null_blk_main.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961
  1. /*
  2. * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
  3. * Shaohua Li <shli@fb.com>
  4. */
  5. #include <linux/module.h>
  6. #include <linux/moduleparam.h>
  7. #include <linux/sched.h>
  8. #include <linux/fs.h>
  9. #include <linux/init.h>
  10. #include "null_blk.h"
  11. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  12. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  13. #define SECTOR_MASK (PAGE_SECTORS - 1)
  14. #define FREE_BATCH 16
  15. #define TICKS_PER_SEC 50ULL
  16. #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
  17. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  18. static DECLARE_FAULT_ATTR(null_timeout_attr);
  19. static DECLARE_FAULT_ATTR(null_requeue_attr);
  20. #endif
  21. static inline u64 mb_per_tick(int mbps)
  22. {
  23. return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
  24. }
  25. /*
  26. * Status flags for nullb_device.
  27. *
  28. * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
  29. * UP: Device is currently on and visible in userspace.
  30. * THROTTLED: Device is being throttled.
  31. * CACHE: Device is using a write-back cache.
  32. */
  33. enum nullb_device_flags {
  34. NULLB_DEV_FL_CONFIGURED = 0,
  35. NULLB_DEV_FL_UP = 1,
  36. NULLB_DEV_FL_THROTTLED = 2,
  37. NULLB_DEV_FL_CACHE = 3,
  38. };
  39. #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
  40. /*
  41. * nullb_page is a page in memory for nullb devices.
  42. *
  43. * @page: The page holding the data.
  44. * @bitmap: The bitmap represents which sector in the page has data.
  45. * Each bit represents one block size. For example, sector 8
  46. * will use the 7th bit
  47. * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
  48. * page is being flushing to storage. FREE means the cache page is freed and
  49. * should be skipped from flushing to storage. Please see
  50. * null_make_cache_space
  51. */
  52. struct nullb_page {
  53. struct page *page;
  54. DECLARE_BITMAP(bitmap, MAP_SZ);
  55. };
  56. #define NULLB_PAGE_LOCK (MAP_SZ - 1)
  57. #define NULLB_PAGE_FREE (MAP_SZ - 2)
  58. static LIST_HEAD(nullb_list);
  59. static struct mutex lock;
  60. static int null_major;
  61. static DEFINE_IDA(nullb_indexes);
  62. static struct blk_mq_tag_set tag_set;
  63. enum {
  64. NULL_IRQ_NONE = 0,
  65. NULL_IRQ_SOFTIRQ = 1,
  66. NULL_IRQ_TIMER = 2,
  67. };
  68. enum {
  69. NULL_Q_BIO = 0,
  70. NULL_Q_RQ = 1,
  71. NULL_Q_MQ = 2,
  72. };
  73. static int g_no_sched;
  74. module_param_named(no_sched, g_no_sched, int, 0444);
  75. MODULE_PARM_DESC(no_sched, "No io scheduler");
  76. static int g_submit_queues = 1;
  77. module_param_named(submit_queues, g_submit_queues, int, 0444);
  78. MODULE_PARM_DESC(submit_queues, "Number of submission queues");
  79. static int g_home_node = NUMA_NO_NODE;
  80. module_param_named(home_node, g_home_node, int, 0444);
  81. MODULE_PARM_DESC(home_node, "Home node for the device");
  82. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  83. static char g_timeout_str[80];
  84. module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
  85. static char g_requeue_str[80];
  86. module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
  87. #endif
  88. static int g_queue_mode = NULL_Q_MQ;
  89. static int null_param_store_val(const char *str, int *val, int min, int max)
  90. {
  91. int ret, new_val;
  92. ret = kstrtoint(str, 10, &new_val);
  93. if (ret)
  94. return -EINVAL;
  95. if (new_val < min || new_val > max)
  96. return -EINVAL;
  97. *val = new_val;
  98. return 0;
  99. }
  100. static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
  101. {
  102. return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
  103. }
  104. static const struct kernel_param_ops null_queue_mode_param_ops = {
  105. .set = null_set_queue_mode,
  106. .get = param_get_int,
  107. };
  108. device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
  109. MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
  110. static int g_gb = 250;
  111. module_param_named(gb, g_gb, int, 0444);
  112. MODULE_PARM_DESC(gb, "Size in GB");
  113. static int g_bs = 512;
  114. module_param_named(bs, g_bs, int, 0444);
  115. MODULE_PARM_DESC(bs, "Block size (in bytes)");
  116. static int nr_devices = 1;
  117. module_param(nr_devices, int, 0444);
  118. MODULE_PARM_DESC(nr_devices, "Number of devices to register");
  119. static bool g_blocking;
  120. module_param_named(blocking, g_blocking, bool, 0444);
  121. MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
  122. static bool shared_tags;
  123. module_param(shared_tags, bool, 0444);
  124. MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
  125. static int g_irqmode = NULL_IRQ_SOFTIRQ;
  126. static int null_set_irqmode(const char *str, const struct kernel_param *kp)
  127. {
  128. return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
  129. NULL_IRQ_TIMER);
  130. }
  131. static const struct kernel_param_ops null_irqmode_param_ops = {
  132. .set = null_set_irqmode,
  133. .get = param_get_int,
  134. };
  135. device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
  136. MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
  137. static unsigned long g_completion_nsec = 10000;
  138. module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
  139. MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
  140. static int g_hw_queue_depth = 64;
  141. module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
  142. MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
  143. static bool g_use_per_node_hctx;
  144. module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
  145. MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
  146. static bool g_zoned;
  147. module_param_named(zoned, g_zoned, bool, S_IRUGO);
  148. MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
  149. static unsigned long g_zone_size = 256;
  150. module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
  151. MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
  152. static struct nullb_device *null_alloc_dev(void);
  153. static void null_free_dev(struct nullb_device *dev);
  154. static void null_del_dev(struct nullb *nullb);
  155. static int null_add_dev(struct nullb_device *dev);
  156. static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
  157. static inline struct nullb_device *to_nullb_device(struct config_item *item)
  158. {
  159. return item ? container_of(item, struct nullb_device, item) : NULL;
  160. }
  161. static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
  162. {
  163. return snprintf(page, PAGE_SIZE, "%u\n", val);
  164. }
  165. static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
  166. char *page)
  167. {
  168. return snprintf(page, PAGE_SIZE, "%lu\n", val);
  169. }
  170. static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
  171. {
  172. return snprintf(page, PAGE_SIZE, "%u\n", val);
  173. }
  174. static ssize_t nullb_device_uint_attr_store(unsigned int *val,
  175. const char *page, size_t count)
  176. {
  177. unsigned int tmp;
  178. int result;
  179. result = kstrtouint(page, 0, &tmp);
  180. if (result)
  181. return result;
