skd_main.c 93 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678
  1. /*
  2. * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
  3. * was acquired by Western Digital in 2012.
  4. *
  5. * Copyright 2012 sTec, Inc.
  6. * Copyright (c) 2017 Western Digital Corporation or its affiliates.
  7. *
  8. * This file is part of the Linux kernel, and is made available under
  9. * the terms of the GNU General Public License version 2.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/blk-mq.h>
  19. #include <linux/sched.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/compiler.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/delay.h>
  24. #include <linux/time.h>
  25. #include <linux/hdreg.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/completion.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/version.h>
  30. #include <linux/err.h>
  31. #include <linux/aer.h>
  32. #include <linux/wait.h>
  33. #include <linux/stringify.h>
  34. #include <scsi/scsi.h>
  35. #include <scsi/sg.h>
  36. #include <linux/io.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/unaligned.h>
  39. #include "skd_s1120.h"
  40. static int skd_dbg_level;
  41. static int skd_isr_comp_limit = 4;
  42. #define SKD_ASSERT(expr) \
  43. do { \
  44. if (unlikely(!(expr))) { \
  45. pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
  46. # expr, __FILE__, __func__, __LINE__); \
  47. } \
  48. } while (0)
  49. #define DRV_NAME "skd"
  50. #define PFX DRV_NAME ": "
  51. MODULE_LICENSE("GPL");
  52. MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
  53. #define PCI_VENDOR_ID_STEC 0x1B39
  54. #define PCI_DEVICE_ID_S1120 0x0001
  55. #define SKD_FUA_NV (1 << 1)
  56. #define SKD_MINORS_PER_DEVICE 16
  57. #define SKD_MAX_QUEUE_DEPTH 200u
  58. #define SKD_PAUSE_TIMEOUT (5 * 1000)
  59. #define SKD_N_FITMSG_BYTES (512u)
  60. #define SKD_MAX_REQ_PER_MSG 14
  61. #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
  62. /* SG elements are 32 bytes, so we can make this 4096 and still be under the
  63. * 128KB limit. That allows 4096*4K = 16M xfer size
  64. */
  65. #define SKD_N_SG_PER_REQ_DEFAULT 256u
  66. #define SKD_N_COMPLETION_ENTRY 256u
  67. #define SKD_N_READ_CAP_BYTES (8u)
  68. #define SKD_N_INTERNAL_BYTES (512u)
  69. #define SKD_SKCOMP_SIZE \
  70. ((sizeof(struct fit_completion_entry_v1) + \
  71. sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
  72. /* 5 bits of uniqifier, 0xF800 */
  73. #define SKD_ID_TABLE_MASK (3u << 8u)
  74. #define SKD_ID_RW_REQUEST (0u << 8u)
  75. #define SKD_ID_INTERNAL (1u << 8u)
  76. #define SKD_ID_FIT_MSG (3u << 8u)
  77. #define SKD_ID_SLOT_MASK 0x00FFu
  78. #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
  79. #define SKD_N_MAX_SECTORS 2048u
  80. #define SKD_MAX_RETRIES 2u
  81. #define SKD_TIMER_SECONDS(seconds) (seconds)
  82. #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
  83. #define INQ_STD_NBYTES 36
  84. enum skd_drvr_state {
  85. SKD_DRVR_STATE_LOAD,
  86. SKD_DRVR_STATE_IDLE,
  87. SKD_DRVR_STATE_BUSY,
  88. SKD_DRVR_STATE_STARTING,
  89. SKD_DRVR_STATE_ONLINE,
  90. SKD_DRVR_STATE_PAUSING,
  91. SKD_DRVR_STATE_PAUSED,
  92. SKD_DRVR_STATE_RESTARTING,
  93. SKD_DRVR_STATE_RESUMING,
  94. SKD_DRVR_STATE_STOPPING,
  95. SKD_DRVR_STATE_FAULT,
  96. SKD_DRVR_STATE_DISAPPEARED,
  97. SKD_DRVR_STATE_PROTOCOL_MISMATCH,
  98. SKD_DRVR_STATE_BUSY_ERASE,
  99. SKD_DRVR_STATE_BUSY_SANITIZE,
  100. SKD_DRVR_STATE_BUSY_IMMINENT,
  101. SKD_DRVR_STATE_WAIT_BOOT,
  102. SKD_DRVR_STATE_SYNCING,
  103. };
  104. #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
  105. #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
  106. #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
  107. #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
  108. #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
  109. #define SKD_START_WAIT_SECONDS 90u
  110. enum skd_req_state {
  111. SKD_REQ_STATE_IDLE,
  112. SKD_REQ_STATE_SETUP,
  113. SKD_REQ_STATE_BUSY,
  114. SKD_REQ_STATE_COMPLETED,
  115. SKD_REQ_STATE_TIMEOUT,
  116. };
  117. enum skd_check_status_action {
  118. SKD_CHECK_STATUS_REPORT_GOOD,
  119. SKD_CHECK_STATUS_REPORT_SMART_ALERT,
  120. SKD_CHECK_STATUS_REQUEUE_REQUEST,
  121. SKD_CHECK_STATUS_REPORT_ERROR,
  122. SKD_CHECK_STATUS_BUSY_IMMINENT,
  123. };
  124. struct skd_msg_buf {
  125. struct fit_msg_hdr fmh;
  126. struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
  127. };
  128. struct skd_fitmsg_context {
  129. u32 id;
  130. u32 length;
  131. struct skd_msg_buf *msg_buf;
  132. dma_addr_t mb_dma_address;
  133. };
  134. struct skd_request_context {
  135. enum skd_req_state state;
  136. u16 id;
  137. u32 fitmsg_id;
  138. u8 flush_cmd;
  139. enum dma_data_direction data_dir;
  140. struct scatterlist *sg;
  141. u32 n_sg;
  142. u32 sg_byte_count;
  143. struct fit_sg_descriptor *sksg_list;
  144. dma_addr_t sksg_dma_address;
  145. struct fit_completion_entry_v1 completion;
  146. struct fit_comp_error_info err_info;
  147. blk_status_t status;
  148. };
  149. struct skd_special_context {
  150. struct skd_request_context req;
  151. void *data_buf;
  152. dma_addr_t db_dma_address;
  153. struct skd_msg_buf *msg_buf;
  154. dma_addr_t mb_dma_address;
  155. };
  156. typedef enum skd_irq_type {
  157. SKD_IRQ_LEGACY,
  158. SKD_IRQ_MSI,
  159. SKD_IRQ_MSIX
  160. } skd_irq_type_t;
  161. #define SKD_MAX_BARS 2
  162. struct skd_device {
  163. void __iomem *mem_map[SKD_MAX_BARS];
  164. resource_size_t mem_phys[SKD_MAX_BARS];
  165. u32 mem_size[SKD_MAX_BARS];
  166. struct skd_msix_entry *msix_entries;
  167. struct pci_dev *pdev;
  168. int pcie_error_reporting_is_enabled;
  169. spinlock_t lock;
  170. struct gendisk *disk;
  171. struct blk_mq_tag_set tag_set;
  172. struct request_queue *queue;
  173. struct skd_fitmsg_context *skmsg;
  174. struct device *class_dev;
  175. int gendisk_on;
  176. int sync_done;
  177. u32 devno;
  178. u32 major;
  179. char isr_name[30];
  180. enum skd_drvr_state state;
  181. u32 drive_state;
  182. u32 cur_max_queue_depth;
  183. u32 queue_low_water_mark;
  184. u32 dev_max_queue_depth;
  185. u32 num_fitmsg_context;
  186. u32 num_req_context;
  187. struct skd_fitmsg_context *skmsg_table;
  188. struct skd_special_context internal_skspcl;
  189. u32 read_cap_blocksize;
  190. u32 read_cap_last_lba;
  191. int read_cap_is_valid;
  192. int inquiry_is_valid;
  193. u8 inq_serial_num[13]; /*12 chars plus null term */
  194. u8 skcomp_cycle;
  195. u32 skcomp_ix;
  196. struct kmem_cache *msgbuf_cache;
  197. struct kmem_cache *sglist_cache;
  198. struct kmem_cache *databuf_cache;
  199. struct fit_completion_entry_v1 *skcomp_table;
  200. struct fit_comp_error_info *skerr_table;
  201. dma_addr_t cq_dma_address;
  202. wait_queue_head_t waitq;
  203. struct timer_list timer;
  204. u32 timer_countdown;
  205. u32 timer_substate;
  206. int sgs_per_request;
  207. u32 last_mtd;
  208. u32 proto_ver;
  209. int dbg_level;
  210. u32 connect_time_stamp;
  211. int connect_retries;
  212. #define SKD_MAX_CONNECT_RETRIES 16
  213. u32 drive_jiffies;
  214. u32 timo_slot;
  215. struct work_struct start_queue;
  216. struct work_struct completion_worker;
  217. };
  218. #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
  219. #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
  220. #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
  221. static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
  222. {
  223. u32 val = readl(skdev->mem_map[1] + offset);
  224. if (unlikely(skdev->dbg_level >= 2))
  225. dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
  226. return val;
  227. }
  228. static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
  229. u32 offset)
  230. {
  231. writel(val, skdev->mem_map[1] + offset);
  232. if (unlikely(skdev->dbg_level >= 2))
  233. dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
  234. }
  235. static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
  236. u32 offset)
  237. {
  238. writeq(val, skdev->mem_map[1] + offset);
  239. if (unlikely(skdev->dbg_level >= 2))
  240. dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
  241. val);
  242. }
  243. #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
  244. static int skd_isr_type = SKD_IRQ_DEFAULT;
  245. module_param(skd_isr_type, int, 0444);
  246. MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
  247. " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
  248. #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
  249. static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  250. module_param(skd_max_req_per_msg, int, 0444);
  251. MODULE_PARM_DESC(skd_max_req_per_msg,
  252. "Maximum SCSI requests packed in a single message."
  253. " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
  254. #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
  255. #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
  256. static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  257. module_param(skd_max_queue_depth, int, 0444);
  258. MODULE_PARM_DESC(skd_max_queue_depth,
  259. "Maximum SCSI requests issued to s1120."
  260. " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
  261. static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  262. module_param(skd_sgs_per_request, int, 0444);
  263. MODULE_PARM_DESC(skd_sgs_per_request,
  264. "Maximum SG elements per block request."
  265. " (1-4096, default==256)");
  266. static int skd_max_pass_thru = 1;
  267. module_param(skd_max_pass_thru, int, 0444);
  268. MODULE_PARM_DESC(skd_max_pass_thru,
  269. "Maximum SCSI pass-thru at a time. IGNORED");
  270. module_param(skd_dbg_level, int, 0444);
  271. MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
  272. module_param(skd_isr_comp_limit, int, 0444);
  273. MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
  274. /* Major device number dynamically assigned. */
  275. static u32 skd_major;
  276. static void skd_destruct(struct skd_device *skdev);
  277. static const struct block_device_operations skd_blockdev_ops;
  278. static void skd_send_fitmsg(struct skd_device *skdev,
  279. struct skd_fitmsg_context *skmsg);
  280. static void skd_send_special_fitmsg(struct skd_device *skdev,
  281. struct skd_special_context *skspcl);
  282. static bool skd_preop_sg_list(struct skd_device *skdev,
  283. struct skd_request_context *skreq);
  284. static void skd_postop_sg_list(struct skd_device *skdev,
  285. struct skd_request_context *skreq);
  286. static void skd_restart_device(struct skd_device *skdev);
  287. static int skd_quiesce_dev(struct skd_device *skdev);
  288. static int skd_unquiesce_dev(struct skd_device *skdev);
  289. static void skd_disable_interrupts(struct skd_device *skdev);
  290. static void skd_isr_fwstate(struct skd_device *skdev);
  291. static void skd_recover_requests(struct skd_device *skdev);
  292. static void skd_soft_reset(struct skd_device *skdev);
  293. const char *skd_drive_state_to_str(int state);
  294. const char *skd_skdev_state_to_str(enum skd_drvr_state state);
  295. static void skd_log_skdev(struct skd_device *skdev, const char *event);
  296. static void skd_log_skreq(struct skd_device *skdev,
  297. struct skd_request_context *skreq, const char *event);
  298. /*
  299. *****************************************************************************
  300. * READ/WRITE REQUESTS
  301. *****************************************************************************
  302. */
  303. static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
  304. {
  305. int *count = data;
  306. count++;
  307. }
  308. static int skd_in_flight(struct skd_device *skdev)
  309. {
  310. int count = 0;
  311. blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
  312. return count;
  313. }
  314. static void
  315. skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
  316. int data_dir, unsigned lba,
  317. unsigned count)
  318. {
  319. if (data_dir == READ)
  320. scsi_req->cdb[0] = READ_10;
  321. else
  322. scsi_req->cdb[0] = WRITE_10;
  323. scsi_req->cdb[1] = 0;
  324. scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
  325. scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
  326. scsi_req->cdb[4] = (lba & 0xff00) >> 8;
  327. scsi_req->cdb[5] = (lba & 0xff);
  328. scsi_req->cdb[6] = 0;
  329. scsi_req->cdb[7] = (count & 0xff00) >> 8;
  330. scsi_req->cdb[8] = count & 0xff;
  331. scsi_req->cdb[9] = 0;
  332. }
  333. static void
  334. skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
  335. struct skd_request_context *skreq)
  336. {
  337. skreq->flush_cmd = 1;
  338. scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
  339. scsi_req->cdb[1] = 0;
  340. scsi_req->cdb[2] = 0;
  341. scsi_req->cdb[3] = 0;
  342. scsi_req->cdb[4] = 0;
  343. scsi_req->cdb[5] = 0;
  344. scsi_req->cdb[6] = 0;
  345. scsi_req->cdb[7] = 0;
  346. scsi_req->cdb[8] = 0;
  347. scsi_req->cdb[9] = 0;
  348. }
  349. /*
  350. * Return true if and only if all pending requests should be failed.
  351. */
  352. static bool skd_fail_all(struct request_queue *q)
  353. {
  354. struct skd_device *skdev = q->queuedata;
  355. SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
  356. skd_log_skdev(skdev, "req_not_online");
  357. switch (skdev->state) {
  358. case SKD_DRVR_STATE_PAUSING:
  359. case SKD_DRVR_STATE_PAUSED:
  360. case SKD_DRVR_STATE_STARTING:
  361. case SKD_DRVR_STATE_RESTARTING:
  362. case SKD_DRVR_STATE_WAIT_BOOT:
  363. /* In case of starting, we haven't started the queue,
  364. * so we can't get here... but requests are
  365. * possibly hanging out waiting for us because we
  366. * reported the dev/skd0 already. They'll wait
  367. * forever if connect doesn't complete.
