sha512-ssse3-asm.S 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. ########################################################################
  2. # Implement fast SHA-512 with SSSE3 instructions. (x86_64)
  3. #
  4. # Copyright (C) 2013 Intel Corporation.
  5. #
  6. # Authors:
  7. # James Guilford <james.guilford@intel.com>
  8. # Kirk Yap <kirk.s.yap@intel.com>
  9. # David Cote <david.m.cote@intel.com>
  10. # Tim Chen <tim.c.chen@linux.intel.com>
  11. #
  12. # This software is available to you under a choice of one of two
  13. # licenses. You may choose to be licensed under the terms of the GNU
  14. # General Public License (GPL) Version 2, available from the file
  15. # COPYING in the main directory of this source tree, or the
  16. # OpenIB.org BSD license below:
  17. #
  18. # Redistribution and use in source and binary forms, with or
  19. # without modification, are permitted provided that the following
  20. # conditions are met:
  21. #
  22. # - Redistributions of source code must retain the above
  23. # copyright notice, this list of conditions and the following
  24. # disclaimer.
  25. #
  26. # - Redistributions in binary form must reproduce the above
  27. # copyright notice, this list of conditions and the following
  28. # disclaimer in the documentation and/or other materials
  29. # provided with the distribution.
  30. #
  31. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32. # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33. # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34. # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35. # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36. # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37. # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38. # SOFTWARE.
  39. #
  40. ########################################################################
  41. #
  42. # This code is described in an Intel White-Paper:
  43. # "Fast SHA-512 Implementations on Intel Architecture Processors"
  44. #
  45. # To find it, surf to http://www.intel.com/p/en_US/embedded
  46. # and search for that title.
  47. #
  48. ########################################################################
  49. #include <linux/linkage.h>
  50. .text
  51. # Virtual Registers
  52. # ARG1
  53. digest = %rdi
  54. # ARG2
  55. msg = %rsi
  56. # ARG3
  57. msglen = %rdx
  58. T1 = %rcx
  59. T2 = %r8
  60. a_64 = %r9
  61. b_64 = %r10
  62. c_64 = %r11
  63. d_64 = %r12
  64. e_64 = %r13
  65. f_64 = %r14
  66. g_64 = %r15
  67. h_64 = %rbx
  68. tmp0 = %rax
  69. # Local variables (stack frame)
  70. W_SIZE = 80*8
  71. WK_SIZE = 2*8
  72. RSPSAVE_SIZE = 1*8
  73. GPRSAVE_SIZE = 5*8
  74. frame_W = 0
  75. frame_WK = frame_W + W_SIZE
  76. frame_RSPSAVE = frame_WK + WK_SIZE
  77. frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  78. frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  79. # Useful QWORD "arrays" for simpler memory references
  80. # MSG, DIGEST, K_t, W_t are arrays
  81. # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
  82. # Input message (arg1)
  83. #define MSG(i) 8*i(msg)
  84. # Output Digest (arg2)
  85. #define DIGEST(i) 8*i(digest)
  86. # SHA Constants (static mem)
  87. #define K_t(i) 8*i+K512(%rip)