  182. *val = tmp;
  183. return count;
  184. }
  185. static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
  186. const char *page, size_t count)
  187. {
  188. int result;
  189. unsigned long tmp;
  190. result = kstrtoul(page, 0, &tmp);
  191. if (result)
  192. return result;
  193. *val = tmp;
  194. return count;
  195. }
  196. static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
  197. size_t count)
  198. {
  199. bool tmp;
  200. int result;
  201. result = kstrtobool(page, &tmp);
  202. if (result)
  203. return result;
  204. *val = tmp;
  205. return count;
  206. }
  207. /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
  208. #define NULLB_DEVICE_ATTR(NAME, TYPE) \
  209. static ssize_t \
  210. nullb_device_##NAME##_show(struct config_item *item, char *page) \
  211. { \
  212. return nullb_device_##TYPE##_attr_show( \
  213. to_nullb_device(item)->NAME, page); \
  214. } \
  215. static ssize_t \
  216. nullb_device_##NAME##_store(struct config_item *item, const char *page, \
  217. size_t count) \
  218. { \
  219. if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
  220. return -EBUSY; \
  221. return nullb_device_##TYPE##_attr_store( \
  222. &to_nullb_device(item)->NAME, page, count); \
  223. } \
  224. CONFIGFS_ATTR(nullb_device_, NAME);
  225. NULLB_DEVICE_ATTR(size, ulong);
  226. NULLB_DEVICE_ATTR(completion_nsec, ulong);
  227. NULLB_DEVICE_ATTR(submit_queues, uint);
  228. NULLB_DEVICE_ATTR(home_node, uint);
  229. NULLB_DEVICE_ATTR(queue_mode, uint);
  230. NULLB_DEVICE_ATTR(blocksize, uint);
  231. NULLB_DEVICE_ATTR(irqmode, uint);
  232. NULLB_DEVICE_ATTR(hw_queue_depth, uint);
  233. NULLB_DEVICE_ATTR(index, uint);
  234. NULLB_DEVICE_ATTR(blocking, bool);
  235. NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
  236. NULLB_DEVICE_ATTR(memory_backed, bool);
  237. NULLB_DEVICE_ATTR(discard, bool);
  238. NULLB_DEVICE_ATTR(mbps, uint);
  239. NULLB_DEVICE_ATTR(cache_size, ulong);
  240. NULLB_DEVICE_ATTR(zoned, bool);
  241. NULLB_DEVICE_ATTR(zone_size, ulong);
  242. static ssize_t nullb_device_power_show(struct config_item *item, char *page)
  243. {
  244. return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
  245. }
  246. static ssize_t nullb_device_power_store(struct config_item *item,
  247. const char *page, size_t count)
  248. {
  249. struct nullb_device *dev = to_nullb_device(item);
  250. bool newp = false;
  251. ssize_t ret;
  252. ret = nullb_device_bool_attr_store(&newp, page, count);
  253. if (ret < 0)
  254. return ret;
  255. if (!dev->power && newp) {
  256. if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
  257. return count;
  258. if (null_add_dev(dev)) {
  259. clear_bit(NULLB_DEV_FL_UP, &dev->flags);
  260. return -ENOMEM;
  261. }
  262. set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
  263. dev->power = newp;
  264. } else if (dev->power && !newp) {
  265. if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
  266. mutex_lock(&lock);
  267. dev->power = newp;
  268. null_del_dev(dev->nullb);
  269. mutex_unlock(&lock);
  270. }
  271. clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
  272. }
  273. return count;
  274. }
  275. CONFIGFS_ATTR(nullb_device_, power);
  276. static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
  277. {
  278. struct nullb_device *t_dev = to_nullb_device(item);
  279. return badblocks_show(&t_dev->badblocks, page, 0);
  280. }
  281. static ssize_t nullb_device_badblocks_store(struct config_item *item,
  282. const char *page, size_t count)
  283. {
  284. struct nullb_device *t_dev = to_nullb_device(item);
  285. char *orig, *buf, *tmp;
  286. u64 start, end;
  287. int ret;
  288. orig = kstrndup(page, count, GFP_KERNEL);
  289. if (!orig)
  290. return -ENOMEM;
  291. buf = strstrip(orig);
  292. ret = -EINVAL;
  293. if (buf[0] != '+' && buf[0] != '-')
  294. goto out;
  295. tmp = strchr(&buf[1], '-');
  296. if (!tmp)
  297. goto out;
  298. *tmp = '\0';
  299. ret = kstrtoull(buf + 1, 0, &start);
  300. if (ret)
  301. goto out;
  302. ret = kstrtoull(tmp + 1, 0, &end);
  303. if (ret)
  304. goto out;
  305. ret = -EINVAL;
  306. if (start > end)
  307. goto out;
  308. /* enable badblocks */
  309. cmpxchg(&t_dev->badblocks.shift, -1, 0);
  310. if (buf[0] == '+')
  311. ret = badblocks_set(&t_dev->badblocks, start,
  312. end - start + 1, 1);
  313. else
  314. ret = badblocks_clear(&t_dev->badblocks, start,
  315. end - start + 1);
  316. if (ret == 0)
  317. ret = count;
  318. out:
  319. kfree(orig);
  320. return ret;
  321. }
  322. CONFIGFS_ATTR(nullb_device_, badblocks);
  323. static struct configfs_attribute *nullb_device_attrs[] = {
  324. &nullb_device_attr_size,
  325. &nullb_device_attr_completion_nsec,
  326. &nullb_device_attr_submit_queues,
  327. &nullb_device_attr_home_node,
  328. &nullb_device_attr_queue_mode,
  329. &nullb_device_attr_blocksize,
  330. &nullb_device_attr_irqmode,
  331. &nullb_device_attr_hw_queue_depth,
  332. &nullb_device_attr_index,
  333. &nullb_device_attr_blocking,
  334. &nullb_device_attr_use_per_node_hctx,
  335. &nullb_device_attr_power,
  336. &nullb_device_attr_memory_backed,
  337. &nullb_device_attr_discard,
  338. &nullb_device_attr_mbps,
  339. &nullb_device_attr_cache_size,
  340. &nullb_device_attr_badblocks,
  341. &nullb_device_attr_zoned,
  342. &nullb_device_attr_zone_size,
  343. NULL,
  344. };
  345. static void nullb_device_release(struct config_item *item)
  346. {
  347. struct nullb_device *dev = to_nullb_device(item);
  348. null_free_device_storage(dev, false);
  349. null_free_dev(dev);
  350. }
  351. static struct configfs_item_operations nullb_device_ops = {
  352. .release = nullb_device_release,
  353. };
  354. static const struct config_item_type nullb_device_type = {
  355. .ct_item_ops = &nullb_device_ops,
  356. .ct_attrs = nullb_device_attrs,
  357. .ct_owner = THIS_MODULE,
  358. };
  359. static struct
  360. config_item *nullb_group_make_item(struct config_group *group, const char *name)
  361. {
  362. struct nullb_device *dev;
  363. dev = null_alloc_dev();
  364. if (!dev)
  365. return ERR_PTR(-ENOMEM);
  366. config_item_init_type_name(&dev->item, name, &nullb_device_type);
  367. return &dev->item;
  368. }
  369. static void
  370. nullb_group_drop_item(struct config_group *group, struct config_item *item)
  371. {
  372. struct nullb_device *dev = to_nullb_device(item);
  373. if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
  374. mutex_lock(&lock);
  375. dev->power = false;
  376. null_del_dev(dev->nullb);
  377. mutex_unlock(&lock);
  378. }
  379. config_item_put(item);
  380. }
  381. static ssize_t memb_group_features_show(struct config_item *item, char *page)
  382. {
  383. return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
  384. }
  385. CONFIGFS_ATTR_RO(memb_group_, features);
  386. static struct configfs_attribute *nullb_group_attrs[] = {
  387. &memb_group_attr_features,
  388. NULL,
  389. };
  390. static struct configfs_group_operations nullb_group_ops = {
  391. .make_item = nullb_group_make_item,
  392. .drop_item = nullb_group_drop_item,
  393. };
  394. static const struct config_item_type nullb_group_type = {
  395. .ct_group_ops = &nullb_group_ops,