  368. * What to do??? delay dev/skd0 ??
  369. */
  370. case SKD_DRVR_STATE_BUSY:
  371. case SKD_DRVR_STATE_BUSY_IMMINENT:
  372. case SKD_DRVR_STATE_BUSY_ERASE:
  373. return false;
  374. case SKD_DRVR_STATE_BUSY_SANITIZE:
  375. case SKD_DRVR_STATE_STOPPING:
  376. case SKD_DRVR_STATE_SYNCING:
  377. case SKD_DRVR_STATE_FAULT:
  378. case SKD_DRVR_STATE_DISAPPEARED:
  379. default:
  380. return true;
  381. }
  382. }
  383. static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
  384. const struct blk_mq_queue_data *mqd)
  385. {
  386. struct request *const req = mqd->rq;
  387. struct request_queue *const q = req->q;
  388. struct skd_device *skdev = q->queuedata;
  389. struct skd_fitmsg_context *skmsg;
  390. struct fit_msg_hdr *fmh;
  391. const u32 tag = blk_mq_unique_tag(req);
  392. struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
  393. struct skd_scsi_request *scsi_req;
  394. unsigned long flags = 0;
  395. const u32 lba = blk_rq_pos(req);
  396. const u32 count = blk_rq_sectors(req);
  397. const int data_dir = rq_data_dir(req);
  398. if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
  399. return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
  400. blk_mq_start_request(req);
  401. WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
  402. tag, skd_max_queue_depth, q->nr_requests);
  403. SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
  404. dev_dbg(&skdev->pdev->dev,
  405. "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
  406. lba, count, count, data_dir);
  407. skreq->id = tag + SKD_ID_RW_REQUEST;
  408. skreq->flush_cmd = 0;
  409. skreq->n_sg = 0;
  410. skreq->sg_byte_count = 0;
  411. skreq->fitmsg_id = 0;
  412. skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  413. if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
  414. dev_dbg(&skdev->pdev->dev, "error Out\n");
  415. skreq->status = BLK_STS_RESOURCE;
  416. blk_mq_complete_request(req);
  417. return BLK_STS_OK;
  418. }
  419. dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
  420. skreq->n_sg *
  421. sizeof(struct fit_sg_descriptor),
  422. DMA_TO_DEVICE);
  423. /* Either a FIT msg is in progress or we have to start one. */
  424. if (skd_max_req_per_msg == 1) {
  425. skmsg = NULL;
  426. } else {
  427. spin_lock_irqsave(&skdev->lock, flags);
  428. skmsg = skdev->skmsg;
  429. }
  430. if (!skmsg) {
  431. skmsg = &skdev->skmsg_table[tag];
  432. skdev->skmsg = skmsg;
  433. /* Initialize the FIT msg header */
  434. fmh = &skmsg->msg_buf->fmh;
  435. memset(fmh, 0, sizeof(*fmh));
  436. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  437. skmsg->length = sizeof(*fmh);
  438. } else {
  439. fmh = &skmsg->msg_buf->fmh;
  440. }
  441. skreq->fitmsg_id = skmsg->id;
  442. scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
  443. memset(scsi_req, 0, sizeof(*scsi_req));
  444. scsi_req->hdr.tag = skreq->id;
  445. scsi_req->hdr.sg_list_dma_address =
  446. cpu_to_be64(skreq->sksg_dma_address);
  447. if (req_op(req) == REQ_OP_FLUSH) {
  448. skd_prep_zerosize_flush_cdb(scsi_req, skreq);
  449. SKD_ASSERT(skreq->flush_cmd == 1);
  450. } else {
  451. skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
  452. }
  453. if (req->cmd_flags & REQ_FUA)
  454. scsi_req->cdb[1] |= SKD_FUA_NV;
  455. scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
  456. /* Complete resource allocations. */
  457. skreq->state = SKD_REQ_STATE_BUSY;
  458. skmsg->length += sizeof(struct skd_scsi_request);
  459. fmh->num_protocol_cmds_coalesced++;
  460. dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
  461. skd_in_flight(skdev));
  462. /*
  463. * If the FIT msg buffer is full send it.
  464. */
  465. if (skd_max_req_per_msg == 1) {
  466. skd_send_fitmsg(skdev, skmsg);
  467. } else {
  468. if (mqd->last ||
  469. fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
  470. skd_send_fitmsg(skdev, skmsg);
  471. skdev->skmsg = NULL;
  472. }
  473. spin_unlock_irqrestore(&skdev->lock, flags);
  474. }
  475. return BLK_STS_OK;
  476. }
  477. static enum blk_eh_timer_return skd_timed_out(struct request *req,
  478. bool reserved)
  479. {
  480. struct skd_device *skdev = req->q->queuedata;
  481. dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
  482. blk_mq_unique_tag(req));
  483. return BLK_EH_RESET_TIMER;
  484. }
  485. static void skd_complete_rq(struct request *req)
  486. {
  487. struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
  488. blk_mq_end_request(req, skreq->status);
  489. }
  490. static bool skd_preop_sg_list(struct skd_device *skdev,
  491. struct skd_request_context *skreq)
  492. {
  493. struct request *req = blk_mq_rq_from_pdu(skreq);
  494. struct scatterlist *sgl = &skreq->sg[0], *sg;
  495. int n_sg;
  496. int i;
  497. skreq->sg_byte_count = 0;
  498. WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
  499. skreq->data_dir != DMA_FROM_DEVICE);
  500. n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
  501. if (n_sg <= 0)
  502. return false;
  503. /*
  504. * Map scatterlist to PCI bus addresses.
  505. * Note PCI might change the number of entries.
  506. */
  507. n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
  508. if (n_sg <= 0)
  509. return false;
  510. SKD_ASSERT(n_sg <= skdev->sgs_per_request);
  511. skreq->n_sg = n_sg;
  512. for_each_sg(sgl, sg, n_sg, i) {
  513. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  514. u32 cnt = sg_dma_len(sg);
  515. uint64_t dma_addr = sg_dma_address(sg);
  516. sgd->control = FIT_SGD_CONTROL_NOT_LAST;
  517. sgd->byte_count = cnt;
  518. skreq->sg_byte_count += cnt;
  519. sgd->host_side_addr = dma_addr;
  520. sgd->dev_side_addr = 0;
  521. }
  522. skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
  523. skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
  524. if (unlikely(skdev->dbg_level > 1)) {
  525. dev_dbg(&skdev->pdev->dev,
  526. "skreq=%x sksg_list=%p sksg_dma=%pad\n",
  527. skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
  528. for (i = 0; i < n_sg; i++) {
  529. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  530. dev_dbg(&skdev->pdev->dev,
  531. " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
  532. i, sgd->byte_count, sgd->control,
  533. sgd->host_side_addr, sgd->next_desc_ptr);
  534. }
  535. }
  536. return true;
  537. }
  538. static void skd_postop_sg_list(struct skd_device *skdev,
  539. struct skd_request_context *skreq)
  540. {
  541. /*
  542. * restore the next ptr for next IO request so we
  543. * don't have to set it every time.
  544. */
  545. skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
  546. skreq->sksg_dma_address +
  547. ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
  548. pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
  549. }
  550. /*
  551. *****************************************************************************
  552. * TIMER
  553. *****************************************************************************
  554. */
  555. static void skd_timer_tick_not_online(struct skd_device *skdev);
  556. static void skd_start_queue(struct work_struct *work)
  557. {
  558. struct skd_device *skdev = container_of(work, typeof(*skdev),
  559. start_queue);
  560. /*
  561. * Although it is safe to call blk_start_queue() from interrupt
  562. * context, blk_mq_start_hw_queues() must not be called from
  563. * interrupt context.
  564. */
  565. blk_mq_start_hw_queues(skdev->queue);
  566. }
  567. static void skd_timer_tick(struct timer_list *t)
  568. {
  569. struct skd_device *skdev = from_timer(skdev, t, timer);
  570. unsigned long reqflags;
  571. u32 state;
  572. if (skdev->state == SKD_DRVR_STATE_FAULT)
  573. /* The driver has declared fault, and we want it to
  574. * stay that way until driver is reloaded.
  575. */
  576. return;
  577. spin_lock_irqsave(&skdev->lock, reqflags);
  578. state = SKD_READL(skdev, FIT_STATUS);
  579. state &= FIT_SR_DRIVE_STATE_MASK;
  580. if (state != skdev->drive_state)
  581. skd_isr_fwstate(skdev);
  582. if (skdev->state != SKD_DRVR_STATE_ONLINE)
  583. skd_timer_tick_not_online(skdev);
  584. mod_timer(&skdev->timer, (jiffies + HZ));
  585. spin_unlock_irqrestore(&skdev->lock, reqflags);
  586. }
  587. static void skd_timer_tick_not_online(struct skd_device *skdev)
  588. {
  589. switch (skdev->state) {
  590. case SKD_DRVR_STATE_IDLE:
  591. case SKD_DRVR_STATE_LOAD:
  592. break;
  593. case SKD_DRVR_STATE_BUSY_SANITIZE:
  594. dev_dbg(&skdev->pdev->dev,
  595. "drive busy sanitize[%x], driver[%x]\n",
  596. skdev->drive_state, skdev->state);
  597. /* If we've been in sanitize for 3 seconds, we figure we're not
  598. * going to get anymore completions, so recover requests now
  599. */
  600. if (skdev->timer_countdown > 0) {
  601. skdev->timer_countdown--;
  602. return;
  603. }
  604. skd_recover_requests(skdev);
  605. break;
  606. case SKD_DRVR_STATE_BUSY:
  607. case SKD_DRVR_STATE_BUSY_IMMINENT:
  608. case SKD_DRVR_STATE_BUSY_ERASE:
  609. dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
  610. skdev->state, skdev->timer_countdown);
  611. if (skdev->timer_countdown > 0) {
  612. skdev->timer_countdown--;
  613. return;
  614. }
  615. dev_dbg(&skdev->pdev->dev,
  616. "busy[%x], timedout=%d, restarting device.",
  617. skdev->state, skdev->timer_countdown);
  618. skd_restart_device(skdev);
  619. break;
  620. case SKD_DRVR_STATE_WAIT_BOOT:
  621. case SKD_DRVR_STATE_STARTING:
  622. if (skdev->timer_countdown > 0) {
  623. skdev->timer_countdown--;
  624. return;
  625. }
  626. /* For now, we fault the drive. Could attempt resets to
  627. * revcover at some point. */
  628. skdev->state = SKD_DRVR_STATE_FAULT;
  629. dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
  630. skdev->drive_state);
  631. /*start the queue so we can respond with error to requests */
  632. /* wakeup anyone waiting for startup complete */
  633. schedule_work(&skdev->start_queue);
  634. skdev->gendisk_on = -1;
  635. wake_up_interruptible(&skdev->waitq);
  636. break;
  637. case SKD_DRVR_STATE_ONLINE:
  638. /* shouldn't get here. */
  639. break;
  640. case SKD_DRVR_STATE_PAUSING:
  641. case SKD_DRVR_STATE_PAUSED:
  642. break;
  643. case SKD_DRVR_STATE_RESTARTING:
  644. if (skdev->timer_countdown > 0) {
  645. skdev->timer_countdown--;
  646. return;
  647. }
  648. /* For now, we fault the drive. Could attempt resets to
  649. * revcover at some point. */
  650. skdev->state = SKD_DRVR_STATE_FAULT;
  651. dev_err(&skdev->pdev->dev,
  652. "DriveFault Reconnect Timeout (%x)\n",
  653. skdev->drive_state);
  654. /*
  655. * Recovering does two things:
  656. * 1. completes IO with error
  657. * 2. reclaims dma resources
  658. * When is it safe to recover requests?
  659. * - if the drive state is faulted
  660. * - if the state is still soft reset after out timeout
  661. * - if the drive registers are dead (state = FF)
  662. * If it is "unsafe", we still need to recover, so we will
  663. * disable pci bus mastering and disable our interrupts.
  664. */
  665. if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
  666. (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
  667. (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
  668. /* It never came out of soft reset. Try to
  669. * recover the requests and then let them
  670. * fail. This is to mitigate hung processes. */
  671. skd_recover_requests(skdev);
  672. else {
  673. dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
  674. skdev->drive_state);
  675. pci_disable_device(skdev->pdev);
  676. skd_disable_interrupts(skdev);
  677. skd_recover_requests(skdev);
  678. }
  679. /*start the queue so we can respond with error to requests */
  680. /* wakeup anyone waiting for startup complete */
  681. schedule_work(&skdev->start_queue);
  682. skdev->gendisk_on = -1;
  683. wake_up_interruptible(&skdev->waitq);
  684. break;
  685. case SKD_DRVR_STATE_RESUMING:
  686. case SKD_DRVR_STATE_STOPPING:
  687. case SKD_DRVR_STATE_SYNCING:
  688. case SKD_DRVR_STATE_FAULT:
  689. case SKD_DRVR_STATE_DISAPPEARED:
  690. default:
  691. break;
  692. }
  693. }
  694. static int skd_start_timer(struct skd_device *skdev)
  695. {
  696. int rc;
  697. timer_setup(&skdev->timer, skd_timer_tick, 0);
  698. rc = mod_timer(&skdev->timer, (jiffies + HZ));
  699. if (rc)
  700. dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
  701. return rc;
  702. }
  703. static void skd_kill_timer(struct skd_device *skdev)
  704. {
  705. del_timer_sync(&skdev->timer);
  706. }
  707. /*
  708. *****************************************************************************
  709. * INTERNAL REQUESTS -- generated by driver itself
  710. *****************************************************************************
  711. */
  712. static int skd_format_internal_skspcl(struct skd_device *skdev)
  713. {
  714. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  715. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  716. struct fit_msg_hdr *fmh;
  717. uint64_t dma_address;
  718. struct skd_scsi_request *scsi;
  719. fmh = &skspcl->msg_buf->fmh;
  720. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  721. fmh->num_protocol_cmds_coalesced = 1;
  722. scsi = &skspcl->msg_buf->scsi[0];
  723. memset(scsi, 0, sizeof(*scsi));
  724. dma_address = skspcl->req.sksg_dma_address;
  725. scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
  726. skspcl->req.n_sg = 1;
  727. sgd->control = FIT_SGD_CONTROL_LAST;
  728. sgd->byte_count = 0;
  729. sgd->host_side_addr = skspcl->db_dma_address;
  730. sgd->dev_side_addr = 0;
  731. sgd->next_desc_ptr = 0LL;
  732. return 1;
  733. }
  734. #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
  735. static void skd_send_internal_skspcl(struct skd_device *skdev,
  736. struct skd_special_context *skspcl,
  737. u8 opcode)
  738. {
  739. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  740. struct skd_scsi_request *scsi;
  741. unsigned char *buf = skspcl->data_buf;
  742. int i;
  743. if (skspcl->req.state != SKD_REQ_STATE_IDLE)
  744. /*
  745. * A refresh is already in progress.
