kfd_mqd_manager_cik.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/printk.h>
  24. #include <linux/slab.h>
  25. #include <linux/mm_types.h>
  26. #include "kfd_priv.h"
  27. #include "kfd_mqd_manager.h"
  28. #include "cik_regs.h"
  29. #include "cik_structs.h"
  30. #include "oss/oss_2_4_sh_mask.h"
  31. static inline struct cik_mqd *get_mqd(void *mqd)
  32. {
  33. return (struct cik_mqd *)mqd;
  34. }
  35. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  36. {
  37. return (struct cik_sdma_rlc_registers *)mqd;
  38. }
  39. static void update_cu_mask(struct mqd_manager *mm, void *mqd,
  40. struct queue_properties *q)
  41. {
  42. struct cik_mqd *m;
  43. uint32_t se_mask[4] = {0}; /* 4 is the max # of SEs */
  44. if (q->cu_mask_count == 0)
  45. return;
  46. mqd_symmetrically_map_cu_mask(mm,
  47. q->cu_mask, q->cu_mask_count, se_mask);
  48. m = get_mqd(mqd);
  49. m->compute_static_thread_mgmt_se0 = se_mask[0];
  50. m->compute_static_thread_mgmt_se1 = se_mask[1];
  51. m->compute_static_thread_mgmt_se2 = se_mask[2];
  52. m->compute_static_thread_mgmt_se3 = se_mask[3];
  53. pr_debug("Update cu mask to %#x %#x %#x %#x\n",
  54. m->compute_static_thread_mgmt_se0,
  55. m->compute_static_thread_mgmt_se1,
  56. m->compute_static_thread_mgmt_se2,
  57. m->compute_static_thread_mgmt_se3);
  58. }
  59. static int init_mqd(struct mqd_manager *mm, void **mqd,
  60. struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
  61. struct queue_properties *q)
  62. {
  63. uint64_t addr;
  64. struct cik_mqd *m;
  65. int retval;
  66. retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
  67. mqd_mem_obj);
  68. if (retval != 0)
  69. return -ENOMEM;
  70. m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
  71. addr = (*mqd_mem_obj)->gpu_addr;
  72. memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
  73. m->header = 0xC0310800;
  74. m->compute_pipelinestat_enable = 1;
  75. m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
  76. m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
  77. m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
  78. m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
  79. /*
  80. * Make sure to use the last queue state saved on mqd when the cp
  81. * reassigns the queue, so when queue is switched on/off (e.g over
  82. * subscription or quantum timeout) the context will be consistent
  83. */
  84. m->cp_hqd_persistent_state =
  85. DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
  86. m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
  87. m->cp_mqd_base_addr_lo = lower_32_bits(addr);
  88. m->cp_mqd_base_addr_hi = upper_32_bits(addr);
  89. m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
  90. QUANTUM_DURATION(10);
  91. /*
  92. * Pipe Priority
  93. * Identifies the pipe relative priority when this queue is connected
  94. * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
  95. * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
  96. * 0 = CS_LOW (typically below GFX)
  97. * 1 = CS_MEDIUM (typically between HP3D and GFX
  98. * 2 = CS_HIGH (typically above HP3D)
  99. */
  100. m->cp_hqd_pipe_priority = 1;
  101. m->cp_hqd_queue_priority = 15;
  102. if (q->format == KFD_QUEUE_FORMAT_AQL)
  103. m->cp_hqd_iq_rptr = AQL_ENABLE;
  104. *mqd = m;
  105. if (gart_addr)
  106. *gart_addr = addr;
  107. retval = mm->update_mqd(mm, m, q);
  108. return retval;
  109. }
  110. static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
  111. struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
  112. struct queue_properties *q)
  113. {
  114. int retval;
  115. struct cik_sdma_rlc_registers *m;
  116. retval = kfd_gtt_sa_allocate(mm->dev,
  117. sizeof(struct cik_sdma_rlc_registers),
  118. mqd_mem_obj);
  119. if (retval != 0)
  120. return -ENOMEM;
  121. m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
  122. memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
  123. *mqd = m;
  124. if (gart_addr)
  125. *gart_addr = (*mqd_mem_obj)->gpu_addr;
  126. retval = mm->update_mqd(mm, m, q);
  127. return retval;
  128. }
  129. static void uninit_mqd(struct mqd_manager *mm, void *mqd,
  130. struct kfd_mem_obj *mqd_mem_obj)
  131. {
  132. kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
  133. }
  134. static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
  135. struct kfd_mem_obj *mqd_mem_obj)
  136. {
  137. kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
  138. }
  139. static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
  140. uint32_t queue_id, struct queue_properties *p,
  141. struct mm_struct *mms)
  142. {
  143. /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