  396. .ct_attrs = nullb_group_attrs,
  397. .ct_owner = THIS_MODULE,
  398. };
  399. static struct configfs_subsystem nullb_subsys = {
  400. .su_group = {
  401. .cg_item = {
  402. .ci_namebuf = "nullb",
  403. .ci_type = &nullb_group_type,
  404. },
  405. },
  406. };
  407. static inline int null_cache_active(struct nullb *nullb)
  408. {
  409. return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
  410. }
  411. static struct nullb_device *null_alloc_dev(void)
  412. {
  413. struct nullb_device *dev;
  414. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  415. if (!dev)
  416. return NULL;
  417. INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
  418. INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
  419. if (badblocks_init(&dev->badblocks, 0)) {
  420. kfree(dev);
  421. return NULL;
  422. }
  423. dev->size = g_gb * 1024;
  424. dev->completion_nsec = g_completion_nsec;
  425. dev->submit_queues = g_submit_queues;
  426. dev->home_node = g_home_node;
  427. dev->queue_mode = g_queue_mode;
  428. dev->blocksize = g_bs;
  429. dev->irqmode = g_irqmode;
  430. dev->hw_queue_depth = g_hw_queue_depth;
  431. dev->blocking = g_blocking;
  432. dev->use_per_node_hctx = g_use_per_node_hctx;
  433. dev->zoned = g_zoned;
  434. dev->zone_size = g_zone_size;
  435. return dev;
  436. }
  437. static void null_free_dev(struct nullb_device *dev)
  438. {
  439. if (!dev)
  440. return;
  441. null_zone_exit(dev);
  442. badblocks_exit(&dev->badblocks);
  443. kfree(dev);
  444. }
  445. static void put_tag(struct nullb_queue *nq, unsigned int tag)
  446. {
  447. clear_bit_unlock(tag, nq->tag_map);
  448. if (waitqueue_active(&nq->wait))
  449. wake_up(&nq->wait);
  450. }
  451. static unsigned int get_tag(struct nullb_queue *nq)
  452. {
  453. unsigned int tag;
  454. do {
  455. tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
  456. if (tag >= nq->queue_depth)
  457. return -1U;
  458. } while (test_and_set_bit_lock(tag, nq->tag_map));
  459. return tag;
  460. }
  461. static void free_cmd(struct nullb_cmd *cmd)
  462. {
  463. put_tag(cmd->nq, cmd->tag);
  464. }
  465. static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
  466. static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
  467. {
  468. struct nullb_cmd *cmd;
  469. unsigned int tag;
  470. tag = get_tag(nq);
  471. if (tag != -1U) {
  472. cmd = &nq->cmds[tag];
  473. cmd->tag = tag;
  474. cmd->nq = nq;
  475. if (nq->dev->irqmode == NULL_IRQ_TIMER) {
  476. hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
  477. HRTIMER_MODE_REL);
  478. cmd->timer.function = null_cmd_timer_expired;
  479. }
  480. return cmd;
  481. }
  482. return NULL;
  483. }
  484. static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
  485. {
  486. struct nullb_cmd *cmd;
  487. DEFINE_WAIT(wait);
  488. cmd = __alloc_cmd(nq);
  489. if (cmd || !can_wait)
  490. return cmd;
  491. do {
  492. prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
  493. cmd = __alloc_cmd(nq);
  494. if (cmd)
  495. break;
  496. io_schedule();
  497. } while (1);
  498. finish_wait(&nq->wait, &wait);
  499. return cmd;
  500. }
  501. static void end_cmd(struct nullb_cmd *cmd)
  502. {
  503. struct request_queue *q = NULL;
  504. int queue_mode = cmd->nq->dev->queue_mode;
  505. if (cmd->rq)
  506. q = cmd->rq->q;
  507. switch (queue_mode) {
  508. case NULL_Q_MQ:
  509. blk_mq_end_request(cmd->rq, cmd->error);
  510. return;
  511. case NULL_Q_RQ:
  512. INIT_LIST_HEAD(&cmd->rq->queuelist);
  513. blk_end_request_all(cmd->rq, cmd->error);
  514. break;
  515. case NULL_Q_BIO:
  516. cmd->bio->bi_status = cmd->error;
  517. bio_endio(cmd->bio);
  518. break;
  519. }
  520. free_cmd(cmd);
  521. /* Restart queue if needed, as we are freeing a tag */
  522. if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) {
  523. unsigned long flags;
  524. spin_lock_irqsave(q->queue_lock, flags);
  525. blk_start_queue_async(q);
  526. spin_unlock_irqrestore(q->queue_lock, flags);
  527. }
  528. }
  529. static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
  530. {
  531. end_cmd(container_of(timer, struct nullb_cmd, timer));
  532. return HRTIMER_NORESTART;
  533. }
  534. static void null_cmd_end_timer(struct nullb_cmd *cmd)
  535. {
  536. ktime_t kt = cmd->nq->dev->completion_nsec;
  537. hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
  538. }
  539. static void null_softirq_done_fn(struct request *rq)
  540. {
  541. struct nullb *nullb = rq->q->queuedata;
  542. if (nullb->dev->queue_mode == NULL_Q_MQ)
  543. end_cmd(blk_mq_rq_to_pdu(rq));
  544. else
  545. end_cmd(rq->special);
  546. }
  547. static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
  548. {
  549. struct nullb_page *t_page;
  550. t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
  551. if (!t_page)
  552. goto out;
  553. t_page->page = alloc_pages(gfp_flags, 0);
  554. if (!t_page->page)
  555. goto out_freepage;
  556. memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
  557. return t_page;
  558. out_freepage:
  559. kfree(t_page);
  560. out:
  561. return NULL;
  562. }
  563. static void null_free_page(struct nullb_page *t_page)
  564. {
  565. __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
  566. if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
  567. return;
  568. __free_page(t_page->page);
  569. kfree(t_page);
  570. }
  571. static bool null_page_empty(struct nullb_page *page)
  572. {
  573. int size = MAP_SZ - 2;
  574. return find_first_bit(page->bitmap, size) == size;
  575. }
  576. static void null_free_sector(struct nullb *nullb, sector_t sector,
  577. bool is_cache)
  578. {
  579. unsigned int sector_bit;
  580. u64 idx;
  581. struct nullb_page *t_page, *ret;
  582. struct radix_tree_root *root;
  583. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  584. idx = sector >> PAGE_SECTORS_SHIFT;
  585. sector_bit = (sector & SECTOR_MASK);
  586. t_page = radix_tree_lookup(root, idx);
  587. if (t_page) {
  588. __clear_bit(sector_bit, t_page->bitmap);
  589. if (null_page_empty(t_page)) {
  590. ret = radix_tree_delete_item(root, idx, t_page);
  591. WARN_ON(ret != t_page);
  592. null_free_page(ret);
  593. if (is_cache)
  594. nullb->dev->curr_cache -= PAGE_SIZE;
  595. }
  596. }
  597. }
  598. static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
  599. struct nullb_page *t_page, bool is_cache)
  600. {
  601. struct radix_tree_root *root;
  602. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  603. if (radix_tree_insert(root, idx, t_page)) {
  604. null_free_page(t_page);
  605. t_page = radix_tree_lookup(root, idx);
  606. WARN_ON(!t_page || t_page->page->index != idx);
  607. } else if (is_cache)
  608. nullb->dev->curr_cache += PAGE_SIZE;
  609. return t_page;
  610. }
  611. static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
  612. {
  613. unsigned long pos = 0;
  614. int nr_pages;
  615. struct nullb_page *ret, *t_pages[FREE_BATCH];
  616. struct radix_tree_root *root;
  617. root = is_cache ? &dev->cache : &dev->data;
  618. do {
  619. int i;
  620. nr_pages = radix_tree_gang_lookup(root,
  621. (void **)t_pages, pos, FREE_BATCH);
  622. for (i = 0; i < nr_pages; i++) {
  623. pos = t_pages[i]->page->index;
