123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 |
- // SPDX-License-Identifier: GPL-2.0
- /*---------------------------------------------------------------------------+
- | poly_sin.c |
- | |
- | Computation of an approximation of the sin function and the cosine |
- | function by a polynomial. |
- | |
- | Copyright (C) 1992,1993,1994,1997,1999 |
- | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
- | E-mail billm@melbpc.org.au |
- | |
- | |
- +---------------------------------------------------------------------------*/
- #include "exception.h"
- #include "reg_constant.h"
- #include "fpu_emu.h"
- #include "fpu_system.h"
- #include "control_w.h"
- #include "poly.h"
- #define N_COEFF_P 4
- #define N_COEFF_N 4
- static const unsigned long long pos_terms_l[N_COEFF_P] = {
- 0xaaaaaaaaaaaaaaabLL,
- 0x00d00d00d00cf906LL,
- 0x000006b99159a8bbLL,
- 0x000000000d7392e6LL
- };
- static const unsigned long long neg_terms_l[N_COEFF_N] = {
- 0x2222222222222167LL,
- 0x0002e3bc74aab624LL,
- 0x0000000b09229062LL,
- 0x00000000000c7973LL
- };
- #define N_COEFF_PH 4
- #define N_COEFF_NH 4
- static const unsigned long long pos_terms_h[N_COEFF_PH] = {
- 0x0000000000000000LL,
- 0x05b05b05b05b0406LL,
- 0x000049f93edd91a9LL,
- 0x00000000c9c9ed62LL
- };
- static const unsigned long long neg_terms_h[N_COEFF_NH] = {
- 0xaaaaaaaaaaaaaa98LL,
- 0x001a01a01a019064LL,
- 0x0000008f76c68a77LL,
- 0x0000000000d58f5eLL
- };
- /*--- poly_sine() -----------------------------------------------------------+
- | |
- +---------------------------------------------------------------------------*/
- void poly_sine(FPU_REG *st0_ptr)
- {
- int exponent, echange;
- Xsig accumulator, argSqrd, argTo4;
- unsigned long fix_up, adj;
- unsigned long long fixed_arg;
- FPU_REG result;
- exponent = exponent(st0_ptr);
- accumulator.lsw = accumulator.midw = accumulator.msw = 0;
- /* Split into two ranges, for arguments below and above 1.0 */
- /* The boundary between upper and lower is approx 0.88309101259 */
- if ((exponent < -1)
- || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
- /* The argument is <= 0.88309101259 */
- argSqrd.msw = st0_ptr->sigh;
- argSqrd.midw = st0_ptr->sigl;
- argSqrd.lsw = 0;
- mul64_Xsig(&argSqrd, &significand(st0_ptr));
- shr_Xsig(&argSqrd, 2 * (-1 - exponent));
- argTo4.msw = argSqrd.msw;
- argTo4.midw = argSqrd.midw;
- argTo4.lsw = argSqrd.lsw;
- mul_Xsig_Xsig(&argTo4, &argTo4);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
- N_COEFF_N - 1);
- mul_Xsig_Xsig(&accumulator, &argSqrd);
- negate_Xsig(&accumulator);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
- N_COEFF_P - 1);
- shr_Xsig(&accumulator, 2); /* Divide by four */
- accumulator.msw |= 0x80000000; /* Add 1.0 */
- mul64_Xsig(&accumulator, &significand(st0_ptr));
- mul64_Xsig(&accumulator, &significand(st0_ptr));
- mul64_Xsig(&accumulator, &significand(st0_ptr));
- /* Divide by four, FPU_REG compatible, etc */
- exponent = 3 * exponent;
- /* The minimum exponent difference is 3 */
- shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
- negate_Xsig(&accumulator);
- XSIG_LL(accumulator) += significand(st0_ptr);
- echange = round_Xsig(&accumulator);
- setexponentpos(&result, exponent(st0_ptr) + echange);
- } else {
- /* The argument is > 0.88309101259 */
- /* We use sin(st(0)) = cos(pi/2-st(0)) */
- fixed_arg = significand(st0_ptr);
- if (exponent == 0) {
- /* The argument is >= 1.0 */
