)
  601. {
  602. wq->rq.queue[wq->rq.size].status.db_off = 0;
  603. }
  604. static inline int t4_wq_db_enabled(struct t4_wq *wq)
  605. {
  606. return !wq->rq.queue[wq->rq.size].status.db_off;
  607. }
  608. enum t4_cq_flags {
  609. CQ_ARMED = 1,
  610. };
  611. struct t4_cq {
  612. struct t4_cqe *queue;
  613. dma_addr_t dma_addr;
  614. DEFINE_DMA_UNMAP_ADDR(mapping);
  615. struct t4_cqe *sw_queue;
  616. void __iomem *gts;
  617. void __iomem *bar2_va;
  618. u64 bar2_pa;
  619. u32 bar2_qid;
  620. struct c4iw_rdev *rdev;
  621. size_t memsize;
  622. __be64 bits_type_ts;
  623. u32 cqid;
  624. u32 qid_mask;
  625. int vector;
  626. u16 size; /* including status page */
  627. u16 cidx;
  628. u16 sw_pidx;
  629. u16 sw_cidx;
  630. u16 sw_in_use;
  631. u16 cidx_inc;
  632. u8 gen;
  633. u8 error;
  634. u8 *qp_errp;
  635. unsigned long flags;
  636. };
  637. static inline void write_gts(struct t4_cq *cq, u32 val)
  638. {
  639. if (cq->bar2_va)
  640. writel(val | INGRESSQID_V(cq->bar2_qid),
  641. cq->bar2_va + SGE_UDB_GTS);
  642. else
  643. writel(val | INGRESSQID_V(cq->cqid), cq->gts);
  644. }
  645. static inline int t4_clear_cq_armed(struct t4_cq *cq)
  646. {
  647. return test_and_clear_bit(CQ_ARMED, &cq->flags);
  648. }
  649. static inline int t4_arm_cq(struct t4_cq *cq, int se)
  650. {
  651. u32 val;
  652. set_bit(CQ_ARMED, &cq->flags);
  653. while (cq->cidx_inc > CIDXINC_M) {
  654. val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
  655. write_gts(cq, val);
  656. cq->cidx_inc -= CIDXINC_M;
  657. }
  658. val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
  659. write_gts(cq, val);
  660. cq->cidx_inc = 0;
  661. return 0;
  662. }
  663. static inline void t4_swcq_produce(struct t4_cq *cq)
  664. {
  665. cq->sw_in_use++;
  666. if (cq->sw_in_use == cq->size) {
  667. pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
  668. __func__, cq->cqid);
  669. cq->error = 1;
  670. cq->sw_in_use--;
  671. return;
  672. }
  673. if (++cq->sw_pidx == cq->size)
  674. cq->sw_pidx = 0;
  675. }
  676. static inline void t4_swcq_consume(struct t4_cq *cq)
  677. {
  678. cq->sw_in_use--;
  679. if (++cq->sw_cidx == cq->size)
  680. cq->sw_cidx = 0;
  681. }
  682. static inline void t4_hwcq_consume(struct t4_cq *cq)
  683. {
  684. cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
  685. if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
  686. u32 val;
  687. val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
  688. write_gts(cq, val);
  689. cq->cidx_inc = 0;
  690. }
  691. if (++cq->cidx == cq->size) {
  692. cq->cidx = 0;
  693. cq->gen ^= 1;
  694. }
  695. }
  696. static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
  697. {
  698. return (CQE_GENBIT(cqe) == cq->gen);
  699. }
  700. static inline int t4_cq_notempty(struct t4_cq *cq)
  701. {
  702. return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
  703. }
  704. static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  705. {
  706. int ret;
  707. u16 prev_cidx;
  708. if (cq->cidx == 0)
  709. prev_cidx = cq->size - 1;
  710. else
  711. prev_cidx = cq->cidx - 1;
  712. if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
  713. ret = -EOVERFLOW;
  714. cq->error = 1;
  715. pr_err("cq overflow cqid %u\n", cq->cqid);
  716. } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
  717. /* Ensure CQE is flushed to memory */
  718. rmb();
  719. *cqe = &cq->queue[cq->cidx];
  720. ret = 0;
  721. } else
  722. ret = -ENODATA;
  723. return ret;
  724. }
  725. static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
  726. {
  727. if (cq->sw_in_use == cq->size) {
  728. pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
  729. __func__, cq->cqid);
  730. cq->error = 1;
  731. return NULL;
  732. }
  733. if (cq->sw_in_use)
  734. return &cq->sw_queue[cq->sw_cidx];
  735. return NULL;
  736. }
  737. static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  738. {
  739. int ret = 0;
  740. if (cq->error)
  741. ret = -ENODATA;
  742. else if (cq->sw_in_use)
  743. *cqe = &cq->sw_queue[cq->sw_cidx];
  744. else
  745. ret = t4_next_hw_cqe(cq, cqe);
  746. return ret;
  747. }
  748. static inline int t4_cq_in_error(struct t4_cq *cq)
  749. {
  750. return *cq->qp_errp;
  751. }
  752. static inline void t4_set_cq_in_error(struct t4_cq *cq)
  753. {
  754. *cq->qp_errp = 1;
  755. }
  756. #endif
  757. struct t4_dev_status_page {
  758. u8 db_off;
  759. u8 write_cmpl_supported;
  760. u16 pad2;
  761. u32 pad3;
  762. u64 qp_start;
  763. u64 qp_size;
  764. u64 cq_start;
  765. u64 cq_size;
  766. };