  624. ret = radix_tree_delete_item(root, pos, t_pages[i]);
  625. WARN_ON(ret != t_pages[i]);
  626. null_free_page(ret);
  627. }
  628. pos++;
  629. } while (nr_pages == FREE_BATCH);
  630. if (is_cache)
  631. dev->curr_cache = 0;
  632. }
  633. static struct nullb_page *__null_lookup_page(struct nullb *nullb,
  634. sector_t sector, bool for_write, bool is_cache)
  635. {
  636. unsigned int sector_bit;
  637. u64 idx;
  638. struct nullb_page *t_page;
  639. struct radix_tree_root *root;
  640. idx = sector >> PAGE_SECTORS_SHIFT;
  641. sector_bit = (sector & SECTOR_MASK);
  642. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  643. t_page = radix_tree_lookup(root, idx);
  644. WARN_ON(t_page && t_page->page->index != idx);
  645. if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
  646. return t_page;
  647. return NULL;
  648. }
  649. static struct nullb_page *null_lookup_page(struct nullb *nullb,
  650. sector_t sector, bool for_write, bool ignore_cache)
  651. {
  652. struct nullb_page *page = NULL;
  653. if (!ignore_cache)
  654. page = __null_lookup_page(nullb, sector, for_write, true);
  655. if (page)
  656. return page;
  657. return __null_lookup_page(nullb, sector, for_write, false);
  658. }
  659. static struct nullb_page *null_insert_page(struct nullb *nullb,
  660. sector_t sector, bool ignore_cache)
  661. __releases(&nullb->lock)
  662. __acquires(&nullb->lock)
  663. {
  664. u64 idx;
  665. struct nullb_page *t_page;
  666. t_page = null_lookup_page(nullb, sector, true, ignore_cache);
  667. if (t_page)
  668. return t_page;
  669. spin_unlock_irq(&nullb->lock);
  670. t_page = null_alloc_page(GFP_NOIO);
  671. if (!t_page)
  672. goto out_lock;
  673. if (radix_tree_preload(GFP_NOIO))
  674. goto out_freepage;
  675. spin_lock_irq(&nullb->lock);
  676. idx = sector >> PAGE_SECTORS_SHIFT;
  677. t_page->page->index = idx;
  678. t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
  679. radix_tree_preload_end();
  680. return t_page;
  681. out_freepage:
  682. null_free_page(t_page);
  683. out_lock:
  684. spin_lock_irq(&nullb->lock);
  685. return null_lookup_page(nullb, sector, true, ignore_cache);
  686. }
  687. static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
  688. {
  689. int i;
  690. unsigned int offset;
  691. u64 idx;
  692. struct nullb_page *t_page, *ret;
  693. void *dst, *src;
  694. idx = c_page->page->index;
  695. t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
  696. __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
  697. if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
  698. null_free_page(c_page);
  699. if (t_page && null_page_empty(t_page)) {
  700. ret = radix_tree_delete_item(&nullb->dev->data,
  701. idx, t_page);
  702. null_free_page(t_page);
  703. }
  704. return 0;
  705. }
  706. if (!t_page)
  707. return -ENOMEM;
  708. src = kmap_atomic(c_page->page);
  709. dst = kmap_atomic(t_page->page);
  710. for (i = 0; i < PAGE_SECTORS;
  711. i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
  712. if (test_bit(i, c_page->bitmap)) {
  713. offset = (i << SECTOR_SHIFT);
  714. memcpy(dst + offset, src + offset,
  715. nullb->dev->blocksize);
  716. __set_bit(i, t_page->bitmap);
  717. }
  718. }
  719. kunmap_atomic(dst);
  720. kunmap_atomic(src);
  721. ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
  722. null_free_page(ret);
  723. nullb->dev->curr_cache -= PAGE_SIZE;
  724. return 0;
  725. }
  726. static int null_make_cache_space(struct nullb *nullb, unsigned long n)
  727. {
  728. int i, err, nr_pages;
  729. struct nullb_page *c_pages[FREE_BATCH];
  730. unsigned long flushed = 0, one_round;
  731. again:
  732. if ((nullb->dev->cache_size * 1024 * 1024) >
  733. nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
  734. return 0;
  735. nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
  736. (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
  737. /*
  738. * nullb_flush_cache_page could unlock before using the c_pages. To
  739. * avoid race, we don't allow page free
  740. */
  741. for (i = 0; i < nr_pages; i++) {
  742. nullb->cache_flush_pos = c_pages[i]->page->index;
  743. /*
  744. * We found the page which is being flushed to disk by other
  745. * threads
  746. */
  747. if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
  748. c_pages[i] = NULL;
  749. else
  750. __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
  751. }
  752. one_round = 0;
  753. for (i = 0; i < nr_pages; i++) {
  754. if (c_pages[i] == NULL)
  755. continue;
  756. err = null_flush_cache_page(nullb, c_pages[i]);
  757. if (err)
  758. return err;
  759. one_round++;
  760. }
  761. flushed += one_round << PAGE_SHIFT;
  762. if (n > flushed) {
  763. if (nr_pages == 0)
  764. nullb->cache_flush_pos = 0;
  765. if (one_round == 0) {
  766. /* give other threads a chance */
  767. spin_unlock_irq(&nullb->lock);
  768. spin_lock_irq(&nullb->lock);
  769. }
  770. goto again;
  771. }
  772. return 0;
  773. }
  774. static int copy_to_nullb(struct nullb *nullb, struct page *source,
  775. unsigned int off, sector_t sector, size_t n, bool is_fua)
  776. {
  777. size_t temp, count = 0;
  778. unsigned int offset;
  779. struct nullb_page *t_page;
  780. void *dst, *src;
  781. while (count < n) {
  782. temp = min_t(size_t, nullb->dev->blocksize, n - count);
  783. if (null_cache_active(nullb) && !is_fua)
  784. null_make_cache_space(nullb, PAGE_SIZE);
  785. offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
  786. t_page = null_insert_page(nullb, sector,
  787. !null_cache_active(nullb) || is_fua);
  788. if (!t_page)
  789. return -ENOSPC;
  790. src = kmap_atomic(source);
  791. dst = kmap_atomic(t_page->page);
  792. memcpy(dst + offset, src + off + count, temp);
  793. kunmap_atomic(dst);
  794. kunmap_atomic(src);
  795. __set_bit(sector & SECTOR_MASK, t_page->bitmap);
  796. if (is_fua)
  797. null_free_sector(nullb, sector, true);
  798. count += temp;
  799. sector += temp >> SECTOR_SHIFT;
  800. }
  801. return 0;
  802. }
  803. static int copy_from_nullb(struct nullb *nullb, struct page *dest,
  804. unsigned int off, sector_t sector, size_t n)
  805. {
  806. size_t temp, count = 0;
  807. unsigned int offset;
  808. struct nullb_page *t_page;
  809. void *dst, *src;
  810. while (count < n) {
  811. temp = min_t(size_t, nullb->dev->blocksize, n - count);
  812. offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
  813. t_page = null_lookup_page(nullb, sector, false,
  814. !null_cache_active(nullb));
  815. dst = kmap_atomic(dest);
  816. if (!t_page) {
  817. memset(dst + off + count, 0, temp);
  818. goto next;
  819. }
  820. src = kmap_atomic(t_page->page);
  821. memcpy(dst + off + count, src + offset, temp);
  822. kunmap_atomic(src);
  823. next:
  824. kunmap_atomic(dst);
  825. count += temp;
  826. sector += temp >> SECTOR_SHIFT;
  827. }
  828. return 0;
  829. }
  830. static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
  831. {
  832. size_t temp;
  833. spin_lock_irq(&nullb->lock);
  834. while (n > 0) {
  835. temp = min_t(size_t, n, nullb->dev->blocksize);
  836. null_free_sector(nullb, sector, false);
  837. if (null_cache_active(nullb))
  838. null_free_sector(nullb, sector, true);