  746. * Just wait for it to finish.
  747. */
  748. return;
  749. skspcl->req.state = SKD_REQ_STATE_BUSY;
  750. scsi = &skspcl->msg_buf->scsi[0];
  751. scsi->hdr.tag = skspcl->req.id;
  752. memset(scsi->cdb, 0, sizeof(scsi->cdb));
  753. switch (opcode) {
  754. case TEST_UNIT_READY:
  755. scsi->cdb[0] = TEST_UNIT_READY;
  756. sgd->byte_count = 0;
  757. scsi->hdr.sg_list_len_bytes = 0;
  758. break;
  759. case READ_CAPACITY:
  760. scsi->cdb[0] = READ_CAPACITY;
  761. sgd->byte_count = SKD_N_READ_CAP_BYTES;
  762. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  763. break;
  764. case INQUIRY:
  765. scsi->cdb[0] = INQUIRY;
  766. scsi->cdb[1] = 0x01; /* evpd */
  767. scsi->cdb[2] = 0x80; /* serial number page */
  768. scsi->cdb[4] = 0x10;
  769. sgd->byte_count = 16;
  770. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  771. break;
  772. case SYNCHRONIZE_CACHE:
  773. scsi->cdb[0] = SYNCHRONIZE_CACHE;
  774. sgd->byte_count = 0;
  775. scsi->hdr.sg_list_len_bytes = 0;
  776. break;
  777. case WRITE_BUFFER:
  778. scsi->cdb[0] = WRITE_BUFFER;
  779. scsi->cdb[1] = 0x02;
  780. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  781. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  782. sgd->byte_count = WR_BUF_SIZE;
  783. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  784. /* fill incrementing byte pattern */
  785. for (i = 0; i < sgd->byte_count; i++)
  786. buf[i] = i & 0xFF;
  787. break;
  788. case READ_BUFFER:
  789. scsi->cdb[0] = READ_BUFFER;
  790. scsi->cdb[1] = 0x02;
  791. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  792. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  793. sgd->byte_count = WR_BUF_SIZE;
  794. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  795. memset(skspcl->data_buf, 0, sgd->byte_count);
  796. break;
  797. default:
  798. SKD_ASSERT("Don't know what to send");
  799. return;
  800. }
  801. skd_send_special_fitmsg(skdev, skspcl);
  802. }
  803. static void skd_refresh_device_data(struct skd_device *skdev)
  804. {
  805. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  806. skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
  807. }
  808. static int skd_chk_read_buf(struct skd_device *skdev,
  809. struct skd_special_context *skspcl)
  810. {
  811. unsigned char *buf = skspcl->data_buf;
  812. int i;
  813. /* check for incrementing byte pattern */
  814. for (i = 0; i < WR_BUF_SIZE; i++)
  815. if (buf[i] != (i & 0xFF))
  816. return 1;
  817. return 0;
  818. }
  819. static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
  820. u8 code, u8 qual, u8 fruc)
  821. {
  822. /* If the check condition is of special interest, log a message */
  823. if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
  824. && (code == 0x04) && (qual == 0x06)) {
  825. dev_err(&skdev->pdev->dev,
  826. "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
  827. key, code, qual, fruc);
  828. }
  829. }
  830. static void skd_complete_internal(struct skd_device *skdev,
  831. struct fit_completion_entry_v1 *skcomp,
  832. struct fit_comp_error_info *skerr,
  833. struct skd_special_context *skspcl)
  834. {
  835. u8 *buf = skspcl->data_buf;
  836. u8 status;
  837. int i;
  838. struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
  839. lockdep_assert_held(&skdev->lock);
  840. SKD_ASSERT(skspcl == &skdev->internal_skspcl);
  841. dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
  842. dma_sync_single_for_cpu(&skdev->pdev->dev,
  843. skspcl->db_dma_address,
  844. skspcl->req.sksg_list[0].byte_count,
  845. DMA_BIDIRECTIONAL);
  846. skspcl->req.completion = *skcomp;
  847. skspcl->req.state = SKD_REQ_STATE_IDLE;
  848. status = skspcl->req.completion.status;
  849. skd_log_check_status(skdev, status, skerr->key, skerr->code,
  850. skerr->qual, skerr->fruc);
  851. switch (scsi->cdb[0]) {
  852. case TEST_UNIT_READY:
  853. if (status == SAM_STAT_GOOD)
  854. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  855. else if ((status == SAM_STAT_CHECK_CONDITION) &&
  856. (skerr->key == MEDIUM_ERROR))
  857. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  858. else {
  859. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  860. dev_dbg(&skdev->pdev->dev,
  861. "TUR failed, don't send anymore state 0x%x\n",
  862. skdev->state);
  863. return;
  864. }
  865. dev_dbg(&skdev->pdev->dev,
  866. "**** TUR failed, retry skerr\n");
  867. skd_send_internal_skspcl(skdev, skspcl,
  868. TEST_UNIT_READY);
  869. }
  870. break;
  871. case WRITE_BUFFER:
  872. if (status == SAM_STAT_GOOD)
  873. skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
  874. else {
  875. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  876. dev_dbg(&skdev->pdev->dev,
  877. "write buffer failed, don't send anymore state 0x%x\n",
  878. skdev->state);
  879. return;
  880. }
  881. dev_dbg(&skdev->pdev->dev,
  882. "**** write buffer failed, retry skerr\n");
  883. skd_send_internal_skspcl(skdev, skspcl,
  884. TEST_UNIT_READY);
  885. }
  886. break;
  887. case READ_BUFFER:
  888. if (status == SAM_STAT_GOOD) {
  889. if (skd_chk_read_buf(skdev, skspcl) == 0)
  890. skd_send_internal_skspcl(skdev, skspcl,
  891. READ_CAPACITY);
  892. else {
  893. dev_err(&skdev->pdev->dev,
  894. "*** W/R Buffer mismatch %d ***\n",
  895. skdev->connect_retries);
  896. if (skdev->connect_retries <
  897. SKD_MAX_CONNECT_RETRIES) {
  898. skdev->connect_retries++;
  899. skd_soft_reset(skdev);
  900. } else {
  901. dev_err(&skdev->pdev->dev,
  902. "W/R Buffer Connect Error\n");
  903. return;
  904. }
  905. }
  906. } else {
  907. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  908. dev_dbg(&skdev->pdev->dev,
  909. "read buffer failed, don't send anymore state 0x%x\n",
  910. skdev->state);
  911. return;
  912. }
  913. dev_dbg(&skdev->pdev->dev,
  914. "**** read buffer failed, retry skerr\n");
  915. skd_send_internal_skspcl(skdev, skspcl,
  916. TEST_UNIT_READY);
  917. }
  918. break;
  919. case READ_CAPACITY:
  920. skdev->read_cap_is_valid = 0;
  921. if (status == SAM_STAT_GOOD) {
  922. skdev->read_cap_last_lba =
  923. (buf[0] << 24) | (buf[1] << 16) |
  924. (buf[2] << 8) | buf[3];
  925. skdev->read_cap_blocksize =
  926. (buf[4] << 24) | (buf[5] << 16) |
  927. (buf[6] << 8) | buf[7];
  928. dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
  929. skdev->read_cap_last_lba,
  930. skdev->read_cap_blocksize);
  931. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  932. skdev->read_cap_is_valid = 1;
  933. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  934. } else if ((status == SAM_STAT_CHECK_CONDITION) &&
  935. (skerr->key == MEDIUM_ERROR)) {
  936. skdev->read_cap_last_lba = ~0;
  937. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  938. dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
  939. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  940. } else {
  941. dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
  942. skd_send_internal_skspcl(skdev, skspcl,
  943. TEST_UNIT_READY);
  944. }
  945. break;
  946. case INQUIRY:
  947. skdev->inquiry_is_valid = 0;
  948. if (status == SAM_STAT_GOOD) {
  949. skdev->inquiry_is_valid = 1;
  950. for (i = 0; i < 12; i++)
  951. skdev->inq_serial_num[i] = buf[i + 4];
  952. skdev->inq_serial_num[12] = 0;
  953. }
  954. if (skd_unquiesce_dev(skdev) < 0)
  955. dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
  956. /* connection is complete */
  957. skdev->connect_retries = 0;
  958. break;
  959. case SYNCHRONIZE_CACHE:
  960. if (status == SAM_STAT_GOOD)
  961. skdev->sync_done = 1;
  962. else
  963. skdev->sync_done = -1;
  964. wake_up_interruptible(&skdev->waitq);
  965. break;
  966. default:
  967. SKD_ASSERT("we didn't send this");
  968. }
  969. }
  970. /*
  971. *****************************************************************************
  972. * FIT MESSAGES
  973. *****************************************************************************
  974. */
  975. static void skd_send_fitmsg(struct skd_device *skdev,
  976. struct skd_fitmsg_context *skmsg)
  977. {
  978. u64 qcmd;
  979. dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
  980. &skmsg->mb_dma_address, skd_in_flight(skdev));
  981. dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
  982. qcmd = skmsg->mb_dma_address;
  983. qcmd |= FIT_QCMD_QID_NORMAL;
  984. if (unlikely(skdev->dbg_level > 1)) {
  985. u8 *bp = (u8 *)skmsg->msg_buf;
  986. int i;
  987. for (i = 0; i < skmsg->length; i += 8) {
  988. dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
  989. &bp[i]);
  990. if (i == 0)
  991. i = 64 - 8;
  992. }
  993. }
  994. if (skmsg->length > 256)
  995. qcmd |= FIT_QCMD_MSGSIZE_512;
  996. else if (skmsg->length > 128)
  997. qcmd |= FIT_QCMD_MSGSIZE_256;
  998. else if (skmsg->length > 64)
  999. qcmd |= FIT_QCMD_MSGSIZE_128;
  1000. else
  1001. /*
  1002. * This makes no sense because the FIT msg header is
  1003. * 64 bytes. If the msg is only 64 bytes long it has
  1004. * no payload.
  1005. */
  1006. qcmd |= FIT_QCMD_MSGSIZE_64;
  1007. dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
  1008. skmsg->length, DMA_TO_DEVICE);
  1009. /* Make sure skd_msg_buf is written before the doorbell is triggered. */
  1010. smp_wmb();
  1011. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1012. }
  1013. static void skd_send_special_fitmsg(struct skd_device *skdev,
  1014. struct skd_special_context *skspcl)
  1015. {
  1016. u64 qcmd;
  1017. WARN_ON_ONCE(skspcl->req.n_sg != 1);
  1018. if (unlikely(skdev->dbg_level > 1)) {
  1019. u8 *bp = (u8 *)skspcl->msg_buf;
  1020. int i;
  1021. for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
  1022. dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
  1023. &bp[i]);
  1024. if (i == 0)
  1025. i = 64 - 8;
  1026. }
  1027. dev_dbg(&skdev->pdev->dev,
  1028. "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
  1029. skspcl, skspcl->req.id, skspcl->req.sksg_list,
  1030. &skspcl->req.sksg_dma_address);
  1031. for (i = 0; i < skspcl->req.n_sg; i++) {
  1032. struct fit_sg_descriptor *sgd =
  1033. &skspcl->req.sksg_list[i];
  1034. dev_dbg(&skdev->pdev->dev,
  1035. " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
  1036. i, sgd->byte_count, sgd->control,
  1037. sgd->host_side_addr, sgd->next_desc_ptr);
  1038. }
  1039. }
  1040. /*
  1041. * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
  1042. * and one 64-byte SSDI command.
  1043. */
  1044. qcmd = skspcl->mb_dma_address;
  1045. qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
  1046. dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
  1047. SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
  1048. dma_sync_single_for_device(&skdev->pdev->dev,
  1049. skspcl->req.sksg_dma_address,
  1050. 1 * sizeof(struct fit_sg_descriptor),
  1051. DMA_TO_DEVICE);
  1052. dma_sync_single_for_device(&skdev->pdev->dev,
  1053. skspcl->db_dma_address,
  1054. skspcl->req.sksg_list[0].byte_count,
  1055. DMA_BIDIRECTIONAL);
  1056. /* Make sure skd_msg_buf is written before the doorbell is triggered. */
  1057. smp_wmb();
  1058. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1059. }
  1060. /*
  1061. *****************************************************************************
  1062. * COMPLETION QUEUE
  1063. *****************************************************************************
  1064. */
  1065. static void skd_complete_other(struct skd_device *skdev,
  1066. struct fit_completion_entry_v1 *skcomp,
  1067. struct fit_comp_error_info *skerr);
  1068. struct sns_info {
  1069. u8 type;
  1070. u8 stat;
  1071. u8 key;
  1072. u8 asc;
  1073. u8 ascq;
  1074. u8 mask;
  1075. enum skd_check_status_action action;
  1076. };
  1077. static struct sns_info skd_chkstat_table[] = {
  1078. /* Good */
  1079. { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
  1080. SKD_CHECK_STATUS_REPORT_GOOD },
  1081. /* Smart alerts */
  1082. { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
  1083. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1084. { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
  1085. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1086. { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
  1087. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1088. /* Retry (with limits) */
  1089. { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
  1090. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1091. { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
  1092. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1093. { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
  1094. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1095. { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
  1096. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1097. /* Busy (or about to be) */
  1098. { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
  1099. SKD_CHECK_STATUS_BUSY_IMMINENT },
  1100. };
  1101. /*
  1102. * Look up status and sense data to decide how to handle the error
  1103. * from the device.
  1104. * mask says which fields must match e.g., mask=0x18 means check
  1105. * type and stat, ignore key, asc, ascq.