  88. # Message Schedule (stack frame)
  89. #define W_t(i) 8*i+frame_W(%rsp)
  90. # W[t]+K[t] (stack frame)
  91. #define WK_2(i) 8*((i%2))+frame_WK(%rsp)
  92. .macro RotateState
  93. # Rotate symbols a..h right
  94. TMP = h_64
  95. h_64 = g_64
  96. g_64 = f_64
  97. f_64 = e_64
  98. e_64 = d_64
  99. d_64 = c_64
  100. c_64 = b_64
  101. b_64 = a_64
  102. a_64 = TMP
  103. .endm
  104. .macro SHA512_Round rnd
  105. # Compute Round %%t
  106. mov f_64, T1 # T1 = f
  107. mov e_64, tmp0 # tmp = e
  108. xor g_64, T1 # T1 = f ^ g
  109. ror $23, tmp0 # 41 # tmp = e ror 23
  110. and e_64, T1 # T1 = (f ^ g) & e
  111. xor e_64, tmp0 # tmp = (e ror 23) ^ e
  112. xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
  113. idx = \rnd
  114. add WK_2(idx), T1 # W[t] + K[t] from message scheduler
  115. ror $4, tmp0 # 18 # tmp = ((e ror 23) ^ e) ror 4
  116. xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e
  117. mov a_64, T2 # T2 = a
  118. add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h
  119. ror $14, tmp0 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
  120. add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
  121. mov a_64, tmp0 # tmp = a
  122. xor c_64, T2 # T2 = a ^ c
  123. and c_64, tmp0 # tmp = a & c
  124. and b_64, T2 # T2 = (a ^ c) & b
  125. xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
  126. mov a_64, tmp0 # tmp = a
  127. ror $5, tmp0 # 39 # tmp = a ror 5
  128. xor a_64, tmp0 # tmp = (a ror 5) ^ a
  129. add T1, d_64 # e(next_state) = d + T1
  130. ror $6, tmp0 # 34 # tmp = ((a ror 5) ^ a) ror 6
  131. xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a
  132. lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c)
  133. ror $28, tmp0 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
  134. add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a)
  135. RotateState
  136. .endm
  137. .macro SHA512_2Sched_2Round_sse rnd
  138. # Compute rounds t-2 and t-1
  139. # Compute message schedule QWORDS t and t+1
  140. # Two rounds are computed based on the values for K[t-2]+W[t-2] and
  141. # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
  142. # scheduler.
  143. # The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
  144. # They are then added to their respective SHA512 constants at
  145. # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
  146. # For brievity, the comments following vectored instructions only refer to
  147. # the first of a pair of QWORDS.
  148. # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
  149. # The computation of the message schedule and the rounds are tightly
  150. # stitched to take advantage of instruction-level parallelism.
  151. # For clarity, integer instructions (for the rounds calculation) are indented
  152. # by one tab. Vectored instructions (for the message scheduler) are indented
  153. # by two tabs.
  154. mov f_64, T1
  155. idx = \rnd -2
  156. movdqa W_t(idx), %xmm2 # XMM2 = W[t-2]
  157. xor g_64, T1
  158. and e_64, T1
  159. movdqa %xmm2, %xmm0 # XMM0 = W[t-2]
  160. xor g_64, T1
  161. idx = \rnd
  162. add WK_2(idx), T1
  163. idx = \rnd - 15
  164. movdqu W_t(idx), %xmm5 # XMM5 = W[t-15]
  165. mov e_64, tmp0
  166. ror $23, tmp0 # 41
  167. movdqa %xmm5, %xmm3 # XMM3 = W[t-15]
  168. xor e_64, tmp0