  839. sector += temp >> SECTOR_SHIFT;
  840. n -= temp;
  841. }
  842. spin_unlock_irq(&nullb->lock);
  843. }
  844. static int null_handle_flush(struct nullb *nullb)
  845. {
  846. int err;
  847. if (!null_cache_active(nullb))
  848. return 0;
  849. spin_lock_irq(&nullb->lock);
  850. while (true) {
  851. err = null_make_cache_space(nullb,
  852. nullb->dev->cache_size * 1024 * 1024);
  853. if (err || nullb->dev->curr_cache == 0)
  854. break;
  855. }
  856. WARN_ON(!radix_tree_empty(&nullb->dev->cache));
  857. spin_unlock_irq(&nullb->lock);
  858. return err;
  859. }
  860. static int null_transfer(struct nullb *nullb, struct page *page,
  861. unsigned int len, unsigned int off, bool is_write, sector_t sector,
  862. bool is_fua)
  863. {
  864. int err = 0;
  865. if (!is_write) {
  866. err = copy_from_nullb(nullb, page, off, sector, len);
  867. flush_dcache_page(page);
  868. } else {
  869. flush_dcache_page(page);
  870. err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
  871. }
  872. return err;
  873. }
  874. static int null_handle_rq(struct nullb_cmd *cmd)
  875. {
  876. struct request *rq = cmd->rq;
  877. struct nullb *nullb = cmd->nq->dev->nullb;
  878. int err;
  879. unsigned int len;
  880. sector_t sector;
  881. struct req_iterator iter;
  882. struct bio_vec bvec;
  883. sector = blk_rq_pos(rq);
  884. if (req_op(rq) == REQ_OP_DISCARD) {
  885. null_handle_discard(nullb, sector, blk_rq_bytes(rq));
  886. return 0;
  887. }
  888. spin_lock_irq(&nullb->lock);
  889. rq_for_each_segment(bvec, rq, iter) {
  890. len = bvec.bv_len;
  891. err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
  892. op_is_write(req_op(rq)), sector,
  893. req_op(rq) & REQ_FUA);
  894. if (err) {
  895. spin_unlock_irq(&nullb->lock);
  896. return err;
  897. }
  898. sector += len >> SECTOR_SHIFT;
  899. }
  900. spin_unlock_irq(&nullb->lock);
  901. return 0;
  902. }
  903. static int null_handle_bio(struct nullb_cmd *cmd)
  904. {
  905. struct bio *bio = cmd->bio;
  906. struct nullb *nullb = cmd->nq->dev->nullb;
  907. int err;
  908. unsigned int len;
  909. sector_t sector;
  910. struct bio_vec bvec;
  911. struct bvec_iter iter;
  912. sector = bio->bi_iter.bi_sector;
  913. if (bio_op(bio) == REQ_OP_DISCARD) {
  914. null_handle_discard(nullb, sector,
  915. bio_sectors(bio) << SECTOR_SHIFT);
  916. return 0;
  917. }
  918. spin_lock_irq(&nullb->lock);
  919. bio_for_each_segment(bvec, bio, iter) {
  920. len = bvec.bv_len;
  921. err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
  922. op_is_write(bio_op(bio)), sector,
  923. bio_op(bio) & REQ_FUA);
  924. if (err) {
  925. spin_unlock_irq(&nullb->lock);
  926. return err;
  927. }
  928. sector += len >> SECTOR_SHIFT;
  929. }
  930. spin_unlock_irq(&nullb->lock);
  931. return 0;
  932. }
  933. static void null_stop_queue(struct nullb *nullb)
  934. {
  935. struct request_queue *q = nullb->q;
  936. if (nullb->dev->queue_mode == NULL_Q_MQ)
  937. blk_mq_stop_hw_queues(q);
  938. else {
  939. spin_lock_irq(q->queue_lock);
  940. blk_stop_queue(q);
  941. spin_unlock_irq(q->queue_lock);
  942. }
  943. }
  944. static void null_restart_queue_async(struct nullb *nullb)
  945. {
  946. struct request_queue *q = nullb->q;
  947. unsigned long flags;
  948. if (nullb->dev->queue_mode == NULL_Q_MQ)
  949. blk_mq_start_stopped_hw_queues(q, true);
  950. else {
  951. spin_lock_irqsave(q->queue_lock, flags);
  952. blk_start_queue_async(q);
  953. spin_unlock_irqrestore(q->queue_lock, flags);
  954. }
  955. }
  956. static bool cmd_report_zone(struct nullb *nullb, struct nullb_cmd *cmd)
  957. {
  958. struct nullb_device *dev = cmd->nq->dev;
  959. if (dev->queue_mode == NULL_Q_BIO) {
  960. if (bio_op(cmd->bio) == REQ_OP_ZONE_REPORT) {
  961. cmd->error = null_zone_report(nullb, cmd->bio);
  962. return true;
  963. }
  964. } else {
  965. if (req_op(cmd->rq) == REQ_OP_ZONE_REPORT) {
  966. cmd->error = null_zone_report(nullb, cmd->rq->bio);
  967. return true;
  968. }
  969. }
  970. return false;
  971. }
  972. static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
  973. {
  974. struct nullb_device *dev = cmd->nq->dev;
  975. struct nullb *nullb = dev->nullb;
  976. int err = 0;
  977. if (cmd_report_zone(nullb, cmd))
  978. goto out;
  979. if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
  980. struct request *rq = cmd->rq;
  981. if (!hrtimer_active(&nullb->bw_timer))
  982. hrtimer_restart(&nullb->bw_timer);
  983. if (atomic_long_sub_return(blk_rq_bytes(rq),
  984. &nullb->cur_bytes) < 0) {
  985. null_stop_queue(nullb);
  986. /* race with timer */
  987. if (atomic_long_read(&nullb->cur_bytes) > 0)
  988. null_restart_queue_async(nullb);
  989. if (dev->queue_mode == NULL_Q_RQ) {
  990. struct request_queue *q = nullb->q;
  991. spin_lock_irq(q->queue_lock);
  992. rq->rq_flags |= RQF_DONTPREP;
  993. blk_requeue_request(q, rq);
  994. spin_unlock_irq(q->queue_lock);
  995. return BLK_STS_OK;
  996. } else
  997. /* requeue request */
  998. return BLK_STS_DEV_RESOURCE;
  999. }
  1000. }
  1001. if (nullb->dev->badblocks.shift != -1) {
  1002. int bad_sectors;
  1003. sector_t sector, size, first_bad;
  1004. bool is_flush = true;
  1005. if (dev->queue_mode == NULL_Q_BIO &&
  1006. bio_op(cmd->bio) != REQ_OP_FLUSH) {
  1007. is_flush = false;
  1008. sector = cmd->bio->bi_iter.bi_sector;
  1009. size = bio_sectors(cmd->bio);
  1010. }
  1011. if (dev->queue_mode != NULL_Q_BIO &&
  1012. req_op(cmd->rq) != REQ_OP_FLUSH) {
  1013. is_flush = false;
  1014. sector = blk_rq_pos(cmd->rq);
  1015. size = blk_rq_sectors(cmd->rq);
  1016. }
  1017. if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
  1018. size, &first_bad, &bad_sectors)) {
  1019. cmd->error = BLK_STS_IOERR;
  1020. goto out;
  1021. }
  1022. }
  1023. if (dev->memory_backed) {
  1024. if (dev->queue_mode == NULL_Q_BIO) {
  1025. if (bio_op(cmd->bio) == REQ_OP_FLUSH)
  1026. err = null_handle_flush(nullb);
  1027. else
  1028. err = null_handle_bio(cmd);
  1029. } else {
  1030. if (req_op(cmd->rq) == REQ_OP_FLUSH)
  1031. err = null_handle_flush(nullb);
  1032. else
  1033. err = null_handle_rq(cmd);
  1034. }
  1035. }
  1036. cmd->error = errno_to_blk_status(err);
  1037. if (!cmd->error && dev->zoned) {
  1038. sector_t sector;
  1039. unsigned int nr_sectors;
  1040. int op;
  1041. if (dev->queue_mode == NULL_Q_BIO) {
  1042. op = bio_op(cmd->bio);
  1043. sector = cmd->bio->bi_iter.bi_sector;
  1044. nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
  1045. } else {
  1046. op = req_op(cmd->rq);
  1047. sector = blk_rq_pos(cmd->rq);
  1048. nr_sectors = blk_rq_sectors(cmd->rq);
  1049. }
  1050. if (op == REQ_OP_WRITE)
  1051. null_zone_write(cmd, sector, nr_sectors);
  1052. else if (op == REQ_OP_ZONE_RESET)
  1053. null_zone_reset(cmd, sector);
  1054. }
  1055. out:
  1056. /* Complete IO by inline, softirq or timer */
  1057. switch (dev->irqmode) {
  1058. case NULL_IRQ_SOFTIRQ:
  1059. switch (dev->queue_mode) {
  1060. case NULL_Q_MQ:
  1061. blk_mq_complete_request(cmd->rq);
  1062. break;
  1063. case NULL_Q_RQ:
  1064. blk_complete_request(cmd->rq);
  1065. break;
  1066. case NULL_Q_BIO:
  1067. /*
  1068. * XXX: no proper submitting cpu information available.