  1106. */
  1107. static enum skd_check_status_action
  1108. skd_check_status(struct skd_device *skdev,
  1109. u8 cmp_status, struct fit_comp_error_info *skerr)
  1110. {
  1111. int i;
  1112. dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
  1113. skerr->key, skerr->code, skerr->qual, skerr->fruc);
  1114. dev_dbg(&skdev->pdev->dev,
  1115. "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
  1116. skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
  1117. skerr->fruc);
  1118. /* Does the info match an entry in the good category? */
  1119. for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
  1120. struct sns_info *sns = &skd_chkstat_table[i];
  1121. if (sns->mask & 0x10)
  1122. if (skerr->type != sns->type)
  1123. continue;
  1124. if (sns->mask & 0x08)
  1125. if (cmp_status != sns->stat)
  1126. continue;
  1127. if (sns->mask & 0x04)
  1128. if (skerr->key != sns->key)
  1129. continue;
  1130. if (sns->mask & 0x02)
  1131. if (skerr->code != sns->asc)
  1132. continue;
  1133. if (sns->mask & 0x01)
  1134. if (skerr->qual != sns->ascq)
  1135. continue;
  1136. if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
  1137. dev_err(&skdev->pdev->dev,
  1138. "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
  1139. skerr->key, skerr->code, skerr->qual);
  1140. }
  1141. return sns->action;
  1142. }
  1143. /* No other match, so nonzero status means error,
  1144. * zero status means good
  1145. */
  1146. if (cmp_status) {
  1147. dev_dbg(&skdev->pdev->dev, "status check: error\n");
  1148. return SKD_CHECK_STATUS_REPORT_ERROR;
  1149. }
  1150. dev_dbg(&skdev->pdev->dev, "status check good default\n");
  1151. return SKD_CHECK_STATUS_REPORT_GOOD;
  1152. }
  1153. static void skd_resolve_req_exception(struct skd_device *skdev,
  1154. struct skd_request_context *skreq,
  1155. struct request *req)
  1156. {
  1157. u8 cmp_status = skreq->completion.status;
  1158. switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
  1159. case SKD_CHECK_STATUS_REPORT_GOOD:
  1160. case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
  1161. skreq->status = BLK_STS_OK;
  1162. blk_mq_complete_request(req);
  1163. break;
  1164. case SKD_CHECK_STATUS_BUSY_IMMINENT:
  1165. skd_log_skreq(skdev, skreq, "retry(busy)");
  1166. blk_mq_requeue_request(req, true);
  1167. dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
  1168. skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
  1169. skdev->timer_countdown = SKD_TIMER_MINUTES(20);
  1170. skd_quiesce_dev(skdev);
  1171. break;
  1172. case SKD_CHECK_STATUS_REQUEUE_REQUEST:
  1173. if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
  1174. skd_log_skreq(skdev, skreq, "retry");
  1175. blk_mq_requeue_request(req, true);
  1176. break;
  1177. }
  1178. /* fall through */
  1179. case SKD_CHECK_STATUS_REPORT_ERROR:
  1180. default:
  1181. skreq->status = BLK_STS_IOERR;
  1182. blk_mq_complete_request(req);
  1183. break;
  1184. }
  1185. }
  1186. static void skd_release_skreq(struct skd_device *skdev,
  1187. struct skd_request_context *skreq)
  1188. {
  1189. /*
  1190. * Reclaim the skd_request_context
  1191. */
  1192. skreq->state = SKD_REQ_STATE_IDLE;
  1193. }
  1194. static int skd_isr_completion_posted(struct skd_device *skdev,
  1195. int limit, int *enqueued)
  1196. {
  1197. struct fit_completion_entry_v1 *skcmp;
  1198. struct fit_comp_error_info *skerr;
  1199. u16 req_id;
  1200. u32 tag;
  1201. u16 hwq = 0;
  1202. struct request *rq;
  1203. struct skd_request_context *skreq;
  1204. u16 cmp_cntxt;
  1205. u8 cmp_status;
  1206. u8 cmp_cycle;
  1207. u32 cmp_bytes;
  1208. int rc = 0;
  1209. int processed = 0;
  1210. lockdep_assert_held(&skdev->lock);
  1211. for (;; ) {
  1212. SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
  1213. skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
  1214. cmp_cycle = skcmp->cycle;
  1215. cmp_cntxt = skcmp->tag;
  1216. cmp_status = skcmp->status;
  1217. cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
  1218. skerr = &skdev->skerr_table[skdev->skcomp_ix];
  1219. dev_dbg(&skdev->pdev->dev,
  1220. "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
  1221. skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
  1222. cmp_cntxt, cmp_status, skd_in_flight(skdev),
  1223. cmp_bytes, skdev->proto_ver);
  1224. if (cmp_cycle != skdev->skcomp_cycle) {
  1225. dev_dbg(&skdev->pdev->dev, "end of completions\n");
  1226. break;
  1227. }
  1228. /*
  1229. * Update the completion queue head index and possibly
  1230. * the completion cycle count. 8-bit wrap-around.
  1231. */
  1232. skdev->skcomp_ix++;
  1233. if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
  1234. skdev->skcomp_ix = 0;
  1235. skdev->skcomp_cycle++;
  1236. }
  1237. /*
  1238. * The command context is a unique 32-bit ID. The low order
  1239. * bits help locate the request. The request is usually a
  1240. * r/w request (see skd_start() above) or a special request.
  1241. */
  1242. req_id = cmp_cntxt;
  1243. tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
  1244. /* Is this other than a r/w request? */
  1245. if (tag >= skdev->num_req_context) {
  1246. /*
  1247. * This is not a completion for a r/w request.
  1248. */
  1249. WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
  1250. tag));
  1251. skd_complete_other(skdev, skcmp, skerr);
  1252. continue;
  1253. }
  1254. rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
  1255. if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
  1256. tag))
  1257. continue;
  1258. skreq = blk_mq_rq_to_pdu(rq);
  1259. /*
  1260. * Make sure the request ID for the slot matches.
  1261. */
  1262. if (skreq->id != req_id) {
  1263. dev_err(&skdev->pdev->dev,
  1264. "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
  1265. req_id, skreq->id, cmp_cntxt);
  1266. continue;
  1267. }
  1268. SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
  1269. skreq->completion = *skcmp;
  1270. if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
  1271. skreq->err_info = *skerr;
  1272. skd_log_check_status(skdev, cmp_status, skerr->key,
  1273. skerr->code, skerr->qual,
  1274. skerr->fruc);
  1275. }
  1276. /* Release DMA resources for the request. */
  1277. if (skreq->n_sg > 0)
  1278. skd_postop_sg_list(skdev, skreq);
  1279. skd_release_skreq(skdev, skreq);
  1280. /*
  1281. * Capture the outcome and post it back to the native request.
  1282. */
  1283. if (likely(cmp_status == SAM_STAT_GOOD)) {
  1284. skreq->status = BLK_STS_OK;
  1285. blk_mq_complete_request(rq);
  1286. } else {
  1287. skd_resolve_req_exception(skdev, skreq, rq);
  1288. }
  1289. /* skd_isr_comp_limit equal zero means no limit */
  1290. if (limit) {
  1291. if (++processed >= limit) {
  1292. rc = 1;
  1293. break;
  1294. }
  1295. }
  1296. }
  1297. if (skdev->state == SKD_DRVR_STATE_PAUSING &&
  1298. skd_in_flight(skdev) == 0) {
  1299. skdev->state = SKD_DRVR_STATE_PAUSED;
  1300. wake_up_interruptible(&skdev->waitq);
  1301. }
  1302. return rc;
  1303. }
  1304. static void skd_complete_other(struct skd_device *skdev,
  1305. struct fit_completion_entry_v1 *skcomp,
  1306. struct fit_comp_error_info *skerr)
  1307. {
  1308. u32 req_id = 0;
  1309. u32 req_table;
  1310. u32 req_slot;
  1311. struct skd_special_context *skspcl;
  1312. lockdep_assert_held(&skdev->lock);
  1313. req_id = skcomp->tag;
  1314. req_table = req_id & SKD_ID_TABLE_MASK;
  1315. req_slot = req_id & SKD_ID_SLOT_MASK;
  1316. dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
  1317. req_id, req_slot);
  1318. /*
  1319. * Based on the request id, determine how to dispatch this completion.
  1320. * This swich/case is finding the good cases and forwarding the
  1321. * completion entry. Errors are reported below the switch.
  1322. */
  1323. switch (req_table) {
  1324. case SKD_ID_RW_REQUEST:
  1325. /*
  1326. * The caller, skd_isr_completion_posted() above,
  1327. * handles r/w requests. The only way we get here
  1328. * is if the req_slot is out of bounds.
  1329. */
  1330. break;
  1331. case SKD_ID_INTERNAL:
  1332. if (req_slot == 0) {
  1333. skspcl = &skdev->internal_skspcl;
  1334. if (skspcl->req.id == req_id &&
  1335. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  1336. skd_complete_internal(skdev,
  1337. skcomp, skerr, skspcl);
  1338. return;
  1339. }
  1340. }
  1341. break;
  1342. case SKD_ID_FIT_MSG:
  1343. /*
  1344. * These id's should never appear in a completion record.
  1345. */
  1346. break;
  1347. default:
  1348. /*
  1349. * These id's should never appear anywhere;
  1350. */
  1351. break;
  1352. }
  1353. /*
  1354. * If we get here it is a bad or stale id.
  1355. */
  1356. }
  1357. static void skd_reset_skcomp(struct skd_device *skdev)
  1358. {
  1359. memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
  1360. skdev->skcomp_ix = 0;
  1361. skdev->skcomp_cycle = 1;
  1362. }
  1363. /*
  1364. *****************************************************************************
  1365. * INTERRUPTS
  1366. *****************************************************************************
  1367. */
  1368. static void skd_completion_worker(struct work_struct *work)
  1369. {
  1370. struct skd_device *skdev =
  1371. container_of(work, struct skd_device, completion_worker);
  1372. unsigned long flags;
  1373. int flush_enqueued = 0;
  1374. spin_lock_irqsave(&skdev->lock, flags);
  1375. /*
  1376. * pass in limit=0, which means no limit..
  1377. * process everything in compq
  1378. */
  1379. skd_isr_completion_posted(skdev, 0, &flush_enqueued);
  1380. schedule_work(&skdev->start_queue);
  1381. spin_unlock_irqrestore(&skdev->lock, flags);
  1382. }
  1383. static void skd_isr_msg_from_dev(struct skd_device *skdev);
  1384. static irqreturn_t
  1385. skd_isr(int irq, void *ptr)
  1386. {
  1387. struct skd_device *skdev = ptr;
  1388. u32 intstat;
  1389. u32 ack;
  1390. int rc = 0;
  1391. int deferred = 0;
  1392. int flush_enqueued = 0;
  1393. spin_lock(&skdev->lock);
  1394. for (;; ) {
  1395. intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  1396. ack = FIT_INT_DEF_MASK;
  1397. ack &= intstat;
  1398. dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
  1399. ack);
  1400. /* As long as there is an int pending on device, keep
  1401. * running loop. When none, get out, but if we've never
  1402. * done any processing, call completion handler?
  1403. */
  1404. if (ack == 0) {
  1405. /* No interrupts on device, but run the completion
  1406. * processor anyway?
  1407. */
  1408. if (rc == 0)
  1409. if (likely (skdev->state
  1410. == SKD_DRVR_STATE_ONLINE))
  1411. deferred = 1;
  1412. break;
  1413. }
  1414. rc = IRQ_HANDLED;
  1415. SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
  1416. if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
  1417. (skdev->state != SKD_DRVR_STATE_STOPPING))) {
  1418. if (intstat & FIT_ISH_COMPLETION_POSTED) {
  1419. /*
  1420. * If we have already deferred completion
  1421. * processing, don't bother running it again
  1422. */
  1423. if (deferred == 0)
  1424. deferred =
  1425. skd_isr_completion_posted(skdev,
  1426. skd_isr_comp_limit, &flush_enqueued);
  1427. }
  1428. if (intstat & FIT_ISH_FW_STATE_CHANGE) {
  1429. skd_isr_fwstate(skdev);
  1430. if (skdev->state == SKD_DRVR_STATE_FAULT ||
  1431. skdev->state ==
  1432. SKD_DRVR_STATE_DISAPPEARED) {
  1433. spin_unlock(&skdev->lock);
  1434. return rc;
  1435. }
  1436. }
  1437. if (intstat & FIT_ISH_MSG_FROM_DEV)
  1438. skd_isr_msg_from_dev(skdev);
  1439. }
  1440. }
  1441. if (unlikely(flush_enqueued))
  1442. schedule_work(&skdev->start_queue);
  1443. if (deferred)
  1444. schedule_work(&skdev->completion_worker);
  1445. else if (!flush_enqueued)
  1446. schedule_work(&skdev->start_queue);
  1447. spin_unlock(&skdev->lock);
  1448. return rc;
  1449. }
  1450. static void skd_drive_fault(struct skd_device *skdev)
  1451. {
  1452. skdev->state = SKD_DRVR_STATE_FAULT;
  1453. dev_err(&skdev->pdev->dev, "Drive FAULT\n");
  1454. }
  1455. static void skd_drive_disappeared(struct skd_device *skdev)
  1456. {
  1457. skdev->state = SKD_DRVR_STATE_DISAPPEARED;
  1458. dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
  1459. }
  1460. static void skd_isr_fwstate(struct skd_device *skdev)
  1461. {
  1462. u32 sense;
  1463. u32 state;
  1464. u32 mtd;
  1465. int prev_driver_state = skdev->state;
  1466. sense = SKD_READL(skdev, FIT_STATUS);
  1467. state = sense & FIT_SR_DRIVE_STATE_MASK;
  1468. dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
  1469. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  1470. skd_drive_state_to_str(state), state);
  1471. skdev->drive_state = state;
  1472. switch (skdev->drive_state) {
  1473. case FIT_SR_DRIVE_INIT:
  1474. if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
  1475. skd_disable_interrupts(skdev);
  1476. break;
  1477. }
  1478. if (skdev->state == SKD_DRVR_STATE_RESTARTING)
  1479. skd_recover_requests(skdev);
  1480. if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
  1481. skdev->timer_countdown = SKD_STARTING_TIMO;
  1482. skdev->state = SKD_DRVR_STATE_STARTING;
  1483. skd_soft_reset(skdev);
  1484. break;
  1485. }
  1486. mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
  1487. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1488. skdev->last_mtd = mtd;
  1489. break;
  1490. case FIT_SR_DRIVE_ONLINE:
  1491. skdev->cur_max_queue_depth = skd_max_queue_depth;
  1492. if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
  1493. skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
  1494. skdev->queue_low_water_mark =
  1495. skdev->cur_max_queue_depth * 2 / 3 + 1;
  1496. if (skdev->queue_low_water_mark < 1)
  1497. skdev->queue_low_water_mark = 1;
  1498. dev_info(&skdev->pdev->dev,
  1499. "Queue depth limit=%d dev=%d lowat=%d\n",
  1500. skdev->cur_max_queue_depth,
  1501. skdev->dev_max_queue_depth,
  1502. skdev->queue_low_water_mark);
  1503. skd_refresh_device_data(skdev);
  1504. break;
  1505. case FIT_SR_DRIVE_BUSY:
  1506. skdev->state = SKD_DRVR_STATE_BUSY;
  1507. skdev->timer_countdown = SKD_BUSY_TIMO;
  1508. skd_quiesce_dev(skdev);
  1509. break;
  1510. case FIT_SR_DRIVE_BUSY_SANITIZE:
  1511. /* set timer for 3 seconds, we'll abort any unfinished
  1512. * commands after that expires
  1513. */
  1514. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  1515. skdev->timer_countdown = SKD_TIMER_SECONDS(3);
  1516. schedule_work(&skdev->start_queue);
  1517. break;
  1518. case FIT_SR_DRIVE_BUSY_ERASE:
  1519. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  1520. skdev->timer_countdown = SKD_BUSY_TIMO;
  1521. break;
  1522. case FIT_SR_DRIVE_OFFLINE:
  1523. skdev->state = SKD_DRVR_STATE_IDLE;
  1524. break;
  1525. case FIT_SR_DRIVE_SOFT_RESET:
  1526. switch (skdev->state) {
  1527. case SKD_DRVR_STATE_STARTING:
  1528. case SKD_DRVR_STATE_RESTARTING:
  1529. /* Expected by a caller of skd_soft_reset() */
  1530. break;
  1531. default:
  1532. skdev->state = SKD_DRVR_STATE_RESTARTING;
  1533. break;
  1534. }
  1535. break;
  1536. case FIT_SR_DRIVE_FW_BOOTING:
  1537. dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
  1538. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  1539. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  1540. break;
  1541. case FIT_SR_DRIVE_DEGRADED:
  1542. case FIT_SR_PCIE_LINK_DOWN:
  1543. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  1544. break;
  1545. case FIT_SR_DRIVE_FAULT:
  1546. skd_drive_fault(skdev);
  1547. skd_recover_requests(skdev);
  1548. schedule_work(&skdev->start_queue);
  1549. break;
  1550. /* PCIe bus returned all Fs? */
  1551. case 0xFF:
  1552. dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
  1553. sense);
  1554. skd_drive_disappeared(skdev);
  1555. skd_recover_requests(skdev);
  1556. schedule_work(&skdev->start_queue);
  1557. break;
  1558. default:
  1559. /*
  1560. * Uknown FW State. Wait for a state we recognize.
