pdc_adma.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * pdc_adma.c - Pacific Digital Corporation ADMA
  3. *
  4. * Maintained by: Tejun Heo <tj@kernel.org>
  5. *
  6. * Copyright 2005 Mark Lord
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. * libata documentation is available via 'make {ps|pdf}docs',
  24. * as Documentation/driver-api/libata.rst
  25. *
  26. *
  27. * Supports ATA disks in single-packet ADMA mode.
  28. * Uses PIO for everything else.
  29. *
  30. * TODO: Use ADMA transfers for ATAPI devices, when possible.
  31. * This requires careful attention to a number of quirks of the chip.
  32. *
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/gfp.h>
  37. #include <linux/pci.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/device.h>
  42. #include <scsi/scsi_host.h>
  43. #include <linux/libata.h>
  44. #define DRV_NAME "pdc_adma"
  45. #define DRV_VERSION "1.0"
  46. /* macro to calculate base address for ATA regs */
  47. #define ADMA_ATA_REGS(base, port_no) ((base) + ((port_no) * 0x40))
  48. /* macro to calculate base address for ADMA regs */
  49. #define ADMA_REGS(base, port_no) ((base) + 0x80 + ((port_no) * 0x20))
  50. /* macro to obtain addresses from ata_port */
  51. #define ADMA_PORT_REGS(ap) \
  52. ADMA_REGS((ap)->host->iomap[ADMA_MMIO_BAR], ap->port_no)
  53. enum {
  54. ADMA_MMIO_BAR = 4,
  55. ADMA_PORTS = 2,
  56. ADMA_CPB_BYTES = 40,
  57. ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
  58. ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
  59. ADMA_DMA_BOUNDARY = 0xffffffff,
  60. /* global register offsets */
  61. ADMA_MODE_LOCK = 0x00c7,
  62. /* per-channel register offsets */
  63. ADMA_CONTROL = 0x0000, /* ADMA control */
  64. ADMA_STATUS = 0x0002, /* ADMA status */
  65. ADMA_CPB_COUNT = 0x0004, /* CPB count */
  66. ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
  67. ADMA_CPB_NEXT = 0x000c, /* next CPB address */
  68. ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
  69. ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
  70. ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
  71. /* ADMA_CONTROL register bits */
  72. aNIEN = (1 << 8), /* irq mask: 1==masked */
  73. aGO = (1 << 7), /* packet trigger ("Go!") */
  74. aRSTADM = (1 << 5), /* ADMA logic reset */
  75. aPIOMD4 = 0x0003, /* PIO mode 4 */
  76. /* ADMA_STATUS register bits */
  77. aPSD = (1 << 6),
  78. aUIRQ = (1 << 4),
  79. aPERR = (1 << 0),
  80. /* CPB bits */
  81. cDONE = (1 << 0),
  82. cATERR = (1 << 3),
  83. cVLD = (1 << 0),
  84. cDAT = (1 << 2),
  85. cIEN = (1 << 3),
  86. /* PRD bits */
  87. pORD = (1 << 4),
  88. pDIRO = (1 << 5),
  89. pEND = (1 << 7),
  90. /* ATA register flags */
  91. rIGN = (1 << 5),
  92. rEND = (1 << 7),
  93. /* ATA register addresses */
  94. ADMA_REGS_CONTROL = 0x0e,
  95. ADMA_REGS_SECTOR_COUNT = 0x12,
  96. ADMA_REGS_LBA_LOW = 0x13,
  97. ADMA_REGS_LBA_MID = 0x14,
  98. ADMA_REGS_LBA_HIGH = 0x15,
  99. ADMA_REGS_DEVICE = 0x16,
  100. ADMA_REGS_COMMAND = 0x17,
  101. /* PCI device IDs */
  102. board_1841_idx = 0, /* ADMA 2-port controller */
  103. };
  104. typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
  105. struct adma_port_priv {
  106. u8 *pkt;
  107. dma_addr_t pkt_dma;
  108. adma_state_t state;
  109. };
  110. static int adma_ata_init_one(struct pci_dev *pdev,
  111. const struct pci_device_id *ent);
  112. static int adma_port_start(struct ata_port *ap);
  113. static void adma_port_stop(struct ata_port *ap);
  114. static void adma_qc_prep(struct ata_queued_cmd *qc);
  115. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc);
  116. static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
  117. static void adma_freeze(struct ata_port *ap);