- /* Put the binary point at the left. */
- fixed_arg <<= 1;
- }
- /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
- fixed_arg = 0x921fb54442d18469LL - fixed_arg;
- /* There is a special case which arises due to rounding, to fix here. */
- if (fixed_arg == 0xffffffffffffffffLL)
- fixed_arg = 0;
- XSIG_LL(argSqrd) = fixed_arg;
- argSqrd.lsw = 0;
- mul64_Xsig(&argSqrd, &fixed_arg);
- XSIG_LL(argTo4) = XSIG_LL(argSqrd);
- argTo4.lsw = argSqrd.lsw;
- mul_Xsig_Xsig(&argTo4, &argTo4);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
- N_COEFF_NH - 1);
- mul_Xsig_Xsig(&accumulator, &argSqrd);
- negate_Xsig(&accumulator);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
- N_COEFF_PH - 1);
- negate_Xsig(&accumulator);
- mul64_Xsig(&accumulator, &fixed_arg);
- mul64_Xsig(&accumulator, &fixed_arg);
- shr_Xsig(&accumulator, 3);
- negate_Xsig(&accumulator);
- add_Xsig_Xsig(&accumulator, &argSqrd);
- shr_Xsig(&accumulator, 1);
- accumulator.lsw |= 1; /* A zero accumulator here would cause problems */
- negate_Xsig(&accumulator);
- /* The basic computation is complete. Now fix the answer to
- compensate for the error due to the approximation used for
- pi/2
- */
- /* This has an exponent of -65 */
- fix_up = 0x898cc517;
- /* The fix-up needs to be improved for larger args */
- if (argSqrd.msw & 0xffc00000) {
- /* Get about 32 bit precision in these: */
- fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
- }
- fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
- adj = accumulator.lsw; /* temp save */
- accumulator.lsw -= fix_up;
- if (accumulator.lsw > adj)
- XSIG_LL(accumulator)--;
- echange = round_Xsig(&accumulator);
- setexponentpos(&result, echange - 1);
- }
- significand(&result) = XSIG_LL(accumulator);
- setsign(&result, getsign(st0_ptr));
- FPU_copy_to_reg0(&result, TAG_Valid);
- #ifdef PARANOID
- if ((exponent(&result) >= 0)
- && (significand(&result) > 0x8000000000000000LL)) {
- EXCEPTION(EX_INTERNAL | 0x150);
- }
- #endif /* PARANOID */
- }
- /*--- poly_cos() ------------------------------------------------------------+
- | |
- +---------------------------------------------------------------------------*/
- void poly_cos(FPU_REG *st0_ptr)
- {
- FPU_REG result;
- long int exponent, exp2, echange;
- Xsig accumulator, argSqrd, fix_up, argTo4;
- unsigned long long fixed_arg;
- #ifdef PARANOID
- if ((exponent(st0_ptr) > 0)
- || ((exponent(st0_ptr) == 0)
- && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
- EXCEPTION(EX_Invalid);
- FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
- return;
- }
- #endif /* PARANOID */
- exponent = exponent(st0_ptr);
- accumulator.lsw = accumulator.midw = accumulator.msw = 0;
- if ((exponent < -1)
- || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
- /* arg is < 0.687705 */
- argSqrd.msw = st0_ptr->sigh;
- argSqrd.midw = st0_ptr->sigl;
- argSqrd.lsw = 0;
- mul64_Xsig(&argSqrd, &significand(st0_ptr));
- if (exponent < -1) {
- /* shift the argument right by the required places */
- shr_Xsig(&argSqrd, 2 * (-1 - exponent));
- }
- argTo4.msw = argSqrd.msw;
- argTo4.midw = argSqrd.midw;
- argTo4.lsw = argSqrd.lsw;
- mul_Xsig_Xsig(&argTo4, &argTo4);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
- N_COEFF_NH - 1);
- mul_Xsig_Xsig(&accumulator, &argSqrd);
- negate_Xsig(&accumulator);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
- N_COEFF_PH - 1);
- negate_Xsig(&accumulator);