  1069. */
  1070. end_cmd(cmd);
  1071. break;
  1072. }
  1073. break;
  1074. case NULL_IRQ_NONE:
  1075. end_cmd(cmd);
  1076. break;
  1077. case NULL_IRQ_TIMER:
  1078. null_cmd_end_timer(cmd);
  1079. break;
  1080. }
  1081. return BLK_STS_OK;
  1082. }
  1083. static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
  1084. {
  1085. struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
  1086. ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
  1087. unsigned int mbps = nullb->dev->mbps;
  1088. if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
  1089. return HRTIMER_NORESTART;
  1090. atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
  1091. null_restart_queue_async(nullb);
  1092. hrtimer_forward_now(&nullb->bw_timer, timer_interval);
  1093. return HRTIMER_RESTART;
  1094. }
  1095. static void nullb_setup_bwtimer(struct nullb *nullb)
  1096. {
  1097. ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
  1098. hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1099. nullb->bw_timer.function = nullb_bwtimer_fn;
  1100. atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
  1101. hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
  1102. }
  1103. static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
  1104. {
  1105. int index = 0;
  1106. if (nullb->nr_queues != 1)
  1107. index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
  1108. return &nullb->queues[index];
  1109. }
  1110. static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
  1111. {
  1112. struct nullb *nullb = q->queuedata;
  1113. struct nullb_queue *nq = nullb_to_queue(nullb);
  1114. struct nullb_cmd *cmd;
  1115. cmd = alloc_cmd(nq, 1);
  1116. cmd->bio = bio;
  1117. null_handle_cmd(cmd);
  1118. return BLK_QC_T_NONE;
  1119. }
  1120. static enum blk_eh_timer_return null_rq_timed_out_fn(struct request *rq)
  1121. {
  1122. pr_info("null: rq %p timed out\n", rq);
  1123. __blk_complete_request(rq);
  1124. return BLK_EH_DONE;
  1125. }
  1126. static int null_rq_prep_fn(struct request_queue *q, struct request *req)
  1127. {
  1128. struct nullb *nullb = q->queuedata;
  1129. struct nullb_queue *nq = nullb_to_queue(nullb);
  1130. struct nullb_cmd *cmd;
  1131. cmd = alloc_cmd(nq, 0);
  1132. if (cmd) {
  1133. cmd->rq = req;
  1134. req->special = cmd;
  1135. return BLKPREP_OK;
  1136. }
  1137. blk_stop_queue(q);
  1138. return BLKPREP_DEFER;
  1139. }
  1140. static bool should_timeout_request(struct request *rq)
  1141. {
  1142. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1143. if (g_timeout_str[0])
  1144. return should_fail(&null_timeout_attr, 1);
  1145. #endif
  1146. return false;
  1147. }
  1148. static bool should_requeue_request(struct request *rq)
  1149. {
  1150. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1151. if (g_requeue_str[0])
  1152. return should_fail(&null_requeue_attr, 1);
  1153. #endif
  1154. return false;
  1155. }
  1156. static void null_request_fn(struct request_queue *q)
  1157. {
  1158. struct request *rq;
  1159. while ((rq = blk_fetch_request(q)) != NULL) {
  1160. struct nullb_cmd *cmd = rq->special;
  1161. /* just ignore the request */
  1162. if (should_timeout_request(rq))
  1163. continue;
  1164. if (should_requeue_request(rq)) {
  1165. blk_requeue_request(q, rq);
  1166. continue;
  1167. }
  1168. spin_unlock_irq(q->queue_lock);
  1169. null_handle_cmd(cmd);
  1170. spin_lock_irq(q->queue_lock);
  1171. }
  1172. }
  1173. static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
  1174. {
  1175. pr_info("null: rq %p timed out\n", rq);
  1176. blk_mq_complete_request(rq);
  1177. return BLK_EH_DONE;
  1178. }
  1179. static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
  1180. const struct blk_mq_queue_data *bd)
  1181. {
  1182. struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
  1183. struct nullb_queue *nq = hctx->driver_data;
  1184. might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
  1185. if (nq->dev->irqmode == NULL_IRQ_TIMER) {
  1186. hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1187. cmd->timer.function = null_cmd_timer_expired;
  1188. }
  1189. cmd->rq = bd->rq;
  1190. cmd->nq = nq;
  1191. blk_mq_start_request(bd->rq);
  1192. if (should_requeue_request(bd->rq)) {
  1193. /*
  1194. * Alternate between hitting the core BUSY path, and the
  1195. * driver driven requeue path
  1196. */
  1197. nq->requeue_selection++;
  1198. if (nq->requeue_selection & 1)
  1199. return BLK_STS_RESOURCE;
  1200. else {
  1201. blk_mq_requeue_request(bd->rq, true);
  1202. return BLK_STS_OK;
  1203. }
  1204. }
  1205. if (should_timeout_request(bd->rq))
  1206. return BLK_STS_OK;
  1207. return null_handle_cmd(cmd);
  1208. }
  1209. static const struct blk_mq_ops null_mq_ops = {
  1210. .queue_rq = null_queue_rq,
  1211. .complete = null_softirq_done_fn,
  1212. .timeout = null_timeout_rq,
  1213. };
  1214. static void cleanup_queue(struct nullb_queue *nq)
  1215. {
  1216. kfree(nq->tag_map);
  1217. kfree(nq->cmds);
  1218. }
  1219. static void cleanup_queues(struct nullb *nullb)
  1220. {
  1221. int i;
  1222. for (i = 0; i < nullb->nr_queues; i++)
  1223. cleanup_queue(&nullb->queues[i]);
  1224. kfree(nullb->queues);
  1225. }
  1226. static void null_del_dev(struct nullb *nullb)
  1227. {
  1228. struct nullb_device *dev = nullb->dev;
  1229. ida_simple_remove(&nullb_indexes, nullb->index);
  1230. list_del_init(&nullb->list);
  1231. del_gendisk(nullb->disk);
  1232. if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
  1233. hrtimer_cancel(&nullb->bw_timer);
  1234. atomic_long_set(&nullb->cur_bytes, LONG_MAX);
  1235. null_restart_queue_async(nullb);
  1236. }
  1237. blk_cleanup_queue(nullb->q);
  1238. if (dev->queue_mode == NULL_Q_MQ &&
  1239. nullb->tag_set == &nullb->__tag_set)
  1240. blk_mq_free_tag_set(nullb->tag_set);
  1241. put_disk(nullb->disk);
  1242. cleanup_queues(nullb);
  1243. if (null_cache_active(nullb))
  1244. null_free_device_storage(nullb->dev, true);
  1245. kfree(nullb);
  1246. dev->nullb = NULL;
  1247. }
  1248. static void null_config_discard(struct nullb *nullb)
  1249. {
  1250. if (nullb->dev->discard == false)
  1251. return;
  1252. nullb->q->limits.discard_granularity = nullb->dev->blocksize;