  118. static void adma_thaw(struct ata_port *ap);
  119. static int adma_prereset(struct ata_link *link, unsigned long deadline);
  120. static struct scsi_host_template adma_ata_sht = {
  121. ATA_BASE_SHT(DRV_NAME),
  122. .sg_tablesize = LIBATA_MAX_PRD,
  123. .dma_boundary = ADMA_DMA_BOUNDARY,
  124. };
  125. static struct ata_port_operations adma_ata_ops = {
  126. .inherits = &ata_sff_port_ops,
  127. .lost_interrupt = ATA_OP_NULL,
  128. .check_atapi_dma = adma_check_atapi_dma,
  129. .qc_prep = adma_qc_prep,
  130. .qc_issue = adma_qc_issue,
  131. .freeze = adma_freeze,
  132. .thaw = adma_thaw,
  133. .prereset = adma_prereset,
  134. .port_start = adma_port_start,
  135. .port_stop = adma_port_stop,
  136. };
  137. static struct ata_port_info adma_port_info[] = {
  138. /* board_1841_idx */
  139. {
  140. .flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_PIO_POLLING,
  141. .pio_mask = ATA_PIO4_ONLY,
  142. .udma_mask = ATA_UDMA4,
  143. .port_ops = &adma_ata_ops,
  144. },
  145. };
  146. static const struct pci_device_id adma_ata_pci_tbl[] = {
  147. { PCI_VDEVICE(PDC, 0x1841), board_1841_idx },
  148. { } /* terminate list */
  149. };
  150. static struct pci_driver adma_ata_pci_driver = {
  151. .name = DRV_NAME,
  152. .id_table = adma_ata_pci_tbl,
  153. .probe = adma_ata_init_one,
  154. .remove = ata_pci_remove_one,
  155. };
  156. static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
  157. {
  158. return 1; /* ATAPI DMA not yet supported */
  159. }
  160. static void adma_reset_engine(struct ata_port *ap)
  161. {
  162. void __iomem *chan = ADMA_PORT_REGS(ap);
  163. /* reset ADMA to idle state */
  164. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  165. udelay(2);
  166. writew(aPIOMD4, chan + ADMA_CONTROL);
  167. udelay(2);
  168. }
  169. static void adma_reinit_engine(struct ata_port *ap)
  170. {
  171. struct adma_port_priv *pp = ap->private_data;
  172. void __iomem *chan = ADMA_PORT_REGS(ap);
  173. /* mask/clear ATA interrupts */
  174. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  175. ata_sff_check_status(ap);
  176. /* reset the ADMA engine */
  177. adma_reset_engine(ap);
  178. /* set in-FIFO threshold to 0x100 */
  179. writew(0x100, chan + ADMA_FIFO_IN);
  180. /* set CPB pointer */
  181. writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
  182. /* set out-FIFO threshold to 0x100 */
  183. writew(0x100, chan + ADMA_FIFO_OUT);
  184. /* set CPB count */
  185. writew(1, chan + ADMA_CPB_COUNT);
  186. /* read/discard ADMA status */
  187. readb(chan + ADMA_STATUS);
  188. }
  189. static inline void adma_enter_reg_mode(struct ata_port *ap)
  190. {
  191. void __iomem *chan = ADMA_PORT_REGS(ap);
  192. writew(aPIOMD4, chan + ADMA_CONTROL);
  193. readb(chan + ADMA_STATUS); /* flush */
  194. }
  195. static void adma_freeze(struct ata_port *ap)
  196. {
  197. void __iomem *chan = ADMA_PORT_REGS(ap);
  198. /* mask/clear ATA interrupts */
  199. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  200. ata_sff_check_status(ap);
  201. /* reset ADMA to idle state */
  202. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  203. udelay(2);
  204. writew(aPIOMD4 | aNIEN, chan + ADMA_CONTROL);
  205. udelay(2);
  206. }
  207. static void adma_thaw(struct ata_port *ap)
  208. {
  209. adma_reinit_engine(ap);
  210. }
  211. static int adma_prereset(struct ata_link *link, unsigned long deadline)
  212. {
  213. struct ata_port *ap = link->ap;
  214. struct adma_port_priv *pp = ap->private_data;
  215. if (pp->state != adma_state_idle) /* healthy paranoia */
  216. pp->state = adma_state_mmio;
  217. adma_reinit_engine(ap);
  218. return ata_sff_prereset(link, deadline);
  219. }
  220. static int adma_fill_sg(struct ata_queued_cmd *qc)
  221. {