- mul64_Xsig(&accumulator, &significand(st0_ptr));
- mul64_Xsig(&accumulator, &significand(st0_ptr));
- shr_Xsig(&accumulator, -2 * (1 + exponent));
- shr_Xsig(&accumulator, 3);
- negate_Xsig(&accumulator);
- add_Xsig_Xsig(&accumulator, &argSqrd);
- shr_Xsig(&accumulator, 1);
- /* It doesn't matter if accumulator is all zero here, the
- following code will work ok */
- negate_Xsig(&accumulator);
- if (accumulator.lsw & 0x80000000)
- XSIG_LL(accumulator)++;
- if (accumulator.msw == 0) {
- /* The result is 1.0 */
- FPU_copy_to_reg0(&CONST_1, TAG_Valid);
- return;
- } else {
- significand(&result) = XSIG_LL(accumulator);
- /* will be a valid positive nr with expon = -1 */
- setexponentpos(&result, -1);
- }
- } else {
- fixed_arg = significand(st0_ptr);
- if (exponent == 0) {
- /* The argument is >= 1.0 */
- /* Put the binary point at the left. */
- fixed_arg <<= 1;
- }
- /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
- fixed_arg = 0x921fb54442d18469LL - fixed_arg;
- /* There is a special case which arises due to rounding, to fix here. */
- if (fixed_arg == 0xffffffffffffffffLL)
- fixed_arg = 0;
- exponent = -1;
- exp2 = -1;
- /* A shift is needed here only for a narrow range of arguments,
- i.e. for fixed_arg approx 2^-32, but we pick up more... */
- if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
- fixed_arg <<= 16;
- exponent -= 16;
- exp2 -= 16;
- }
- XSIG_LL(argSqrd) = fixed_arg;
- argSqrd.lsw = 0;
- mul64_Xsig(&argSqrd, &fixed_arg);
- if (exponent < -1) {
- /* shift the argument right by the required places */
- shr_Xsig(&argSqrd, 2 * (-1 - exponent));
- }
- argTo4.msw = argSqrd.msw;
- argTo4.midw = argSqrd.midw;
- argTo4.lsw = argSqrd.lsw;
- mul_Xsig_Xsig(&argTo4, &argTo4);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
- N_COEFF_N - 1);
- mul_Xsig_Xsig(&accumulator, &argSqrd);
- negate_Xsig(&accumulator);
- polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
- N_COEFF_P - 1);
- shr_Xsig(&accumulator, 2); /* Divide by four */
- accumulator.msw |= 0x80000000; /* Add 1.0 */
- mul64_Xsig(&accumulator, &fixed_arg);
- mul64_Xsig(&accumulator, &fixed_arg);
- mul64_Xsig(&accumulator, &fixed_arg);
- /* Divide by four, FPU_REG compatible, etc */
- exponent = 3 * exponent;
- /* The minimum exponent difference is 3 */
- shr_Xsig(&accumulator, exp2 - exponent);
- negate_Xsig(&accumulator);
- XSIG_LL(accumulator) += fixed_arg;
- /* The basic computation is complete. Now fix the answer to
- compensate for the error due to the approximation used for
- pi/2
- */
- /* This has an exponent of -65 */
- XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
- fix_up.lsw = 0;
- /* The fix-up needs to be improved for larger args */
- if (argSqrd.msw & 0xffc00000) {
- /* Get about 32 bit precision in these: */
- fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
- fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
- }
- exp2 += norm_Xsig(&accumulator);
- shr_Xsig(&accumulator, 1); /* Prevent overflow */
- exp2++;
- shr_Xsig(&fix_up, 65 + exp2);
- add_Xsig_Xsig(&accumulator, &fix_up);
- echange = round_Xsig(&accumulator);
- setexponentpos(&result, exp2 + echange);
- significand(&result) = XSIG_LL(accumulator);
- }
- FPU_copy_to_reg0(&result, TAG_Valid);
- #ifdef PARANOID
- if ((exponent(&result) >= 0)
- && (significand(&result) > 0x8000000000000000LL)) {
- EXCEPTION(EX_INTERNAL | 0x151);
- }
- #endif /* PARANOID */
- }
|