  1561. */
  1562. break;
  1563. }
  1564. dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
  1565. skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
  1566. skd_skdev_state_to_str(skdev->state), skdev->state);
  1567. }
  1568. static void skd_recover_request(struct request *req, void *data, bool reserved)
  1569. {
  1570. struct skd_device *const skdev = data;
  1571. struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
  1572. if (skreq->state != SKD_REQ_STATE_BUSY)
  1573. return;
  1574. skd_log_skreq(skdev, skreq, "recover");
  1575. /* Release DMA resources for the request. */
  1576. if (skreq->n_sg > 0)
  1577. skd_postop_sg_list(skdev, skreq);
  1578. skreq->state = SKD_REQ_STATE_IDLE;
  1579. skreq->status = BLK_STS_IOERR;
  1580. blk_mq_complete_request(req);
  1581. }
  1582. static void skd_recover_requests(struct skd_device *skdev)
  1583. {
  1584. blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
  1585. }
  1586. static void skd_isr_msg_from_dev(struct skd_device *skdev)
  1587. {
  1588. u32 mfd;
  1589. u32 mtd;
  1590. u32 data;
  1591. mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  1592. dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
  1593. skdev->last_mtd);
  1594. /* ignore any mtd that is an ack for something we didn't send */
  1595. if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
  1596. return;
  1597. switch (FIT_MXD_TYPE(mfd)) {
  1598. case FIT_MTD_FITFW_INIT:
  1599. skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
  1600. if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
  1601. dev_err(&skdev->pdev->dev, "protocol mismatch\n");
  1602. dev_err(&skdev->pdev->dev, " got=%d support=%d\n",
  1603. skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
  1604. dev_err(&skdev->pdev->dev, " please upgrade driver\n");
  1605. skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
  1606. skd_soft_reset(skdev);
  1607. break;
  1608. }
  1609. mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
  1610. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1611. skdev->last_mtd = mtd;
  1612. break;
  1613. case FIT_MTD_GET_CMDQ_DEPTH:
  1614. skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
  1615. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
  1616. SKD_N_COMPLETION_ENTRY);
  1617. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1618. skdev->last_mtd = mtd;
  1619. break;
  1620. case FIT_MTD_SET_COMPQ_DEPTH:
  1621. SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
  1622. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
  1623. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1624. skdev->last_mtd = mtd;
  1625. break;
  1626. case FIT_MTD_SET_COMPQ_ADDR:
  1627. skd_reset_skcomp(skdev);
  1628. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
  1629. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1630. skdev->last_mtd = mtd;
  1631. break;
  1632. case FIT_MTD_CMD_LOG_HOST_ID:
  1633. /* hardware interface overflows in y2106 */
  1634. skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
  1635. data = skdev->connect_time_stamp & 0xFFFF;
  1636. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
  1637. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1638. skdev->last_mtd = mtd;
  1639. break;
  1640. case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
  1641. skdev->drive_jiffies = FIT_MXD_DATA(mfd);
  1642. data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
  1643. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
  1644. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1645. skdev->last_mtd = mtd;
  1646. break;
  1647. case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
  1648. skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
  1649. mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
  1650. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  1651. skdev->last_mtd = mtd;
  1652. dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
  1653. skdev->connect_time_stamp, skdev->drive_jiffies);
  1654. break;
  1655. case FIT_MTD_ARM_QUEUE:
  1656. skdev->last_mtd = 0;
  1657. /*
  1658. * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
  1659. */
  1660. break;
  1661. default:
  1662. break;
  1663. }
  1664. }
  1665. static void skd_disable_interrupts(struct skd_device *skdev)
  1666. {
  1667. u32 sense;
  1668. sense = SKD_READL(skdev, FIT_CONTROL);
  1669. sense &= ~FIT_CR_ENABLE_INTERRUPTS;
  1670. SKD_WRITEL(skdev, sense, FIT_CONTROL);
  1671. dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
  1672. /* Note that the 1s is written. A 1-bit means
  1673. * disable, a 0 means enable.
  1674. */
  1675. SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
  1676. }
  1677. static void skd_enable_interrupts(struct skd_device *skdev)
  1678. {
  1679. u32 val;
  1680. /* unmask interrupts first */
  1681. val = FIT_ISH_FW_STATE_CHANGE +
  1682. FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
  1683. /* Note that the compliment of mask is written. A 1-bit means
  1684. * disable, a 0 means enable. */
  1685. SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
  1686. dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
  1687. val = SKD_READL(skdev, FIT_CONTROL);
  1688. val |= FIT_CR_ENABLE_INTERRUPTS;
  1689. dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
  1690. SKD_WRITEL(skdev, val, FIT_CONTROL);
  1691. }
  1692. /*
  1693. *****************************************************************************
  1694. * START, STOP, RESTART, QUIESCE, UNQUIESCE
  1695. *****************************************************************************
  1696. */
  1697. static void skd_soft_reset(struct skd_device *skdev)
  1698. {
  1699. u32 val;
  1700. val = SKD_READL(skdev, FIT_CONTROL);
  1701. val |= (FIT_CR_SOFT_RESET);
  1702. dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
  1703. SKD_WRITEL(skdev, val, FIT_CONTROL);
  1704. }
  1705. static void skd_start_device(struct skd_device *skdev)
  1706. {
  1707. unsigned long flags;
  1708. u32 sense;
  1709. u32 state;
  1710. spin_lock_irqsave(&skdev->lock, flags);
  1711. /* ack all ghost interrupts */
  1712. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  1713. sense = SKD_READL(skdev, FIT_STATUS);
  1714. dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
  1715. state = sense & FIT_SR_DRIVE_STATE_MASK;
  1716. skdev->drive_state = state;
  1717. skdev->last_mtd = 0;
  1718. skdev->state = SKD_DRVR_STATE_STARTING;
  1719. skdev->timer_countdown = SKD_STARTING_TIMO;
  1720. skd_enable_interrupts(skdev);
  1721. switch (skdev->drive_state) {
  1722. case FIT_SR_DRIVE_OFFLINE:
  1723. dev_err(&skdev->pdev->dev, "Drive offline...\n");
  1724. break;
  1725. case FIT_SR_DRIVE_FW_BOOTING:
  1726. dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
  1727. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  1728. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  1729. break;
  1730. case FIT_SR_DRIVE_BUSY_SANITIZE:
  1731. dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
  1732. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  1733. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  1734. break;
  1735. case FIT_SR_DRIVE_BUSY_ERASE:
  1736. dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
  1737. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  1738. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  1739. break;
  1740. case FIT_SR_DRIVE_INIT:
  1741. case FIT_SR_DRIVE_ONLINE:
  1742. skd_soft_reset(skdev);
  1743. break;
  1744. case FIT_SR_DRIVE_BUSY:
  1745. dev_err(&skdev->pdev->dev, "Drive Busy...\n");
  1746. skdev->state = SKD_DRVR_STATE_BUSY;
  1747. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  1748. break;
  1749. case FIT_SR_DRIVE_SOFT_RESET:
  1750. dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
  1751. break;
  1752. case FIT_SR_DRIVE_FAULT:
  1753. /* Fault state is bad...soft reset won't do it...
  1754. * Hard reset, maybe, but does it work on device?
  1755. * For now, just fault so the system doesn't hang.
  1756. */
  1757. skd_drive_fault(skdev);
  1758. /*start the queue so we can respond with error to requests */
  1759. dev_dbg(&skdev->pdev->dev, "starting queue\n");
  1760. schedule_work(&skdev->start_queue);
  1761. skdev->gendisk_on = -1;
  1762. wake_up_interruptible(&skdev->waitq);
  1763. break;
  1764. case 0xFF:
  1765. /* Most likely the device isn't there or isn't responding
  1766. * to the BAR1 addresses. */
  1767. skd_drive_disappeared(skdev);
  1768. /*start the queue so we can respond with error to requests */
  1769. dev_dbg(&skdev->pdev->dev,
  1770. "starting queue to error-out reqs\n");
  1771. schedule_work(&skdev->start_queue);
  1772. skdev->gendisk_on = -1;
  1773. wake_up_interruptible(&skdev->waitq);
  1774. break;
  1775. default:
  1776. dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
  1777. skdev->drive_state);
  1778. break;
  1779. }
  1780. state = SKD_READL(skdev, FIT_CONTROL);
  1781. dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
  1782. state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  1783. dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
  1784. state = SKD_READL(skdev, FIT_INT_MASK_HOST);
  1785. dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
  1786. state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  1787. dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
  1788. state = SKD_READL(skdev, FIT_HW_VERSION);
  1789. dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
  1790. spin_unlock_irqrestore(&skdev->lock, flags);
  1791. }
  1792. static void skd_stop_device(struct skd_device *skdev)
  1793. {
  1794. unsigned long flags;
  1795. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1796. u32 dev_state;
  1797. int i;
  1798. spin_lock_irqsave(&skdev->lock, flags);
  1799. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  1800. dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
  1801. goto stop_out;
  1802. }
  1803. if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
  1804. dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
  1805. goto stop_out;
  1806. }
  1807. skdev->state = SKD_DRVR_STATE_SYNCING;
  1808. skdev->sync_done = 0;
  1809. skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
  1810. spin_unlock_irqrestore(&skdev->lock, flags);
  1811. wait_event_interruptible_timeout(skdev->waitq,
  1812. (skdev->sync_done), (10 * HZ));
  1813. spin_lock_irqsave(&skdev->lock, flags);
  1814. switch (skdev->sync_done) {
  1815. case 0:
  1816. dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
  1817. break;
  1818. case 1:
  1819. dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
  1820. break;
  1821. default:
  1822. dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
  1823. }
  1824. stop_out:
  1825. skdev->state = SKD_DRVR_STATE_STOPPING;
  1826. spin_unlock_irqrestore(&skdev->lock, flags);
  1827. skd_kill_timer(skdev);
  1828. spin_lock_irqsave(&skdev->lock, flags);
  1829. skd_disable_interrupts(skdev);
  1830. /* ensure all ints on device are cleared */
  1831. /* soft reset the device to unload with a clean slate */
  1832. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  1833. SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
  1834. spin_unlock_irqrestore(&skdev->lock, flags);
  1835. /* poll every 100ms, 1 second timeout */
  1836. for (i = 0; i < 10; i++) {
  1837. dev_state =
  1838. SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
  1839. if (dev_state == FIT_SR_DRIVE_INIT)
  1840. break;
  1841. set_current_state(TASK_INTERRUPTIBLE);
  1842. schedule_timeout(msecs_to_jiffies(100));
  1843. }
  1844. if (dev_state != FIT_SR_DRIVE_INIT)
  1845. dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
  1846. dev_state);
  1847. }
  1848. /* assume spinlock is held */
  1849. static void skd_restart_device(struct skd_device *skdev)
  1850. {
  1851. u32 state;
  1852. /* ack all ghost interrupts */
  1853. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  1854. state = SKD_READL(skdev, FIT_STATUS);
  1855. dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
  1856. state &= FIT_SR_DRIVE_STATE_MASK;
  1857. skdev->drive_state = state;
  1858. skdev->last_mtd = 0;
  1859. skdev->state = SKD_DRVR_STATE_RESTARTING;
  1860. skdev->timer_countdown = SKD_RESTARTING_TIMO;
  1861. skd_soft_reset(skdev);
  1862. }
  1863. /* assume spinlock is held */
  1864. static int skd_quiesce_dev(struct skd_device *skdev)
  1865. {
  1866. int rc = 0;
  1867. switch (skdev->state) {
  1868. case SKD_DRVR_STATE_BUSY:
  1869. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1870. dev_dbg(&skdev->pdev->dev, "stopping queue\n");
  1871. blk_mq_stop_hw_queues(skdev->queue);
  1872. break;
  1873. case SKD_DRVR_STATE_ONLINE:
  1874. case SKD_DRVR_STATE_STOPPING:
  1875. case SKD_DRVR_STATE_SYNCING:
  1876. case SKD_DRVR_STATE_PAUSING:
  1877. case SKD_DRVR_STATE_PAUSED:
  1878. case SKD_DRVR_STATE_STARTING:
  1879. case SKD_DRVR_STATE_RESTARTING:
  1880. case SKD_DRVR_STATE_RESUMING:
  1881. default:
  1882. rc = -EINVAL;
  1883. dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
  1884. skdev->state);
  1885. }
  1886. return rc;
  1887. }
  1888. /* assume spinlock is held */
  1889. static int skd_unquiesce_dev(struct skd_device *skdev)
  1890. {
  1891. int prev_driver_state = skdev->state;
  1892. skd_log_skdev(skdev, "unquiesce");
  1893. if (skdev->state == SKD_DRVR_STATE_ONLINE) {
  1894. dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
  1895. return 0;
  1896. }
  1897. if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
  1898. /*
  1899. * If there has been an state change to other than
  1900. * ONLINE, we will rely on controller state change
  1901. * to come back online and restart the queue.