  222. struct scatterlist *sg;
  223. struct ata_port *ap = qc->ap;
  224. struct adma_port_priv *pp = ap->private_data;
  225. u8 *buf = pp->pkt, *last_buf = NULL;
  226. int i = (2 + buf[3]) * 8;
  227. u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
  228. unsigned int si;
  229. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  230. u32 addr;
  231. u32 len;
  232. addr = (u32)sg_dma_address(sg);
  233. *(__le32 *)(buf + i) = cpu_to_le32(addr);
  234. i += 4;
  235. len = sg_dma_len(sg) >> 3;
  236. *(__le32 *)(buf + i) = cpu_to_le32(len);
  237. i += 4;
  238. last_buf = &buf[i];
  239. buf[i++] = pFLAGS;
  240. buf[i++] = qc->dev->dma_mode & 0xf;
  241. buf[i++] = 0; /* pPKLW */
  242. buf[i++] = 0; /* reserved */
  243. *(__le32 *)(buf + i) =
  244. (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
  245. i += 4;
  246. VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", i/4,
  247. (unsigned long)addr, len);
  248. }
  249. if (likely(last_buf))
  250. *last_buf |= pEND;
  251. return i;
  252. }
  253. static void adma_qc_prep(struct ata_queued_cmd *qc)
  254. {
  255. struct adma_port_priv *pp = qc->ap->private_data;
  256. u8 *buf = pp->pkt;
  257. u32 pkt_dma = (u32)pp->pkt_dma;
  258. int i = 0;
  259. VPRINTK("ENTER\n");
  260. adma_enter_reg_mode(qc->ap);
  261. if (qc->tf.protocol != ATA_PROT_DMA)
  262. return;
  263. buf[i++] = 0; /* Response flags */
  264. buf[i++] = 0; /* reserved */
  265. buf[i++] = cVLD | cDAT | cIEN;
  266. i++; /* cLEN, gets filled in below */
  267. *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
  268. i += 4; /* cNCPB */
  269. i += 4; /* cPRD, gets filled in below */
  270. buf[i++] = 0; /* reserved */
  271. buf[i++] = 0; /* reserved */
  272. buf[i++] = 0; /* reserved */
  273. buf[i++] = 0; /* reserved */
  274. /* ATA registers; must be a multiple of 4 */
  275. buf[i++] = qc->tf.device;
  276. buf[i++] = ADMA_REGS_DEVICE;
  277. if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
  278. buf[i++] = qc->tf.hob_nsect;
  279. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  280. buf[i++] = qc->tf.hob_lbal;
  281. buf[i++] = ADMA_REGS_LBA_LOW;
  282. buf[i++] = qc->tf.hob_lbam;
  283. buf[i++] = ADMA_REGS_LBA_MID;
  284. buf[i++] = qc->tf.hob_lbah;
  285. buf[i++] = ADMA_REGS_LBA_HIGH;
  286. }
  287. buf[i++] = qc->tf.nsect;
  288. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  289. buf[i++] = qc->tf.lbal;
  290. buf[i++] = ADMA_REGS_LBA_LOW;
  291. buf[i++] = qc->tf.lbam;
  292. buf[i++] = ADMA_REGS_LBA_MID;
  293. buf[i++] = qc->tf.lbah;
  294. buf[i++] = ADMA_REGS_LBA_HIGH;
  295. buf[i++] = 0;
  296. buf[i++] = ADMA_REGS_CONTROL;
  297. buf[i++] = rIGN;
  298. buf[i++] = 0;
  299. buf[i++] = qc->tf.command;
  300. buf[i++] = ADMA_REGS_COMMAND | rEND;
  301. buf[3] = (i >> 3) - 2; /* cLEN */
  302. *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
  303. i = adma_fill_sg(qc);
  304. wmb(); /* flush PRDs and pkt to memory */
  305. #if 0
  306. /* dump out CPB + PRDs for debug */
  307. {
  308. int j, len = 0;
  309. static char obuf[2048];
  310. for (j = 0; j < i; ++j) {
  311. len += sprintf(obuf+len, "%02x ", buf[j]);
  312. if ((j & 7) == 7) {
  313. printk("%s\n", obuf);
  314. len = 0;
  315. }
  316. }
  317. if (len)
  318. printk("%s\n", obuf);
  319. }
  320. #endif
  321. }
  322. static inline void adma_packet_start(struct ata_queued_cmd *qc)
  323. {
  324. struct ata_port *ap = qc->ap;
  325. void __iomem *chan = ADMA_PORT_REGS(ap);
  326. VPRINTK("ENTER, ap %p\n", ap);
  327. /* fire up the ADMA engine */
  328. writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
  329. }
  330. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc)
  331. {
  332. struct adma_port_priv *pp = qc->ap->private_data;