  144. uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
  145. uint32_t wptr_mask = (uint32_t)((p->queue_size / 4) - 1);
  146. return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
  147. (uint32_t __user *)p->write_ptr,
  148. wptr_shift, wptr_mask, mms);
  149. }
  150. static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
  151. uint32_t pipe_id, uint32_t queue_id,
  152. struct queue_properties *p, struct mm_struct *mms)
  153. {
  154. return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
  155. (uint32_t __user *)p->write_ptr,
  156. mms);
  157. }
  158. static int __update_mqd(struct mqd_manager *mm, void *mqd,
  159. struct queue_properties *q, unsigned int atc_bit)
  160. {
  161. struct cik_mqd *m;
  162. m = get_mqd(mqd);
  163. m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
  164. DEFAULT_MIN_AVAIL_SIZE;
  165. m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
  166. if (atc_bit) {
  167. m->cp_hqd_pq_control |= PQ_ATC_EN;
  168. m->cp_hqd_ib_control |= IB_ATC_EN;
  169. }
  170. /*
  171. * Calculating queue size which is log base 2 of actual queue size -1
  172. * dwords and another -1 for ffs
  173. */
  174. m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
  175. m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
  176. m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
  177. m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
  178. m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
  179. m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off);
  180. m->cp_hqd_vmid = q->vmid;
  181. if (q->format == KFD_QUEUE_FORMAT_AQL)
  182. m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
  183. update_cu_mask(mm, mqd, q);
  184. q->is_active = (q->queue_size > 0 &&
  185. q->queue_address != 0 &&
  186. q->queue_percent > 0 &&
  187. !q->is_evicted);
  188. return 0;
  189. }
  190. static int update_mqd(struct mqd_manager *mm, void *mqd,
  191. struct queue_properties *q)
  192. {
  193. return __update_mqd(mm, mqd, q, 1);
  194. }
  195. static int update_mqd_hawaii(struct mqd_manager *mm, void *mqd,
  196. struct queue_properties *q)
  197. {
  198. return __update_mqd(mm, mqd, q, 0);
  199. }
  200. static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
  201. struct queue_properties *q)
  202. {
  203. struct cik_sdma_rlc_registers *m;
  204. m = get_sdma_mqd(mqd);
  205. m->sdma_rlc_rb_cntl = order_base_2(q->queue_size / 4)
  206. << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
  207. q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
  208. 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
  209. 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
  210. m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
  211. m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
  212. m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
  213. m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
  214. m->sdma_rlc_doorbell =
  215. q->doorbell_off << SDMA0_RLC0_DOORBELL__OFFSET__SHIFT;
  216. m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
  217. m->sdma_engine_id = q->sdma_engine_id;
  218. m->sdma_queue_id = q->sdma_queue_id;
  219. q->is_active = (q->queue_size > 0 &&
  220. q->queue_address != 0 &&
  221. q->queue_percent > 0 &&
  222. !q->is_evicted);
  223. return 0;
  224. }
  225. static int destroy_mqd(struct mqd_manager *mm, void *mqd,
  226. enum kfd_preempt_type type,
  227. unsigned int timeout, uint32_t pipe_id,
  228. uint32_t queue_id)
  229. {
  230. return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, mqd, type, timeout,
  231. pipe_id, queue_id);
  232. }
  233. /*
  234. * preempt type here is ignored because there is only one way
  235. * to preempt sdma queue
  236. */
  237. static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
  238. enum kfd_preempt_type type,
  239. unsigned int timeout, uint32_t pipe_id,
  240. uint32_t queue_id)
  241. {
  242. return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
  243. }
  244. static bool is_occupied(struct mqd_manager *mm, void *mqd,
  245. uint64_t queue_address, uint32_t pipe_id,
  246. uint32_t queue_id)
  247. {
  248. return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
  249. pipe_id, queue_id);
  250. }
  251. static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
  252. uint64_t queue_address, uint32_t pipe_id,
  253. uint32_t queue_id)
  254. {
  255. return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
  256. }
  257. /*
  258. * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
  259. * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
  260. * queues but with different initial values.