  1902. * The BUSY state means that driver is ready to
  1903. * continue normal processing but waiting for controller
  1904. * to become available.
  1905. */
  1906. skdev->state = SKD_DRVR_STATE_BUSY;
  1907. dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
  1908. return 0;
  1909. }
  1910. /*
  1911. * Drive has just come online, driver is either in startup,
  1912. * paused performing a task, or bust waiting for hardware.
  1913. */
  1914. switch (skdev->state) {
  1915. case SKD_DRVR_STATE_PAUSED:
  1916. case SKD_DRVR_STATE_BUSY:
  1917. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1918. case SKD_DRVR_STATE_BUSY_ERASE:
  1919. case SKD_DRVR_STATE_STARTING:
  1920. case SKD_DRVR_STATE_RESTARTING:
  1921. case SKD_DRVR_STATE_FAULT:
  1922. case SKD_DRVR_STATE_IDLE:
  1923. case SKD_DRVR_STATE_LOAD:
  1924. skdev->state = SKD_DRVR_STATE_ONLINE;
  1925. dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
  1926. skd_skdev_state_to_str(prev_driver_state),
  1927. prev_driver_state, skd_skdev_state_to_str(skdev->state),
  1928. skdev->state);
  1929. dev_dbg(&skdev->pdev->dev,
  1930. "**** device ONLINE...starting block queue\n");
  1931. dev_dbg(&skdev->pdev->dev, "starting queue\n");
  1932. dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
  1933. schedule_work(&skdev->start_queue);
  1934. skdev->gendisk_on = 1;
  1935. wake_up_interruptible(&skdev->waitq);
  1936. break;
  1937. case SKD_DRVR_STATE_DISAPPEARED:
  1938. default:
  1939. dev_dbg(&skdev->pdev->dev,
  1940. "**** driver state %d, not implemented\n",
  1941. skdev->state);
  1942. return -EBUSY;
  1943. }
  1944. return 0;
  1945. }
  1946. /*
  1947. *****************************************************************************
  1948. * PCIe MSI/MSI-X INTERRUPT HANDLERS
  1949. *****************************************************************************
  1950. */
  1951. static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
  1952. {
  1953. struct skd_device *skdev = skd_host_data;
  1954. unsigned long flags;
  1955. spin_lock_irqsave(&skdev->lock, flags);
  1956. dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
  1957. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  1958. dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
  1959. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  1960. SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
  1961. spin_unlock_irqrestore(&skdev->lock, flags);
  1962. return IRQ_HANDLED;
  1963. }
  1964. static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
  1965. {
  1966. struct skd_device *skdev = skd_host_data;
  1967. unsigned long flags;
  1968. spin_lock_irqsave(&skdev->lock, flags);
  1969. dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
  1970. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  1971. SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
  1972. skd_isr_fwstate(skdev);
  1973. spin_unlock_irqrestore(&skdev->lock, flags);
  1974. return IRQ_HANDLED;
  1975. }
  1976. static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
  1977. {
  1978. struct skd_device *skdev = skd_host_data;
  1979. unsigned long flags;
  1980. int flush_enqueued = 0;
  1981. int deferred;
  1982. spin_lock_irqsave(&skdev->lock, flags);
  1983. dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
  1984. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  1985. SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
  1986. deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
  1987. &flush_enqueued);
  1988. if (flush_enqueued)
  1989. schedule_work(&skdev->start_queue);
  1990. if (deferred)
  1991. schedule_work(&skdev->completion_worker);
  1992. else if (!flush_enqueued)
  1993. schedule_work(&skdev->start_queue);
  1994. spin_unlock_irqrestore(&skdev->lock, flags);
  1995. return IRQ_HANDLED;
  1996. }
  1997. static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
  1998. {
  1999. struct skd_device *skdev = skd_host_data;
  2000. unsigned long flags;
  2001. spin_lock_irqsave(&skdev->lock, flags);
  2002. dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
  2003. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  2004. SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
  2005. skd_isr_msg_from_dev(skdev);
  2006. spin_unlock_irqrestore(&skdev->lock, flags);
  2007. return IRQ_HANDLED;
  2008. }
  2009. static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
  2010. {
  2011. struct skd_device *skdev = skd_host_data;
  2012. unsigned long flags;
  2013. spin_lock_irqsave(&skdev->lock, flags);
  2014. dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
  2015. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  2016. SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
  2017. spin_unlock_irqrestore(&skdev->lock, flags);
  2018. return IRQ_HANDLED;
  2019. }
  2020. /*
  2021. *****************************************************************************
  2022. * PCIe MSI/MSI-X SETUP
  2023. *****************************************************************************
  2024. */
  2025. struct skd_msix_entry {
  2026. char isr_name[30];
  2027. };
  2028. struct skd_init_msix_entry {
  2029. const char *name;
  2030. irq_handler_t handler;
  2031. };
  2032. #define SKD_MAX_MSIX_COUNT 13
  2033. #define SKD_MIN_MSIX_COUNT 7
  2034. #define SKD_BASE_MSIX_IRQ 4
  2035. static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
  2036. { "(DMA 0)", skd_reserved_isr },
  2037. { "(DMA 1)", skd_reserved_isr },
  2038. { "(DMA 2)", skd_reserved_isr },
  2039. { "(DMA 3)", skd_reserved_isr },
  2040. { "(State Change)", skd_statec_isr },
  2041. { "(COMPL_Q)", skd_comp_q },
  2042. { "(MSG)", skd_msg_isr },
  2043. { "(Reserved)", skd_reserved_isr },
  2044. { "(Reserved)", skd_reserved_isr },
  2045. { "(Queue Full 0)", skd_qfull_isr },
  2046. { "(Queue Full 1)", skd_qfull_isr },
  2047. { "(Queue Full 2)", skd_qfull_isr },
  2048. { "(Queue Full 3)", skd_qfull_isr },
  2049. };
  2050. static int skd_acquire_msix(struct skd_device *skdev)
  2051. {
  2052. int i, rc;
  2053. struct pci_dev *pdev = skdev->pdev;
  2054. rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
  2055. PCI_IRQ_MSIX);
  2056. if (rc < 0) {
  2057. dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
  2058. goto out;
  2059. }
  2060. skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
  2061. sizeof(struct skd_msix_entry), GFP_KERNEL);
  2062. if (!skdev->msix_entries) {
  2063. rc = -ENOMEM;
  2064. dev_err(&skdev->pdev->dev, "msix table allocation error\n");
  2065. goto out;
  2066. }
  2067. /* Enable MSI-X vectors for the base queue */
  2068. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  2069. struct skd_msix_entry *qentry = &skdev->msix_entries[i];
  2070. snprintf(qentry->isr_name, sizeof(qentry->isr_name),
  2071. "%s%d-msix %s", DRV_NAME, skdev->devno,
  2072. msix_entries[i].name);
  2073. rc = devm_request_irq(&skdev->pdev->dev,
  2074. pci_irq_vector(skdev->pdev, i),
  2075. msix_entries[i].handler, 0,
  2076. qentry->isr_name, skdev);
  2077. if (rc) {
  2078. dev_err(&skdev->pdev->dev,
  2079. "Unable to register(%d) MSI-X handler %d: %s\n",
  2080. rc, i, qentry->isr_name);
  2081. goto msix_out;
  2082. }
  2083. }
  2084. dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
  2085. SKD_MAX_MSIX_COUNT);
  2086. return 0;
  2087. msix_out:
  2088. while (--i >= 0)
  2089. devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
  2090. out:
  2091. kfree(skdev->msix_entries);
  2092. skdev->msix_entries = NULL;
  2093. return rc;
  2094. }
  2095. static int skd_acquire_irq(struct skd_device *skdev)
  2096. {
  2097. struct pci_dev *pdev = skdev->pdev;
  2098. unsigned int irq_flag = PCI_IRQ_LEGACY;
  2099. int rc;
  2100. if (skd_isr_type == SKD_IRQ_MSIX) {
  2101. rc = skd_acquire_msix(skdev);
  2102. if (!rc)
  2103. return 0;
  2104. dev_err(&skdev->pdev->dev,
  2105. "failed to enable MSI-X, re-trying with MSI %d\n", rc);
  2106. }
  2107. snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
  2108. skdev->devno);
  2109. if (skd_isr_type != SKD_IRQ_LEGACY)
  2110. irq_flag |= PCI_IRQ_MSI;
  2111. rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
  2112. if (rc < 0) {
  2113. dev_err(&skdev->pdev->dev,
  2114. "failed to allocate the MSI interrupt %d\n", rc);
  2115. return rc;
  2116. }
  2117. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
  2118. pdev->msi_enabled ? 0 : IRQF_SHARED,
  2119. skdev->isr_name, skdev);
  2120. if (rc) {
  2121. pci_free_irq_vectors(pdev);
  2122. dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
  2123. rc);
  2124. return rc;
  2125. }
  2126. return 0;
  2127. }
  2128. static void skd_release_irq(struct skd_device *skdev)
  2129. {
  2130. struct pci_dev *pdev = skdev->pdev;
  2131. if (skdev->msix_entries) {
  2132. int i;
  2133. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  2134. devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
  2135. skdev);
  2136. }
  2137. kfree(skdev->msix_entries);
  2138. skdev->msix_entries = NULL;
  2139. } else {
  2140. devm_free_irq(&pdev->dev, pdev->irq, skdev);
  2141. }
  2142. pci_free_irq_vectors(pdev);
  2143. }
  2144. /*
  2145. *****************************************************************************
  2146. * CONSTRUCT
  2147. *****************************************************************************
  2148. */
  2149. static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
  2150. dma_addr_t *dma_handle, gfp_t gfp,
  2151. enum dma_data_direction dir)
  2152. {
  2153. struct device *dev = &skdev->pdev->dev;
  2154. void *buf;
  2155. buf = kmem_cache_alloc(s, gfp);
  2156. if (!buf)
  2157. return NULL;
  2158. *dma_handle = dma_map_single(dev, buf,
  2159. kmem_cache_size(s), dir);
  2160. if (dma_mapping_error(dev, *dma_handle)) {
  2161. kmem_cache_free(s, buf);
  2162. buf = NULL;
  2163. }
  2164. return buf;
  2165. }
  2166. static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
  2167. void *vaddr, dma_addr_t dma_handle,
  2168. enum dma_data_direction dir)
  2169. {
  2170. if (!vaddr)
  2171. return;
  2172. dma_unmap_single(&skdev->pdev->dev, dma_handle,
  2173. kmem_cache_size(s), dir);
  2174. kmem_cache_free(s, vaddr);
  2175. }
  2176. static int skd_cons_skcomp(struct skd_device *skdev)
  2177. {
  2178. int rc = 0;
  2179. struct fit_completion_entry_v1 *skcomp;
  2180. dev_dbg(&skdev->pdev->dev,
  2181. "comp pci_alloc, total bytes %zd entries %d\n",
  2182. SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
  2183. skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
  2184. &skdev->cq_dma_address);
  2185. if (skcomp == NULL) {
  2186. rc = -ENOMEM;
  2187. goto err_out;
  2188. }
  2189. skdev->skcomp_table = skcomp;
  2190. skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
  2191. sizeof(*skcomp) *
  2192. SKD_N_COMPLETION_ENTRY);
  2193. err_out:
  2194. return rc;
  2195. }
  2196. static int skd_cons_skmsg(struct skd_device *skdev)
  2197. {
  2198. int rc = 0;
  2199. u32 i;
  2200. dev_dbg(&skdev->pdev->dev,
  2201. "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
  2202. sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
  2203. sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
  2204. skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
  2205. sizeof(struct skd_fitmsg_context),
  2206. GFP_KERNEL);
  2207. if (skdev->skmsg_table == NULL) {
  2208. rc = -ENOMEM;
  2209. goto err_out;
  2210. }
  2211. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  2212. struct skd_fitmsg_context *skmsg;
  2213. skmsg = &skdev->skmsg_table[i];
  2214. skmsg->id = i + SKD_ID_FIT_MSG;
  2215. skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
  2216. SKD_N_FITMSG_BYTES,
  2217. &skmsg->mb_dma_address);
  2218. if (skmsg->msg_buf == NULL) {
  2219. rc = -ENOMEM;
  2220. goto err_out;
  2221. }
  2222. WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
  2223. (FIT_QCMD_ALIGN - 1),
  2224. "not aligned: msg_buf %p mb_dma_address %pad\n",
  2225. skmsg->msg_buf, &skmsg->mb_dma_address);
  2226. memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
  2227. }
  2228. err_out:
  2229. return rc;
  2230. }
  2231. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  2232. u32 n_sg,
  2233. dma_addr_t *ret_dma_addr)
  2234. {
  2235. struct fit_sg_descriptor *sg_list;
  2236. sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
  2237. GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
  2238. if (sg_list != NULL) {
  2239. uint64_t dma_address = *ret_dma_addr;
  2240. u32 i;
  2241. for (i = 0; i < n_sg - 1; i++) {
  2242. uint64_t ndp_off;
  2243. ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
  2244. sg_list[i].next_desc_ptr = dma_address + ndp_off;
  2245. }
  2246. sg_list[i].next_desc_ptr = 0LL;
  2247. }
  2248. return sg_list;
  2249. }
  2250. static void skd_free_sg_list(struct skd_device *skdev,
  2251. struct fit_sg_descriptor *sg_list,
  2252. dma_addr_t dma_addr)
  2253. {
  2254. if (WARN_ON_ONCE(!sg_list))
  2255. return;
  2256. skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
  2257. DMA_TO_DEVICE);
  2258. }
  2259. static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
  2260. unsigned int hctx_idx, unsigned int numa_node)
  2261. {
  2262. struct skd_device *skdev = set->driver_data;
  2263. struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
  2264. skreq->state = SKD_REQ_STATE_IDLE;
  2265. skreq->sg = (void *)(skreq + 1);
  2266. sg_init_table(skreq->sg, skd_sgs_per_request);
  2267. skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
  2268. &skreq->sksg_dma_address);
  2269. return skreq->sksg_list ? 0 : -ENOMEM;