  333. switch (qc->tf.protocol) {
  334. case ATA_PROT_DMA:
  335. pp->state = adma_state_pkt;
  336. adma_packet_start(qc);
  337. return 0;
  338. case ATAPI_PROT_DMA:
  339. BUG();
  340. break;
  341. default:
  342. break;
  343. }
  344. pp->state = adma_state_mmio;
  345. return ata_sff_qc_issue(qc);
  346. }
  347. static inline unsigned int adma_intr_pkt(struct ata_host *host)
  348. {
  349. unsigned int handled = 0, port_no;
  350. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  351. struct ata_port *ap = host->ports[port_no];
  352. struct adma_port_priv *pp;
  353. struct ata_queued_cmd *qc;
  354. void __iomem *chan = ADMA_PORT_REGS(ap);
  355. u8 status = readb(chan + ADMA_STATUS);
  356. if (status == 0)
  357. continue;
  358. handled = 1;
  359. adma_enter_reg_mode(ap);
  360. pp = ap->private_data;
  361. if (!pp || pp->state != adma_state_pkt)
  362. continue;
  363. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  364. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  365. if (status & aPERR)
  366. qc->err_mask |= AC_ERR_HOST_BUS;
  367. else if ((status & (aPSD | aUIRQ)))
  368. qc->err_mask |= AC_ERR_OTHER;
  369. if (pp->pkt[0] & cATERR)
  370. qc->err_mask |= AC_ERR_DEV;
  371. else if (pp->pkt[0] != cDONE)
  372. qc->err_mask |= AC_ERR_OTHER;
  373. if (!qc->err_mask)
  374. ata_qc_complete(qc);
  375. else {
  376. struct ata_eh_info *ehi = &ap->link.eh_info;
  377. ata_ehi_clear_desc(ehi);
  378. ata_ehi_push_desc(ehi,
  379. "ADMA-status 0x%02X", status);
  380. ata_ehi_push_desc(ehi,
  381. "pkt[0] 0x%02X", pp->pkt[0]);
  382. if (qc->err_mask == AC_ERR_DEV)
  383. ata_port_abort(ap);
  384. else
  385. ata_port_freeze(ap);
  386. }
  387. }
  388. }
  389. return handled;
  390. }
  391. static inline unsigned int adma_intr_mmio(struct ata_host *host)
  392. {
  393. unsigned int handled = 0, port_no;
  394. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  395. struct ata_port *ap = host->ports[port_no];
  396. struct adma_port_priv *pp = ap->private_data;
  397. struct ata_queued_cmd *qc;
  398. if (!pp || pp->state != adma_state_mmio)
  399. continue;
  400. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  401. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  402. /* check main status, clearing INTRQ */
  403. u8 status = ata_sff_check_status(ap);
  404. if ((status & ATA_BUSY))
  405. continue;
  406. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  407. ap->print_id, qc->tf.protocol, status);
  408. /* complete taskfile transaction */
  409. pp->state = adma_state_idle;
  410. qc->err_mask |= ac_err_mask(status);
  411. if (!qc->err_mask)
  412. ata_qc_complete(qc);
  413. else {
  414. struct ata_eh_info *ehi = &ap->link.eh_info;
  415. ata_ehi_clear_desc(ehi);
  416. ata_ehi_push_desc(ehi, "status 0x%02X", status);
  417. if (qc->err_mask == AC_ERR_DEV)
  418. ata_port_abort(ap);
  419. else
  420. ata_port_freeze(ap);
  421. }
  422. handled = 1;
  423. }
  424. }
  425. return handled;
  426. }
  427. static irqreturn_t adma_intr(int irq, void *dev_instance)
  428. {
  429. struct ata_host *host = dev_instance;
  430. unsigned int handled = 0;
  431. VPRINTK("ENTER\n");
  432. spin_lock(&host->lock);
  433. handled = adma_intr_pkt(host) | adma_intr_mmio(host);
  434. spin_unlock(&host->lock);
  435. VPRINTK("EXIT\n");
  436. return IRQ_RETVAL(handled);
  437. }
  438. static void adma_ata_setup_port(struct ata_ioports *port, void __iomem *base)
  439. {
  440. port->cmd_addr =
  441. port->data_addr = base + 0x000;
  442. port->error_addr =
  443. port->feature_addr = base + 0x004;
  444. port->nsect_addr = base + 0x008;
  445. port->lbal_addr = base + 0x00c;
  446. port->lbam_addr = base + 0x010;
  447. port->lbah_addr = base + 0x014;