  1253. nullb->q->limits.discard_alignment = nullb->dev->blocksize;
  1254. blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
  1255. blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
  1256. }
  1257. static int null_open(struct block_device *bdev, fmode_t mode)
  1258. {
  1259. return 0;
  1260. }
  1261. static void null_release(struct gendisk *disk, fmode_t mode)
  1262. {
  1263. }
  1264. static const struct block_device_operations null_fops = {
  1265. .owner = THIS_MODULE,
  1266. .open = null_open,
  1267. .release = null_release,
  1268. };
  1269. static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
  1270. {
  1271. BUG_ON(!nullb);
  1272. BUG_ON(!nq);
  1273. init_waitqueue_head(&nq->wait);
  1274. nq->queue_depth = nullb->queue_depth;
  1275. nq->dev = nullb->dev;
  1276. }
  1277. static void null_init_queues(struct nullb *nullb)
  1278. {
  1279. struct request_queue *q = nullb->q;
  1280. struct blk_mq_hw_ctx *hctx;
  1281. struct nullb_queue *nq;
  1282. int i;
  1283. queue_for_each_hw_ctx(q, hctx, i) {
  1284. if (!hctx->nr_ctx || !hctx->tags)
  1285. continue;
  1286. nq = &nullb->queues[i];
  1287. hctx->driver_data = nq;
  1288. null_init_queue(nullb, nq);
  1289. nullb->nr_queues++;
  1290. }
  1291. }
  1292. static int setup_commands(struct nullb_queue *nq)
  1293. {
  1294. struct nullb_cmd *cmd;
  1295. int i, tag_size;
  1296. nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
  1297. if (!nq->cmds)
  1298. return -ENOMEM;
  1299. tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
  1300. nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
  1301. if (!nq->tag_map) {
  1302. kfree(nq->cmds);
  1303. return -ENOMEM;
  1304. }
  1305. for (i = 0; i < nq->queue_depth; i++) {
  1306. cmd = &nq->cmds[i];
  1307. INIT_LIST_HEAD(&cmd->list);
  1308. cmd->ll_list.next = NULL;
  1309. cmd->tag = -1U;
  1310. }
  1311. return 0;
  1312. }
  1313. static int setup_queues(struct nullb *nullb)
  1314. {
  1315. nullb->queues = kcalloc(nullb->dev->submit_queues,
  1316. sizeof(struct nullb_queue),
  1317. GFP_KERNEL);
  1318. if (!nullb->queues)
  1319. return -ENOMEM;
  1320. nullb->nr_queues = 0;
  1321. nullb->queue_depth = nullb->dev->hw_queue_depth;
  1322. return 0;
  1323. }
  1324. static int init_driver_queues(struct nullb *nullb)
  1325. {
  1326. struct nullb_queue *nq;
  1327. int i, ret = 0;
  1328. for (i = 0; i < nullb->dev->submit_queues; i++) {
  1329. nq = &nullb->queues[i];
  1330. null_init_queue(nullb, nq);
  1331. ret = setup_commands(nq);
  1332. if (ret)
  1333. return ret;
  1334. nullb->nr_queues++;
  1335. }
  1336. return 0;
  1337. }
  1338. static int null_gendisk_register(struct nullb *nullb)
  1339. {
  1340. struct gendisk *disk;
  1341. sector_t size;
  1342. disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
  1343. if (!disk)
  1344. return -ENOMEM;
  1345. size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
  1346. set_capacity(disk, size >> 9);
  1347. disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
  1348. disk->major = null_major;
  1349. disk->first_minor = nullb->index;
  1350. disk->fops = &null_fops;
  1351. disk->private_data = nullb;
  1352. disk->queue = nullb->q;
  1353. strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
  1354. add_disk(disk);
  1355. return 0;
  1356. }
  1357. static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
  1358. {
  1359. set->ops = &null_mq_ops;
  1360. set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
  1361. g_submit_queues;
  1362. set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
  1363. g_hw_queue_depth;
  1364. set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
  1365. set->cmd_size = sizeof(struct nullb_cmd);
  1366. set->flags = BLK_MQ_F_SHOULD_MERGE;
  1367. if (g_no_sched)
  1368. set->flags |= BLK_MQ_F_NO_SCHED;
  1369. set->driver_data = NULL;
  1370. if ((nullb && nullb->dev->blocking) || g_blocking)
  1371. set->flags |= BLK_MQ_F_BLOCKING;
  1372. return blk_mq_alloc_tag_set(set);
  1373. }
  1374. static void null_validate_conf(struct nullb_device *dev)
  1375. {
  1376. dev->blocksize = round_down(dev->blocksize, 512);
  1377. dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
  1378. if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
  1379. if (dev->submit_queues != nr_online_nodes)
  1380. dev->submit_queues = nr_online_nodes;
  1381. } else if (dev->submit_queues > nr_cpu_ids)
  1382. dev->submit_queues = nr_cpu_ids;
  1383. else if (dev->submit_queues == 0)
  1384. dev->submit_queues = 1;
  1385. dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
  1386. dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
  1387. /* Do memory allocation, so set blocking */
  1388. if (dev->memory_backed)
  1389. dev->blocking = true;
  1390. else /* cache is meaningless */
  1391. dev->cache_size = 0;
  1392. dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
  1393. dev->cache_size);
  1394. dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
  1395. /* can not stop a queue */
  1396. if (dev->queue_mode == NULL_Q_BIO)
  1397. dev->mbps = 0;
  1398. }
  1399. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1400. static bool __null_setup_fault(struct fault_attr *attr, char *str)
  1401. {
  1402. if (!str[0])
  1403. return true;
  1404. if (!setup_fault_attr(attr, str))
  1405. return false;
  1406. attr->verbose = 0;
  1407. return true;
  1408. }
  1409. #endif
  1410. static bool null_setup_fault(void)
  1411. {
  1412. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1413. if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
  1414. return false;
  1415. if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
  1416. return false;
  1417. #endif
  1418. return true;
  1419. }
  1420. static int null_add_dev(struct nullb_device *dev)
  1421. {
  1422. struct nullb *nullb;
  1423. int rv;
  1424. null_validate_conf(dev);
  1425. nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
  1426. if (!nullb) {
  1427. rv = -ENOMEM;
  1428. goto out;
  1429. }
  1430. nullb->dev = dev;
  1431. dev->nullb = nullb;
  1432. spin_lock_init(&nullb->lock);
  1433. rv = setup_queues(nullb);
  1434. if (rv)
  1435. goto out_free_nullb;
