sha512-avx2-asm.S 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. ########################################################################
  2. # Implement fast SHA-512 with AVX2 instructions. (x86_64)
  3. #
  4. # Copyright (C) 2013 Intel Corporation.
  5. #
  6. # Authors:
  7. # James Guilford <james.guilford@intel.com>
  8. # Kirk Yap <kirk.s.yap@intel.com>
  9. # David Cote <david.m.cote@intel.com>
  10. # Tim Chen <tim.c.chen@linux.intel.com>
  11. #
  12. # This software is available to you under a choice of one of two
  13. # licenses. You may choose to be licensed under the terms of the GNU
  14. # General Public License (GPL) Version 2, available from the file
  15. # COPYING in the main directory of this source tree, or the
  16. # OpenIB.org BSD license below:
  17. #
  18. # Redistribution and use in source and binary forms, with or
  19. # without modification, are permitted provided that the following
  20. # conditions are met:
  21. #
  22. # - Redistributions of source code must retain the above
  23. # copyright notice, this list of conditions and the following
  24. # disclaimer.
  25. #
  26. # - Redistributions in binary form must reproduce the above
  27. # copyright notice, this list of conditions and the following
  28. # disclaimer in the documentation and/or other materials
  29. # provided with the distribution.
  30. #
  31. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  32. # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  33. # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  34. # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  35. # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  36. # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  37. # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  38. # SOFTWARE.
  39. #
  40. ########################################################################
  41. #
  42. # This code is described in an Intel White-Paper:
  43. # "Fast SHA-512 Implementations on Intel Architecture Processors"
  44. #
  45. # To find it, surf to http://www.intel.com/p/en_US/embedded
  46. # and search for that title.
  47. #
  48. ########################################################################
  49. # This code schedules 1 blocks at a time, with 4 lanes per block
  50. ########################################################################
  51. #ifdef CONFIG_AS_AVX2
  52. #include <linux/linkage.h>
  53. .text
  54. # Virtual Registers
  55. Y_0 = %ymm4
  56. Y_1 = %ymm5
  57. Y_2 = %ymm6
  58. Y_3 = %ymm7
  59. YTMP0 = %ymm0
  60. YTMP1 = %ymm1
  61. YTMP2 = %ymm2
  62. YTMP3 = %ymm3
  63. YTMP4 = %ymm8
  64. XFER = YTMP0
  65. BYTE_FLIP_MASK = %ymm9
  66. # 1st arg is %rdi, which is saved to the stack and accessed later via %r12
  67. CTX1 = %rdi
  68. CTX2 = %r12
  69. # 2nd arg
  70. INP = %rsi
  71. # 3rd arg
  72. NUM_BLKS = %rdx
  73. c = %rcx
  74. d = %r8
  75. e = %rdx
  76. y3 = %rsi
  77. TBL = %rdi # clobbers CTX1
  78. a = %rax
  79. b = %rbx
  80. f = %r9
  81. g = %r10
  82. h = %r11
  83. old_h = %r11
  84. T1 = %r12 # clobbers CTX2
  85. y0 = %r13
  86. y1 = %r14
  87. y2 = %r15
  88. # Local variables (stack frame)
  89. XFER_SIZE = 4*8
  90. SRND_SIZE = 1*8
  91. INP_SIZE = 1*8
  92. INPEND_SIZE = 1*8
  93. CTX_SIZE = 1*8
  94. RSPSAVE_SIZE = 1*8
  95. GPRSAVE_SIZE = 5*8
  96. frame_XFER = 0
  97. frame_SRND = frame_XFER + XFER_SIZE
  98. frame_INP = frame_SRND + SRND_SIZE
  99. frame_INPEND = frame_INP + INP_SIZE
  100. frame_CTX = frame_INPEND + INPEND_SIZE
  101. frame_RSPSAVE = frame_CTX + CTX_SIZE
  102. frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
  103. frame_size = frame_GPRSAVE + GPRSAVE_SIZE
  104. ## assume buffers not aligned
  105. #define VMOVDQ vmovdqu
  106. # addm [mem], reg
  107. # Add reg to mem using reg-mem add and store
  108. .macro addm p1 p2
  109. add \p1, \p2
  110. mov \p2, \p1
  111. .endm
  112. # COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
  113. # Load ymm with mem and byte swap each dword
  114. .macro COPY_YMM_AND_BSWAP p1 p2 p3
  115. VMOVDQ \p2, \p1
  116. vpshufb \p3, \p1, \p1
  117. .endm
  118. # rotate_Ys
  119. # Rotate values of symbols Y0...Y3
  120. .macro rotate_Ys
  121. Y_ = Y_0
  122. Y_0 = Y_1
  123. Y_1 = Y_2
  124. Y_2 = Y_3
  125. Y_3 = Y_
  126. .endm
  127. # RotateState
  128. .macro RotateState
  129. # Rotate symbols a..h right
  130. old_h = h
  131. TMP_ = h
  132. h = g
  133. g = f
  134. f = e
  135. e = d
  136. d = c
  137. c = b
  138. b = a
  139. a = TMP_
  140. .endm
  141. # macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
  142. # YDST = {YSRC1, YSRC2} >> RVAL*8
  143. .macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
  144. vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
  145. vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
  146. .endm
  147. .macro FOUR_ROUNDS_AND_SCHED
  148. ################################### RND N + 0 #########################################
  149. # Extract w[t-7]
  150. MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
  151. # Calculate w[t-16] + w[t-7]
  152. vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
  153. # Extract w[t-15]
  154. MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
  155. # Calculate sigma0
  156. # Calculate w[t-15] ror 1
  157. vpsrlq $1, YTMP1, YTMP2
  158. vpsllq $(64-1), YTMP1, YTMP3
  159. vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
  160. # Calculate w[t-15] shr 7
  161. vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
  162. mov a, y3 # y3 = a # MAJA
  163. rorx $41, e, y0 # y0 = e >> 41 # S1A
  164. rorx $18, e, y1 # y1 = e >> 18 # S1B
  165. add frame_XFER(%rsp),h # h = k + w + h # --
  166. or c, y3 # y3 = a|c # MAJA
  167. mov f, y2 # y2 = f # CH
  168. rorx $34, a, T1 # T1 = a >> 34 # S0B
  169. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  170. xor g, y2 # y2 = f^g # CH
  171. rorx $14, e, y1 # y1 = (e >> 14) # S1
  172. and e, y2 # y2 = (f^g)&e # CH