  448. port->device_addr = base + 0x018;
  449. port->status_addr =
  450. port->command_addr = base + 0x01c;
  451. port->altstatus_addr =
  452. port->ctl_addr = base + 0x038;
  453. }
  454. static int adma_port_start(struct ata_port *ap)
  455. {
  456. struct device *dev = ap->host->dev;
  457. struct adma_port_priv *pp;
  458. adma_enter_reg_mode(ap);
  459. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  460. if (!pp)
  461. return -ENOMEM;
  462. pp->pkt = dmam_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
  463. GFP_KERNEL);
  464. if (!pp->pkt)
  465. return -ENOMEM;
  466. /* paranoia? */
  467. if ((pp->pkt_dma & 7) != 0) {
  468. printk(KERN_ERR "bad alignment for pp->pkt_dma: %08x\n",
  469. (u32)pp->pkt_dma);
  470. return -ENOMEM;
  471. }
  472. memset(pp->pkt, 0, ADMA_PKT_BYTES);
  473. ap->private_data = pp;
  474. adma_reinit_engine(ap);
  475. return 0;
  476. }
  477. static void adma_port_stop(struct ata_port *ap)
  478. {
  479. adma_reset_engine(ap);
  480. }
  481. static void adma_host_init(struct ata_host *host, unsigned int chip_id)
  482. {
  483. unsigned int port_no;
  484. /* enable/lock aGO operation */
  485. writeb(7, host->iomap[ADMA_MMIO_BAR] + ADMA_MODE_LOCK);
  486. /* reset the ADMA logic */
  487. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  488. adma_reset_engine(host->ports[port_no]);
  489. }
  490. static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  491. {
  492. int rc;
  493. rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  494. if (rc) {
  495. dev_err(&pdev->dev, "32-bit DMA enable failed\n");
  496. return rc;
  497. }
  498. rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  499. if (rc) {
  500. dev_err(&pdev->dev, "32-bit consistent DMA enable failed\n");
  501. return rc;
  502. }
  503. return 0;
  504. }
  505. static int adma_ata_init_one(struct pci_dev *pdev,
  506. const struct pci_device_id *ent)
  507. {
  508. unsigned int board_idx = (unsigned int) ent->driver_data;
  509. const struct ata_port_info *ppi[] = { &adma_port_info[board_idx], NULL };
  510. struct ata_host *host;
  511. void __iomem *mmio_base;
  512. int rc, port_no;
  513. ata_print_version_once(&pdev->dev, DRV_VERSION);
  514. /* alloc host */
  515. host = ata_host_alloc_pinfo(&pdev->dev, ppi, ADMA_PORTS);
  516. if (!host)
  517. return -ENOMEM;
  518. /* acquire resources and fill host */
  519. rc = pcim_enable_device(pdev);
  520. if (rc)
  521. return rc;
  522. if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0)
  523. return -ENODEV;
  524. rc = pcim_iomap_regions(pdev, 1 << ADMA_MMIO_BAR, DRV_NAME);
  525. if (rc)
  526. return rc;
  527. host->iomap = pcim_iomap_table(pdev);
  528. mmio_base = host->iomap[ADMA_MMIO_BAR];
  529. rc = adma_set_dma_masks(pdev, mmio_base);
  530. if (rc)
  531. return rc;
  532. for (port_no = 0; port_no < ADMA_PORTS; ++port_no) {
  533. struct ata_port *ap = host->ports[port_no];
  534. void __iomem *port_base = ADMA_ATA_REGS(mmio_base, port_no);
  535. unsigned int offset = port_base - mmio_base;
  536. adma_ata_setup_port(&ap->ioaddr, port_base);
  537. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, -1, "mmio");
  538. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, offset, "port");
  539. }
  540. /* initialize adapter */
  541. adma_host_init(host, board_idx);
  542. pci_set_master(pdev);
  543. return ata_host_activate(host, pdev->irq, adma_intr, IRQF_SHARED,
  544. &adma_ata_sht);
  545. }
  546. module_pci_driver(adma_ata_pci_driver);
  547. MODULE_AUTHOR("Mark Lord");
  548. MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
  549. MODULE_LICENSE("GPL");
  550. MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
  551. MODULE_VERSION(DRV_VERSION);