  169. ror $4, tmp0 # 18
  170. psrlq $61-19, %xmm0 # XMM0 = W[t-2] >> 42
  171. xor e_64, tmp0
  172. ror $14, tmp0 # 14
  173. psrlq $(8-7), %xmm3 # XMM3 = W[t-15] >> 1
  174. add tmp0, T1
  175. add h_64, T1
  176. pxor %xmm2, %xmm0 # XMM0 = (W[t-2] >> 42) ^ W[t-2]
  177. mov a_64, T2
  178. xor c_64, T2
  179. pxor %xmm5, %xmm3 # XMM3 = (W[t-15] >> 1) ^ W[t-15]
  180. and b_64, T2
  181. mov a_64, tmp0
  182. psrlq $(19-6), %xmm0 # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
  183. and c_64, tmp0
  184. xor tmp0, T2
  185. psrlq $(7-1), %xmm3 # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
  186. mov a_64, tmp0
  187. ror $5, tmp0 # 39
  188. pxor %xmm2, %xmm0 # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
  189. xor a_64, tmp0
  190. ror $6, tmp0 # 34
  191. pxor %xmm5, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
  192. xor a_64, tmp0
  193. ror $28, tmp0 # 28
  194. psrlq $6, %xmm0 # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
  195. add tmp0, T2
  196. add T1, d_64
  197. psrlq $1, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
  198. lea (T1, T2), h_64
  199. RotateState
  200. movdqa %xmm2, %xmm1 # XMM1 = W[t-2]
  201. mov f_64, T1
  202. xor g_64, T1
  203. movdqa %xmm5, %xmm4 # XMM4 = W[t-15]
  204. and e_64, T1
  205. xor g_64, T1
  206. psllq $(64-19)-(64-61) , %xmm1 # XMM1 = W[t-2] << 42
  207. idx = \rnd + 1
  208. add WK_2(idx), T1
  209. mov e_64, tmp0
  210. psllq $(64-1)-(64-8), %xmm4 # XMM4 = W[t-15] << 7
  211. ror $23, tmp0 # 41
  212. xor e_64, tmp0
  213. pxor %xmm2, %xmm1 # XMM1 = (W[t-2] << 42)^W[t-2]
  214. ror $4, tmp0 # 18
  215. xor e_64, tmp0
  216. pxor %xmm5, %xmm4 # XMM4 = (W[t-15]<<7)^W[t-15]
  217. ror $14, tmp0 # 14
  218. add tmp0, T1
  219. psllq $(64-61), %xmm1 # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
  220. add h_64, T1
  221. mov a_64, T2
  222. psllq $(64-8), %xmm4 # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
  223. xor c_64, T2
  224. and b_64, T2
  225. pxor %xmm1, %xmm0 # XMM0 = s1(W[t-2])
  226. mov a_64, tmp0
  227. and c_64, tmp0
  228. idx = \rnd - 7
  229. movdqu W_t(idx), %xmm1 # XMM1 = W[t-7]
  230. xor tmp0, T2
  231. pxor %xmm4, %xmm3 # XMM3 = s0(W[t-15])
  232. mov a_64, tmp0
  233. paddq %xmm3, %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15])
  234. ror $5, tmp0 # 39
  235. idx =\rnd-16
  236. paddq W_t(idx), %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
  237. xor a_64, tmp0
  238. paddq %xmm1, %xmm0 # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
  239. ror $6, tmp0 # 34
  240. movdqa %xmm0, W_t(\rnd) # Store scheduled qwords
  241. xor a_64, tmp0
  242. paddq K_t(\rnd), %xmm0 # Compute W[t]+K[t]
  243. ror $28, tmp0 # 28
  244. idx = \rnd
  245. movdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds
  246. add tmp0, T2
  247. add T1, d_64
  248. lea (T1, T2), h_64
  249. RotateState
  250. .endm
  251. ########################################################################
  252. # void sha512_transform_ssse3(void* D, const void* M, u64 L)#
  253. # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
  254. # The size of the message pointed to by M must be an integer multiple of SHA512
  255. # message blocks.
  256. # L is the message length in SHA512 blocks.