  2270. }
  2271. static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
  2272. unsigned int hctx_idx)
  2273. {
  2274. struct skd_device *skdev = set->driver_data;
  2275. struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
  2276. skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
  2277. }
  2278. static int skd_cons_sksb(struct skd_device *skdev)
  2279. {
  2280. int rc = 0;
  2281. struct skd_special_context *skspcl;
  2282. skspcl = &skdev->internal_skspcl;
  2283. skspcl->req.id = 0 + SKD_ID_INTERNAL;
  2284. skspcl->req.state = SKD_REQ_STATE_IDLE;
  2285. skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
  2286. &skspcl->db_dma_address,
  2287. GFP_DMA | __GFP_ZERO,
  2288. DMA_BIDIRECTIONAL);
  2289. if (skspcl->data_buf == NULL) {
  2290. rc = -ENOMEM;
  2291. goto err_out;
  2292. }
  2293. skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
  2294. &skspcl->mb_dma_address,
  2295. GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
  2296. if (skspcl->msg_buf == NULL) {
  2297. rc = -ENOMEM;
  2298. goto err_out;
  2299. }
  2300. skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
  2301. &skspcl->req.sksg_dma_address);
  2302. if (skspcl->req.sksg_list == NULL) {
  2303. rc = -ENOMEM;
  2304. goto err_out;
  2305. }
  2306. if (!skd_format_internal_skspcl(skdev)) {
  2307. rc = -EINVAL;
  2308. goto err_out;
  2309. }
  2310. err_out:
  2311. return rc;
  2312. }
  2313. static const struct blk_mq_ops skd_mq_ops = {
  2314. .queue_rq = skd_mq_queue_rq,
  2315. .complete = skd_complete_rq,
  2316. .timeout = skd_timed_out,
  2317. .init_request = skd_init_request,
  2318. .exit_request = skd_exit_request,
  2319. };
  2320. static int skd_cons_disk(struct skd_device *skdev)
  2321. {
  2322. int rc = 0;
  2323. struct gendisk *disk;
  2324. struct request_queue *q;
  2325. unsigned long flags;
  2326. disk = alloc_disk(SKD_MINORS_PER_DEVICE);
  2327. if (!disk) {
  2328. rc = -ENOMEM;
  2329. goto err_out;
  2330. }
  2331. skdev->disk = disk;
  2332. sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
  2333. disk->major = skdev->major;
  2334. disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
  2335. disk->fops = &skd_blockdev_ops;
  2336. disk->private_data = skdev;
  2337. memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
  2338. skdev->tag_set.ops = &skd_mq_ops;
  2339. skdev->tag_set.nr_hw_queues = 1;
  2340. skdev->tag_set.queue_depth = skd_max_queue_depth;
  2341. skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
  2342. skdev->sgs_per_request * sizeof(struct scatterlist);
  2343. skdev->tag_set.numa_node = NUMA_NO_NODE;
  2344. skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
  2345. BLK_MQ_F_SG_MERGE |
  2346. BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
  2347. skdev->tag_set.driver_data = skdev;
  2348. rc = blk_mq_alloc_tag_set(&skdev->tag_set);
  2349. if (rc)
  2350. goto err_out;
  2351. q = blk_mq_init_queue(&skdev->tag_set);
  2352. if (IS_ERR(q)) {
  2353. blk_mq_free_tag_set(&skdev->tag_set);
  2354. rc = PTR_ERR(q);
  2355. goto err_out;
  2356. }
  2357. q->queuedata = skdev;
  2358. skdev->queue = q;
  2359. disk->queue = q;
  2360. blk_queue_write_cache(q, true, true);
  2361. blk_queue_max_segments(q, skdev->sgs_per_request);
  2362. blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
  2363. /* set optimal I/O size to 8KB */
  2364. blk_queue_io_opt(q, 8192);
  2365. blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
  2366. blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
  2367. blk_queue_rq_timeout(q, 8 * HZ);
  2368. spin_lock_irqsave(&skdev->lock, flags);
  2369. dev_dbg(&skdev->pdev->dev, "stopping queue\n");
  2370. blk_mq_stop_hw_queues(skdev->queue);
  2371. spin_unlock_irqrestore(&skdev->lock, flags);
  2372. err_out:
  2373. return rc;
  2374. }
  2375. #define SKD_N_DEV_TABLE 16u
  2376. static u32 skd_next_devno;
  2377. static struct skd_device *skd_construct(struct pci_dev *pdev)
  2378. {
  2379. struct skd_device *skdev;
  2380. int blk_major = skd_major;
  2381. size_t size;
  2382. int rc;
  2383. skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
  2384. if (!skdev) {
  2385. dev_err(&pdev->dev, "memory alloc failure\n");
  2386. return NULL;
  2387. }
  2388. skdev->state = SKD_DRVR_STATE_LOAD;
  2389. skdev->pdev = pdev;
  2390. skdev->devno = skd_next_devno++;
  2391. skdev->major = blk_major;
  2392. skdev->dev_max_queue_depth = 0;
  2393. skdev->num_req_context = skd_max_queue_depth;
  2394. skdev->num_fitmsg_context = skd_max_queue_depth;
  2395. skdev->cur_max_queue_depth = 1;
  2396. skdev->queue_low_water_mark = 1;
  2397. skdev->proto_ver = 99;
  2398. skdev->sgs_per_request = skd_sgs_per_request;
  2399. skdev->dbg_level = skd_dbg_level;
  2400. spin_lock_init(&skdev->lock);
  2401. INIT_WORK(&skdev->start_queue, skd_start_queue);
  2402. INIT_WORK(&skdev->completion_worker, skd_completion_worker);
  2403. size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
  2404. skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
  2405. SLAB_HWCACHE_ALIGN, NULL);
  2406. if (!skdev->msgbuf_cache)
  2407. goto err_out;
  2408. WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
  2409. "skd-msgbuf: %d < %zd\n",
  2410. kmem_cache_size(skdev->msgbuf_cache), size);
  2411. size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
  2412. skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
  2413. SLAB_HWCACHE_ALIGN, NULL);
  2414. if (!skdev->sglist_cache)
  2415. goto err_out;
  2416. WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
  2417. "skd-sglist: %d < %zd\n",
  2418. kmem_cache_size(skdev->sglist_cache), size);
  2419. size = SKD_N_INTERNAL_BYTES;
  2420. skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
  2421. SLAB_HWCACHE_ALIGN, NULL);
  2422. if (!skdev->databuf_cache)
  2423. goto err_out;
  2424. WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
  2425. "skd-databuf: %d < %zd\n",
  2426. kmem_cache_size(skdev->databuf_cache), size);
  2427. dev_dbg(&skdev->pdev->dev, "skcomp\n");
  2428. rc = skd_cons_skcomp(skdev);
  2429. if (rc < 0)
  2430. goto err_out;
  2431. dev_dbg(&skdev->pdev->dev, "skmsg\n");
  2432. rc = skd_cons_skmsg(skdev);
  2433. if (rc < 0)
  2434. goto err_out;
  2435. dev_dbg(&skdev->pdev->dev, "sksb\n");
  2436. rc = skd_cons_sksb(skdev);
  2437. if (rc < 0)
  2438. goto err_out;
  2439. dev_dbg(&skdev->pdev->dev, "disk\n");
  2440. rc = skd_cons_disk(skdev);
  2441. if (rc < 0)
  2442. goto err_out;
  2443. dev_dbg(&skdev->pdev->dev, "VICTORY\n");
  2444. return skdev;
  2445. err_out:
  2446. dev_dbg(&skdev->pdev->dev, "construct failed\n");
  2447. skd_destruct(skdev);
  2448. return NULL;
  2449. }
  2450. /*
  2451. *****************************************************************************
  2452. * DESTRUCT (FREE)
  2453. *****************************************************************************
  2454. */
  2455. static void skd_free_skcomp(struct skd_device *skdev)
  2456. {
  2457. if (skdev->skcomp_table)
  2458. pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
  2459. skdev->skcomp_table, skdev->cq_dma_address);
  2460. skdev->skcomp_table = NULL;
  2461. skdev->cq_dma_address = 0;
  2462. }
  2463. static void skd_free_skmsg(struct skd_device *skdev)
  2464. {
  2465. u32 i;
  2466. if (skdev->skmsg_table == NULL)
  2467. return;
  2468. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  2469. struct skd_fitmsg_context *skmsg;
  2470. skmsg = &skdev->skmsg_table[i];
  2471. if (skmsg->msg_buf != NULL) {
  2472. pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
  2473. skmsg->msg_buf,
  2474. skmsg->mb_dma_address);
  2475. }
  2476. skmsg->msg_buf = NULL;
  2477. skmsg->mb_dma_address = 0;
  2478. }
  2479. kfree(skdev->skmsg_table);
  2480. skdev->skmsg_table = NULL;
  2481. }
  2482. static void skd_free_sksb(struct skd_device *skdev)
  2483. {
  2484. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  2485. skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
  2486. skspcl->db_dma_address, DMA_BIDIRECTIONAL);
  2487. skspcl->data_buf = NULL;
  2488. skspcl->db_dma_address = 0;
  2489. skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
  2490. skspcl->mb_dma_address, DMA_TO_DEVICE);
  2491. skspcl->msg_buf = NULL;
  2492. skspcl->mb_dma_address = 0;
  2493. skd_free_sg_list(skdev, skspcl->req.sksg_list,
  2494. skspcl->req.sksg_dma_address);
  2495. skspcl->req.sksg_list = NULL;
  2496. skspcl->req.sksg_dma_address = 0;
  2497. }
  2498. static void skd_free_disk(struct skd_device *skdev)
  2499. {
  2500. struct gendisk *disk = skdev->disk;
  2501. if (disk && (disk->flags & GENHD_FL_UP))
  2502. del_gendisk(disk);
  2503. if (skdev->queue) {
  2504. blk_cleanup_queue(skdev->queue);
  2505. skdev->queue = NULL;
  2506. if (disk)
  2507. disk->queue = NULL;
  2508. }
  2509. if (skdev->tag_set.tags)
  2510. blk_mq_free_tag_set(&skdev->tag_set);
  2511. put_disk(disk);
  2512. skdev->disk = NULL;
  2513. }
  2514. static void skd_destruct(struct skd_device *skdev)
  2515. {
  2516. if (skdev == NULL)
  2517. return;
  2518. cancel_work_sync(&skdev->start_queue);
  2519. dev_dbg(&skdev->pdev->dev, "disk\n");
  2520. skd_free_disk(skdev);
  2521. dev_dbg(&skdev->pdev->dev, "sksb\n");
  2522. skd_free_sksb(skdev);
  2523. dev_dbg(&skdev->pdev->dev, "skmsg\n");
  2524. skd_free_skmsg(skdev);
  2525. dev_dbg(&skdev->pdev->dev, "skcomp\n");
  2526. skd_free_skcomp(skdev);
  2527. kmem_cache_destroy(skdev->databuf_cache);
  2528. kmem_cache_destroy(skdev->sglist_cache);
  2529. kmem_cache_destroy(skdev->msgbuf_cache);
  2530. dev_dbg(&skdev->pdev->dev, "skdev\n");
  2531. kfree(skdev);
  2532. }
  2533. /*
  2534. *****************************************************************************
  2535. * BLOCK DEVICE (BDEV) GLUE
  2536. *****************************************************************************
  2537. */
  2538. static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  2539. {
  2540. struct skd_device *skdev;
  2541. u64 capacity;
  2542. skdev = bdev->bd_disk->private_data;
  2543. dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
  2544. bdev->bd_disk->disk_name, current->comm);
  2545. if (skdev->read_cap_is_valid) {
  2546. capacity = get_capacity(skdev->disk);
  2547. geo->heads = 64;
  2548. geo->sectors = 255;
  2549. geo->cylinders = (capacity) / (255 * 64);
  2550. return 0;
  2551. }
  2552. return -EIO;
  2553. }
  2554. static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
  2555. {
  2556. dev_dbg(&skdev->pdev->dev, "add_disk\n");
  2557. device_add_disk(parent, skdev->disk);
  2558. return 0;
  2559. }
  2560. static const struct block_device_operations skd_blockdev_ops = {
  2561. .owner = THIS_MODULE,
  2562. .getgeo = skd_bdev_getgeo,
  2563. };
  2564. /*
  2565. *****************************************************************************
  2566. * PCIe DRIVER GLUE
  2567. *****************************************************************************
  2568. */
  2569. static const struct pci_device_id skd_pci_tbl[] = {
  2570. { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
  2571. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2572. { 0 } /* terminate list */
  2573. };
  2574. MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
  2575. static char *skd_pci_info(struct skd_device *skdev, char *str)
  2576. {
  2577. int pcie_reg;
  2578. strcpy(str, "PCIe (");
  2579. pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
  2580. if (pcie_reg) {
  2581. char lwstr[6];
  2582. uint16_t pcie_lstat, lspeed, lwidth;
  2583. pcie_reg += 0x12;
  2584. pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
  2585. lspeed = pcie_lstat & (0xF);
  2586. lwidth = (pcie_lstat & 0x3F0) >> 4;
  2587. if (lspeed == 1)
  2588. strcat(str, "2.5GT/s ");
  2589. else if (lspeed == 2)
  2590. strcat(str, "5.0GT/s ");
  2591. else
  2592. strcat(str, "<unknown> ");
  2593. snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
  2594. strcat(str, lwstr);
  2595. }
  2596. return str;
  2597. }
  2598. static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  2599. {
  2600. int i;
  2601. int rc = 0;
  2602. char pci_str[32];
  2603. struct skd_device *skdev;
  2604. dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
  2605. pdev->device);
  2606. rc = pci_enable_device(pdev);
  2607. if (rc)
  2608. return rc;
  2609. rc = pci_request_regions(pdev, DRV_NAME);
  2610. if (rc)
  2611. goto err_out;
  2612. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  2613. if (!rc) {
  2614. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2615. dev_err(&pdev->dev, "consistent DMA mask error %d\n",
  2616. rc);
  2617. }
  2618. } else {
  2619. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2620. if (rc) {
  2621. dev_err(&pdev->dev, "DMA mask error %d\n", rc);
  2622. goto err_out_regions;
  2623. }
  2624. }
  2625. if (!skd_major) {
  2626. rc = register_blkdev(0, DRV_NAME);
  2627. if (rc < 0)
  2628. goto err_out_regions;
  2629. BUG_ON(!rc);
  2630. skd_major = rc;
  2631. }
  2632. skdev = skd_construct(pdev);
  2633. if (skdev == NULL) {
  2634. rc = -ENOMEM;
  2635. goto err_out_regions;
  2636. }
  2637. skd_pci_info(skdev, pci_str);
  2638. dev_info(&pdev->dev, "%s 64bit\n", pci_str);
  2639. pci_set_master(pdev);
  2640. rc = pci_enable_pcie_error_reporting(pdev);
  2641. if (rc) {
  2642. dev_err(&pdev->dev,
  2643. "bad enable of PCIe error reporting rc=%d\n", rc);
  2644. skdev->pcie_error_reporting_is_enabled = 0;
  2645. } else
  2646. skdev->pcie_error_reporting_is_enabled = 1;
  2647. pci_set_drvdata(pdev, skdev);
  2648. for (i = 0; i < SKD_MAX_BARS; i++) {