  1436. if (dev->queue_mode == NULL_Q_MQ) {
  1437. if (shared_tags) {
  1438. nullb->tag_set = &tag_set;
  1439. rv = 0;
  1440. } else {
  1441. nullb->tag_set = &nullb->__tag_set;
  1442. rv = null_init_tag_set(nullb, nullb->tag_set);
  1443. }
  1444. if (rv)
  1445. goto out_cleanup_queues;
  1446. if (!null_setup_fault())
  1447. goto out_cleanup_queues;
  1448. nullb->tag_set->timeout = 5 * HZ;
  1449. nullb->q = blk_mq_init_queue(nullb->tag_set);
  1450. if (IS_ERR(nullb->q)) {
  1451. rv = -ENOMEM;
  1452. goto out_cleanup_tags;
  1453. }
  1454. null_init_queues(nullb);
  1455. } else if (dev->queue_mode == NULL_Q_BIO) {
  1456. nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node,
  1457. NULL);
  1458. if (!nullb->q) {
  1459. rv = -ENOMEM;
  1460. goto out_cleanup_queues;
  1461. }
  1462. blk_queue_make_request(nullb->q, null_queue_bio);
  1463. rv = init_driver_queues(nullb);
  1464. if (rv)
  1465. goto out_cleanup_blk_queue;
  1466. } else {
  1467. nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock,
  1468. dev->home_node);
  1469. if (!nullb->q) {
  1470. rv = -ENOMEM;
  1471. goto out_cleanup_queues;
  1472. }
  1473. if (!null_setup_fault())
  1474. goto out_cleanup_blk_queue;
  1475. blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
  1476. blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
  1477. blk_queue_rq_timed_out(nullb->q, null_rq_timed_out_fn);
  1478. nullb->q->rq_timeout = 5 * HZ;
  1479. rv = init_driver_queues(nullb);
  1480. if (rv)
  1481. goto out_cleanup_blk_queue;
  1482. }
  1483. if (dev->mbps) {
  1484. set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
  1485. nullb_setup_bwtimer(nullb);
  1486. }
  1487. if (dev->cache_size > 0) {
  1488. set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
  1489. blk_queue_write_cache(nullb->q, true, true);
  1490. blk_queue_flush_queueable(nullb->q, true);
  1491. }
  1492. if (dev->zoned) {
  1493. rv = null_zone_init(dev);
  1494. if (rv)
  1495. goto out_cleanup_blk_queue;
  1496. blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
  1497. nullb->q->limits.zoned = BLK_ZONED_HM;
  1498. }
  1499. nullb->q->queuedata = nullb;
  1500. blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
  1501. blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
  1502. mutex_lock(&lock);
  1503. nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
  1504. dev->index = nullb->index;
  1505. mutex_unlock(&lock);
  1506. blk_queue_logical_block_size(nullb->q, dev->blocksize);
  1507. blk_queue_physical_block_size(nullb->q, dev->blocksize);
  1508. null_config_discard(nullb);
  1509. sprintf(nullb->disk_name, "nullb%d", nullb->index);
  1510. rv = null_gendisk_register(nullb);
  1511. if (rv)
  1512. goto out_cleanup_zone;
  1513. mutex_lock(&lock);
  1514. list_add_tail(&nullb->list, &nullb_list);
  1515. mutex_unlock(&lock);
  1516. return 0;
  1517. out_cleanup_zone:
  1518. if (dev->zoned)
  1519. null_zone_exit(dev);
  1520. out_cleanup_blk_queue:
  1521. blk_cleanup_queue(nullb->q);
  1522. out_cleanup_tags:
  1523. if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
  1524. blk_mq_free_tag_set(nullb->tag_set);
  1525. out_cleanup_queues:
  1526. cleanup_queues(nullb);
  1527. out_free_nullb:
  1528. kfree(nullb);
  1529. out:
  1530. return rv;
  1531. }
  1532. static int __init null_init(void)
  1533. {
  1534. int ret = 0;
  1535. unsigned int i;
  1536. struct nullb *nullb;
  1537. struct nullb_device *dev;
  1538. if (g_bs > PAGE_SIZE) {
  1539. pr_warn("null_blk: invalid block size\n");
  1540. pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
  1541. g_bs = PAGE_SIZE;
  1542. }
  1543. if (!is_power_of_2(g_zone_size)) {
  1544. pr_err("null_blk: zone_size must be power-of-two\n");
  1545. return -EINVAL;
  1546. }
  1547. if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
  1548. if (g_submit_queues != nr_online_nodes) {
  1549. pr_warn("null_blk: submit_queues param is set to %u.\n",
  1550. nr_online_nodes);
  1551. g_submit_queues = nr_online_nodes;
  1552. }
  1553. } else if (g_submit_queues > nr_cpu_ids)
  1554. g_submit_queues = nr_cpu_ids;
  1555. else if (g_submit_queues <= 0)
  1556. g_submit_queues = 1;
  1557. if (g_queue_mode == NULL_Q_MQ && shared_tags) {
  1558. ret = null_init_tag_set(NULL, &tag_set);
  1559. if (ret)
  1560. return ret;
  1561. }
  1562. config_group_init(&nullb_subsys.su_group);
  1563. mutex_init(&nullb_subsys.su_mutex);
  1564. ret = configfs_register_subsystem(&nullb_subsys);
  1565. if (ret)
  1566. goto err_tagset;
  1567. mutex_init(&lock);
  1568. null_major = register_blkdev(0, "nullb");
  1569. if (null_major < 0) {
  1570. ret = null_major;
  1571. goto err_conf;
  1572. }
  1573. for (i = 0; i < nr_devices; i++) {
  1574. dev = null_alloc_dev();
  1575. if (!dev) {
  1576. ret = -ENOMEM;
  1577. goto err_dev;
  1578. }
  1579. ret = null_add_dev(dev);
  1580. if (ret) {
  1581. null_free_dev(dev);
  1582. goto err_dev;
  1583. }
  1584. }
  1585. pr_info("null: module loaded\n");
  1586. return 0;
  1587. err_dev:
  1588. while (!list_empty(&nullb_list)) {
  1589. nullb = list_entry(nullb_list.next, struct nullb, list);
  1590. dev = nullb->dev;
  1591. null_del_dev(nullb);
  1592. null_free_dev(dev);
  1593. }
  1594. unregister_blkdev(null_major, "nullb");
  1595. err_conf:
  1596. configfs_unregister_subsystem(&nullb_subsys);
  1597. err_tagset:
  1598. if (g_queue_mode == NULL_Q_MQ && shared_tags)
  1599. blk_mq_free_tag_set(&tag_set);
  1600. return ret;
  1601. }
  1602. static void __exit null_exit(void)
  1603. {
  1604. struct nullb *nullb;
  1605. configfs_unregister_subsystem(&nullb_subsys);
  1606. unregister_blkdev(null_major, "nullb");
  1607. mutex_lock(&lock);
  1608. while (!list_empty(&nullb_list)) {
  1609. struct nullb_device *dev;
  1610. nullb = list_entry(nullb_list.next, struct nullb, list);
  1611. dev = nullb->dev;
  1612. null_del_dev(nullb);
  1613. null_free_dev(dev);
  1614. }
  1615. mutex_unlock(&lock);
  1616. if (g_queue_mode == NULL_Q_MQ && shared_tags)
  1617. blk_mq_free_tag_set(&tag_set);
  1618. }
  1619. module_init(null_init);
  1620. module_exit(null_exit);
  1621. MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
  1622. MODULE_LICENSE("GPL");