  257. ########################################################################
  258. ENTRY(sha512_transform_ssse3)
  259. cmp $0, msglen
  260. je nowork
  261. # Allocate Stack Space
  262. mov %rsp, %rax
  263. sub $frame_size, %rsp
  264. and $~(0x20 - 1), %rsp
  265. mov %rax, frame_RSPSAVE(%rsp)
  266. # Save GPRs
  267. mov %rbx, frame_GPRSAVE(%rsp)
  268. mov %r12, frame_GPRSAVE +8*1(%rsp)
  269. mov %r13, frame_GPRSAVE +8*2(%rsp)
  270. mov %r14, frame_GPRSAVE +8*3(%rsp)
  271. mov %r15, frame_GPRSAVE +8*4(%rsp)
  272. updateblock:
  273. # Load state variables
  274. mov DIGEST(0), a_64
  275. mov DIGEST(1), b_64
  276. mov DIGEST(2), c_64
  277. mov DIGEST(3), d_64
  278. mov DIGEST(4), e_64
  279. mov DIGEST(5), f_64
  280. mov DIGEST(6), g_64
  281. mov DIGEST(7), h_64
  282. t = 0
  283. .rept 80/2 + 1
  284. # (80 rounds) / (2 rounds/iteration) + (1 iteration)
  285. # +1 iteration because the scheduler leads hashing by 1 iteration
  286. .if t < 2
  287. # BSWAP 2 QWORDS
  288. movdqa XMM_QWORD_BSWAP(%rip), %xmm1
  289. movdqu MSG(t), %xmm0
  290. pshufb %xmm1, %xmm0 # BSWAP
  291. movdqa %xmm0, W_t(t) # Store Scheduled Pair
  292. paddq K_t(t), %xmm0 # Compute W[t]+K[t]
  293. movdqa %xmm0, WK_2(t) # Store into WK for rounds
  294. .elseif t < 16
  295. # BSWAP 2 QWORDS# Compute 2 Rounds
  296. movdqu MSG(t), %xmm0
  297. pshufb %xmm1, %xmm0 # BSWAP
  298. SHA512_Round t-2 # Round t-2
  299. movdqa %xmm0, W_t(t) # Store Scheduled Pair
  300. paddq K_t(t), %xmm0 # Compute W[t]+K[t]
  301. SHA512_Round t-1 # Round t-1
  302. movdqa %xmm0, WK_2(t) # Store W[t]+K[t] into WK
  303. .elseif t < 79
  304. # Schedule 2 QWORDS# Compute 2 Rounds
  305. SHA512_2Sched_2Round_sse t
  306. .else
  307. # Compute 2 Rounds
  308. SHA512_Round t-2
  309. SHA512_Round t-1
  310. .endif
  311. t = t+2
  312. .endr
  313. # Update digest
  314. add a_64, DIGEST(0)
  315. add b_64, DIGEST(1)
  316. add c_64, DIGEST(2)
  317. add d_64, DIGEST(3)
  318. add e_64, DIGEST(4)
  319. add f_64, DIGEST(5)
  320. add g_64, DIGEST(6)
  321. add h_64, DIGEST(7)
  322. # Advance to next message block
  323. add $16*8, msg
  324. dec msglen
  325. jnz updateblock
  326. # Restore GPRs
  327. mov frame_GPRSAVE(%rsp), %rbx
  328. mov frame_GPRSAVE +8*1(%rsp), %r12
  329. mov frame_GPRSAVE +8*2(%rsp), %r13
  330. mov frame_GPRSAVE +8*3(%rsp), %r14
  331. mov frame_GPRSAVE +8*4(%rsp), %r15
  332. # Restore Stack Pointer
  333. mov frame_RSPSAVE(%rsp), %rsp
  334. nowork:
  335. ret
  336. ENDPROC(sha512_transform_ssse3)
  337. ########################################################################
  338. ### Binary Data
  339. .section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
  340. .align 16
  341. # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
  342. XMM_QWORD_BSWAP:
  343. .octa 0x08090a0b0c0d0e0f0001020304050607
  344. # Mergeable 640-byte rodata section. This allows linker to merge the table
  345. # with other, exactly the same 640-byte fragment of another rodata section
  346. # (if such section exists).
  347. .section .rodata.cst640.K512, "aM", @progbits, 640
  348. .align 64
  349. # K[t] used in SHA512 hashing
  350. K512:
  351. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  352. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  353. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  354. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  355. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  356. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  357. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  358. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  359. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  360. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  361. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  362. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  363. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  364. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  365. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  366. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  367. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  368. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  369. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  370. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  371. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  372. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  373. .quad 0xd192e819d6ef5218,0xd69906245565a910
  374. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  375. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  376. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  377. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  378. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  379. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  380. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  381. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  382. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  383. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  384. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  385. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  386. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  387. .quad 0x28db77f523047d84,0x32caab7b40c72493
  388. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  389. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  390. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817