  261. */
  262. static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
  263. struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
  264. struct queue_properties *q)
  265. {
  266. return init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
  267. }
  268. static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
  269. struct queue_properties *q)
  270. {
  271. struct cik_mqd *m;
  272. m = get_mqd(mqd);
  273. m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
  274. DEFAULT_MIN_AVAIL_SIZE |
  275. PRIV_STATE |
  276. KMD_QUEUE;
  277. /*
  278. * Calculating queue size which is log base 2 of actual queue
  279. * size -1 dwords
  280. */
  281. m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
  282. m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
  283. m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
  284. m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
  285. m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
  286. m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off);
  287. m->cp_hqd_vmid = q->vmid;
  288. q->is_active = (q->queue_size > 0 &&
  289. q->queue_address != 0 &&
  290. q->queue_percent > 0 &&
  291. !q->is_evicted);
  292. return 0;
  293. }
  294. #if defined(CONFIG_DEBUG_FS)
  295. static int debugfs_show_mqd(struct seq_file *m, void *data)
  296. {
  297. seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
  298. data, sizeof(struct cik_mqd), false);
  299. return 0;
  300. }
  301. static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
  302. {
  303. seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
  304. data, sizeof(struct cik_sdma_rlc_registers), false);
  305. return 0;
  306. }
  307. #endif
  308. struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
  309. struct kfd_dev *dev)
  310. {
  311. struct mqd_manager *mqd;
  312. if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
  313. return NULL;
  314. mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
  315. if (!mqd)
  316. return NULL;
  317. mqd->dev = dev;
  318. switch (type) {
  319. case KFD_MQD_TYPE_CP:
  320. case KFD_MQD_TYPE_COMPUTE:
  321. mqd->init_mqd = init_mqd;
  322. mqd->uninit_mqd = uninit_mqd;
  323. mqd->load_mqd = load_mqd;
  324. mqd->update_mqd = update_mqd;
  325. mqd->destroy_mqd = destroy_mqd;
  326. mqd->is_occupied = is_occupied;
  327. #if defined(CONFIG_DEBUG_FS)
  328. mqd->debugfs_show_mqd = debugfs_show_mqd;
  329. #endif
  330. break;
  331. case KFD_MQD_TYPE_HIQ:
  332. mqd->init_mqd = init_mqd_hiq;
  333. mqd->uninit_mqd = uninit_mqd;
  334. mqd->load_mqd = load_mqd;
  335. mqd->update_mqd = update_mqd_hiq;
  336. mqd->destroy_mqd = destroy_mqd;
  337. mqd->is_occupied = is_occupied;
  338. #if defined(CONFIG_DEBUG_FS)
  339. mqd->debugfs_show_mqd = debugfs_show_mqd;
  340. #endif
  341. break;
  342. case KFD_MQD_TYPE_SDMA:
  343. mqd->init_mqd = init_mqd_sdma;
  344. mqd->uninit_mqd = uninit_mqd_sdma;
  345. mqd->load_mqd = load_mqd_sdma;
  346. mqd->update_mqd = update_mqd_sdma;
  347. mqd->destroy_mqd = destroy_mqd_sdma;
  348. mqd->is_occupied = is_occupied_sdma;
  349. #if defined(CONFIG_DEBUG_FS)
  350. mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
  351. #endif
  352. break;
  353. default:
  354. kfree(mqd);
  355. return NULL;
  356. }
  357. return mqd;
  358. }
  359. struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
  360. struct kfd_dev *dev)
  361. {
  362. struct mqd_manager *mqd;
  363. mqd = mqd_manager_init_cik(type, dev);
  364. if (!mqd)
  365. return NULL;
  366. if ((type == KFD_MQD_TYPE_CP) || (type == KFD_MQD_TYPE_COMPUTE))
  367. mqd->update_mqd = update_mqd_hawaii;
  368. return mqd;
  369. }