  2649. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  2650. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  2651. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  2652. skdev->mem_size[i]);
  2653. if (!skdev->mem_map[i]) {
  2654. dev_err(&pdev->dev,
  2655. "Unable to map adapter memory!\n");
  2656. rc = -ENODEV;
  2657. goto err_out_iounmap;
  2658. }
  2659. dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
  2660. skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
  2661. skdev->mem_size[i]);
  2662. }
  2663. rc = skd_acquire_irq(skdev);
  2664. if (rc) {
  2665. dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
  2666. goto err_out_iounmap;
  2667. }
  2668. rc = skd_start_timer(skdev);
  2669. if (rc)
  2670. goto err_out_timer;
  2671. init_waitqueue_head(&skdev->waitq);
  2672. skd_start_device(skdev);
  2673. rc = wait_event_interruptible_timeout(skdev->waitq,
  2674. (skdev->gendisk_on),
  2675. (SKD_START_WAIT_SECONDS * HZ));
  2676. if (skdev->gendisk_on > 0) {
  2677. /* device came on-line after reset */
  2678. skd_bdev_attach(&pdev->dev, skdev);
  2679. rc = 0;
  2680. } else {
  2681. /* we timed out, something is wrong with the device,
  2682. don't add the disk structure */
  2683. dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
  2684. rc);
  2685. /* in case of no error; we timeout with ENXIO */
  2686. if (!rc)
  2687. rc = -ENXIO;
  2688. goto err_out_timer;
  2689. }
  2690. return rc;
  2691. err_out_timer:
  2692. skd_stop_device(skdev);
  2693. skd_release_irq(skdev);
  2694. err_out_iounmap:
  2695. for (i = 0; i < SKD_MAX_BARS; i++)
  2696. if (skdev->mem_map[i])
  2697. iounmap(skdev->mem_map[i]);
  2698. if (skdev->pcie_error_reporting_is_enabled)
  2699. pci_disable_pcie_error_reporting(pdev);
  2700. skd_destruct(skdev);
  2701. err_out_regions:
  2702. pci_release_regions(pdev);
  2703. err_out:
  2704. pci_disable_device(pdev);
  2705. pci_set_drvdata(pdev, NULL);
  2706. return rc;
  2707. }
  2708. static void skd_pci_remove(struct pci_dev *pdev)
  2709. {
  2710. int i;
  2711. struct skd_device *skdev;
  2712. skdev = pci_get_drvdata(pdev);
  2713. if (!skdev) {
  2714. dev_err(&pdev->dev, "no device data for PCI\n");
  2715. return;
  2716. }
  2717. skd_stop_device(skdev);
  2718. skd_release_irq(skdev);
  2719. for (i = 0; i < SKD_MAX_BARS; i++)
  2720. if (skdev->mem_map[i])
  2721. iounmap(skdev->mem_map[i]);
  2722. if (skdev->pcie_error_reporting_is_enabled)
  2723. pci_disable_pcie_error_reporting(pdev);
  2724. skd_destruct(skdev);
  2725. pci_release_regions(pdev);
  2726. pci_disable_device(pdev);
  2727. pci_set_drvdata(pdev, NULL);
  2728. return;
  2729. }
  2730. static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  2731. {
  2732. int i;
  2733. struct skd_device *skdev;
  2734. skdev = pci_get_drvdata(pdev);
  2735. if (!skdev) {
  2736. dev_err(&pdev->dev, "no device data for PCI\n");
  2737. return -EIO;
  2738. }
  2739. skd_stop_device(skdev);
  2740. skd_release_irq(skdev);
  2741. for (i = 0; i < SKD_MAX_BARS; i++)
  2742. if (skdev->mem_map[i])
  2743. iounmap(skdev->mem_map[i]);
  2744. if (skdev->pcie_error_reporting_is_enabled)
  2745. pci_disable_pcie_error_reporting(pdev);
  2746. pci_release_regions(pdev);
  2747. pci_save_state(pdev);
  2748. pci_disable_device(pdev);
  2749. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2750. return 0;
  2751. }
  2752. static int skd_pci_resume(struct pci_dev *pdev)
  2753. {
  2754. int i;
  2755. int rc = 0;
  2756. struct skd_device *skdev;
  2757. skdev = pci_get_drvdata(pdev);
  2758. if (!skdev) {
  2759. dev_err(&pdev->dev, "no device data for PCI\n");
  2760. return -1;
  2761. }
  2762. pci_set_power_state(pdev, PCI_D0);
  2763. pci_enable_wake(pdev, PCI_D0, 0);
  2764. pci_restore_state(pdev);
  2765. rc = pci_enable_device(pdev);
  2766. if (rc)
  2767. return rc;
  2768. rc = pci_request_regions(pdev, DRV_NAME);
  2769. if (rc)
  2770. goto err_out;
  2771. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  2772. if (!rc) {
  2773. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2774. dev_err(&pdev->dev, "consistent DMA mask error %d\n",
  2775. rc);
  2776. }
  2777. } else {
  2778. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2779. if (rc) {
  2780. dev_err(&pdev->dev, "DMA mask error %d\n", rc);
  2781. goto err_out_regions;
  2782. }
  2783. }
  2784. pci_set_master(pdev);
  2785. rc = pci_enable_pcie_error_reporting(pdev);
  2786. if (rc) {
  2787. dev_err(&pdev->dev,
  2788. "bad enable of PCIe error reporting rc=%d\n", rc);
  2789. skdev->pcie_error_reporting_is_enabled = 0;
  2790. } else
  2791. skdev->pcie_error_reporting_is_enabled = 1;
  2792. for (i = 0; i < SKD_MAX_BARS; i++) {
  2793. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  2794. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  2795. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  2796. skdev->mem_size[i]);
  2797. if (!skdev->mem_map[i]) {
  2798. dev_err(&pdev->dev, "Unable to map adapter memory!\n");
  2799. rc = -ENODEV;
  2800. goto err_out_iounmap;
  2801. }
  2802. dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
  2803. skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
  2804. skdev->mem_size[i]);
  2805. }
  2806. rc = skd_acquire_irq(skdev);
  2807. if (rc) {
  2808. dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
  2809. goto err_out_iounmap;
  2810. }
  2811. rc = skd_start_timer(skdev);
  2812. if (rc)
  2813. goto err_out_timer;
  2814. init_waitqueue_head(&skdev->waitq);
  2815. skd_start_device(skdev);
  2816. return rc;
  2817. err_out_timer:
  2818. skd_stop_device(skdev);
  2819. skd_release_irq(skdev);
  2820. err_out_iounmap:
  2821. for (i = 0; i < SKD_MAX_BARS; i++)
  2822. if (skdev->mem_map[i])
  2823. iounmap(skdev->mem_map[i]);
  2824. if (skdev->pcie_error_reporting_is_enabled)
  2825. pci_disable_pcie_error_reporting(pdev);
  2826. err_out_regions:
  2827. pci_release_regions(pdev);
  2828. err_out:
  2829. pci_disable_device(pdev);
  2830. return rc;
  2831. }
  2832. static void skd_pci_shutdown(struct pci_dev *pdev)
  2833. {
  2834. struct skd_device *skdev;
  2835. dev_err(&pdev->dev, "%s called\n", __func__);
  2836. skdev = pci_get_drvdata(pdev);
  2837. if (!skdev) {
  2838. dev_err(&pdev->dev, "no device data for PCI\n");
  2839. return;
  2840. }
  2841. dev_err(&pdev->dev, "calling stop\n");
  2842. skd_stop_device(skdev);
  2843. }
  2844. static struct pci_driver skd_driver = {
  2845. .name = DRV_NAME,
  2846. .id_table = skd_pci_tbl,
  2847. .probe = skd_pci_probe,
  2848. .remove = skd_pci_remove,
  2849. .suspend = skd_pci_suspend,
  2850. .resume = skd_pci_resume,
  2851. .shutdown = skd_pci_shutdown,
  2852. };
  2853. /*
  2854. *****************************************************************************
  2855. * LOGGING SUPPORT
  2856. *****************************************************************************
  2857. */
  2858. const char *skd_drive_state_to_str(int state)
  2859. {
  2860. switch (state) {
  2861. case FIT_SR_DRIVE_OFFLINE:
  2862. return "OFFLINE";
  2863. case FIT_SR_DRIVE_INIT:
  2864. return "INIT";
  2865. case FIT_SR_DRIVE_ONLINE:
  2866. return "ONLINE";
  2867. case FIT_SR_DRIVE_BUSY:
  2868. return "BUSY";
  2869. case FIT_SR_DRIVE_FAULT:
  2870. return "FAULT";
  2871. case FIT_SR_DRIVE_DEGRADED:
  2872. return "DEGRADED";
  2873. case FIT_SR_PCIE_LINK_DOWN:
  2874. return "INK_DOWN";
  2875. case FIT_SR_DRIVE_SOFT_RESET:
  2876. return "SOFT_RESET";
  2877. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  2878. return "NEED_FW";
  2879. case FIT_SR_DRIVE_INIT_FAULT:
  2880. return "INIT_FAULT";
  2881. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2882. return "BUSY_SANITIZE";
  2883. case FIT_SR_DRIVE_BUSY_ERASE:
  2884. return "BUSY_ERASE";
  2885. case FIT_SR_DRIVE_FW_BOOTING:
  2886. return "FW_BOOTING";
  2887. default:
  2888. return "???";
  2889. }
  2890. }
  2891. const char *skd_skdev_state_to_str(enum skd_drvr_state state)
  2892. {
  2893. switch (state) {
  2894. case SKD_DRVR_STATE_LOAD:
  2895. return "LOAD";
  2896. case SKD_DRVR_STATE_IDLE:
  2897. return "IDLE";
  2898. case SKD_DRVR_STATE_BUSY:
  2899. return "BUSY";
  2900. case SKD_DRVR_STATE_STARTING:
  2901. return "STARTING";
  2902. case SKD_DRVR_STATE_ONLINE:
  2903. return "ONLINE";
  2904. case SKD_DRVR_STATE_PAUSING:
  2905. return "PAUSING";
  2906. case SKD_DRVR_STATE_PAUSED:
  2907. return "PAUSED";
  2908. case SKD_DRVR_STATE_RESTARTING:
  2909. return "RESTARTING";
  2910. case SKD_DRVR_STATE_RESUMING:
  2911. return "RESUMING";
  2912. case SKD_DRVR_STATE_STOPPING:
  2913. return "STOPPING";
  2914. case SKD_DRVR_STATE_SYNCING:
  2915. return "SYNCING";
  2916. case SKD_DRVR_STATE_FAULT:
  2917. return "FAULT";
  2918. case SKD_DRVR_STATE_DISAPPEARED:
  2919. return "DISAPPEARED";
  2920. case SKD_DRVR_STATE_BUSY_ERASE:
  2921. return "BUSY_ERASE";
  2922. case SKD_DRVR_STATE_BUSY_SANITIZE:
  2923. return "BUSY_SANITIZE";
  2924. case SKD_DRVR_STATE_BUSY_IMMINENT:
  2925. return "BUSY_IMMINENT";
  2926. case SKD_DRVR_STATE_WAIT_BOOT:
  2927. return "WAIT_BOOT";
  2928. default:
  2929. return "???";
  2930. }
  2931. }
  2932. static const char *skd_skreq_state_to_str(enum skd_req_state state)
  2933. {
  2934. switch (state) {
  2935. case SKD_REQ_STATE_IDLE:
  2936. return "IDLE";
  2937. case SKD_REQ_STATE_SETUP:
  2938. return "SETUP";
  2939. case SKD_REQ_STATE_BUSY:
  2940. return "BUSY";
  2941. case SKD_REQ_STATE_COMPLETED:
  2942. return "COMPLETED";
  2943. case SKD_REQ_STATE_TIMEOUT:
  2944. return "TIMEOUT";
  2945. default:
  2946. return "???";
  2947. }
  2948. }
  2949. static void skd_log_skdev(struct skd_device *skdev, const char *event)
  2950. {
  2951. dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
  2952. dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n",
  2953. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  2954. skd_skdev_state_to_str(skdev->state), skdev->state);
  2955. dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n",
  2956. skd_in_flight(skdev), skdev->cur_max_queue_depth,
  2957. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  2958. dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n",
  2959. skdev->skcomp_cycle, skdev->skcomp_ix);
  2960. }
  2961. static void skd_log_skreq(struct skd_device *skdev,
  2962. struct skd_request_context *skreq, const char *event)
  2963. {
  2964. struct request *req = blk_mq_rq_from_pdu(skreq);
  2965. u32 lba = blk_rq_pos(req);
  2966. u32 count = blk_rq_sectors(req);
  2967. dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
  2968. dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
  2969. skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
  2970. skreq->fitmsg_id);
  2971. dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n",
  2972. skreq->data_dir, skreq->n_sg);
  2973. dev_dbg(&skdev->pdev->dev,
  2974. "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
  2975. count, count, (int)rq_data_dir(req));
  2976. }
  2977. /*
  2978. *****************************************************************************
  2979. * MODULE GLUE
  2980. *****************************************************************************
  2981. */
  2982. static int __init skd_init(void)
  2983. {
  2984. BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
  2985. BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
  2986. BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
  2987. BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
  2988. BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
  2989. BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
  2990. BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
  2991. BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
  2992. switch (skd_isr_type) {
  2993. case SKD_IRQ_LEGACY:
  2994. case SKD_IRQ_MSI:
  2995. case SKD_IRQ_MSIX:
  2996. break;
  2997. default:
  2998. pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
  2999. skd_isr_type, SKD_IRQ_DEFAULT);
  3000. skd_isr_type = SKD_IRQ_DEFAULT;
  3001. }
  3002. if (skd_max_queue_depth < 1 ||
  3003. skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
  3004. pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
  3005. skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
  3006. skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  3007. }
  3008. if (skd_max_req_per_msg < 1 ||
  3009. skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
  3010. pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
  3011. skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
  3012. skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  3013. }
  3014. if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
  3015. pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
  3016. skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
  3017. skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  3018. }
  3019. if (skd_dbg_level < 0 || skd_dbg_level > 2) {
  3020. pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
  3021. skd_dbg_level, 0);
  3022. skd_dbg_level = 0;
  3023. }
  3024. if (skd_isr_comp_limit < 0) {
  3025. pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
  3026. skd_isr_comp_limit, 0);
  3027. skd_isr_comp_limit = 0;
  3028. }
  3029. return pci_register_driver(&skd_driver);
  3030. }
  3031. static void __exit skd_exit(void)
  3032. {
  3033. pci_unregister_driver(&skd_driver);
  3034. if (skd_major)
  3035. unregister_blkdev(skd_major, DRV_NAME);
  3036. }
  3037. module_init(skd_init);
  3038. module_exit(skd_exit);