  173. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  174. rorx $39, a, y1 # y1 = a >> 39 # S0A
  175. add h, d # d = k + w + h + d # --
  176. and b, y3 # y3 = (a|c)&b # MAJA
  177. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  178. rorx $28, a, T1 # T1 = (a >> 28) # S0
  179. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  180. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  181. mov a, T1 # T1 = a # MAJB
  182. and c, T1 # T1 = a&c # MAJB
  183. add y0, y2 # y2 = S1 + CH # --
  184. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  185. add y1, h # h = k + w + h + S0 # --
  186. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  187. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  188. add y3, h # h = t1 + S0 + MAJ # --
  189. RotateState
  190. ################################### RND N + 1 #########################################
  191. # Calculate w[t-15] ror 8
  192. vpsrlq $8, YTMP1, YTMP2
  193. vpsllq $(64-8), YTMP1, YTMP1
  194. vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
  195. # XOR the three components
  196. vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
  197. vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
  198. # Add three components, w[t-16], w[t-7] and sigma0
  199. vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
  200. # Move to appropriate lanes for calculating w[16] and w[17]
  201. vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
  202. # Move to appropriate lanes for calculating w[18] and w[19]
  203. vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
  204. # Calculate w[16] and w[17] in both 128 bit lanes
  205. # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
  206. vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
  207. vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
  208. mov a, y3 # y3 = a # MAJA
  209. rorx $41, e, y0 # y0 = e >> 41 # S1A
  210. rorx $18, e, y1 # y1 = e >> 18 # S1B
  211. add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
  212. or c, y3 # y3 = a|c # MAJA
  213. mov f, y2 # y2 = f # CH
  214. rorx $34, a, T1 # T1 = a >> 34 # S0B
  215. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  216. xor g, y2 # y2 = f^g # CH
  217. rorx $14, e, y1 # y1 = (e >> 14) # S1
  218. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  219. rorx $39, a, y1 # y1 = a >> 39 # S0A
  220. and e, y2 # y2 = (f^g)&e # CH
  221. add h, d # d = k + w + h + d # --
  222. and b, y3 # y3 = (a|c)&b # MAJA
  223. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  224. rorx $28, a, T1 # T1 = (a >> 28) # S0
  225. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  226. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  227. mov a, T1 # T1 = a # MAJB
  228. and c, T1 # T1 = a&c # MAJB
  229. add y0, y2 # y2 = S1 + CH # --
  230. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  231. add y1, h # h = k + w + h + S0 # --
  232. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  233. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  234. add y3, h # h = t1 + S0 + MAJ # --
  235. RotateState
  236. ################################### RND N + 2 #########################################
  237. vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
  238. vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
  239. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
  240. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
  241. vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
  242. vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
  243. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
  244. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
  245. # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
  246. # Add sigma1 to the other compunents to get w[16] and w[17]
  247. vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
  248. # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
  249. vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
  250. mov a, y3 # y3 = a # MAJA
  251. rorx $41, e, y0 # y0 = e >> 41 # S1A
  252. add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
  253. rorx $18, e, y1 # y1 = e >> 18 # S1B
  254. or c, y3 # y3 = a|c # MAJA
  255. mov f, y2 # y2 = f # CH
  256. xor g, y2 # y2 = f^g # CH
  257. rorx $34, a, T1 # T1 = a >> 34 # S0B
  258. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  259. and e, y2 # y2 = (f^g)&e # CH
  260. rorx $14, e, y1 # y1 = (e >> 14) # S1
  261. add h, d # d = k + w + h + d # --
  262. and b, y3 # y3 = (a|c)&b # MAJA
  263. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  264. rorx $39, a, y1 # y1 = a >> 39 # S0A
  265. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  266. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  267. rorx $28, a, T1 # T1 = (a >> 28) # S0
  268. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  269. mov a, T1 # T1 = a # MAJB
  270. and c, T1 # T1 = a&c # MAJB
  271. add y0, y2 # y2 = S1 + CH # --
  272. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  273. add y1, h # h = k + w + h + S0 # --
  274. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  275. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  276. add y3, h # h = t1 + S0 + MAJ # --
  277. RotateState
  278. ################################### RND N + 3 #########################################
  279. vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
  280. vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
  281. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
  282. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
  283. vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
  284. vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
  285. vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
  286. vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
  287. # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
  288. # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
  289. # to newly calculated sigma1 to get w[18] and w[19]
  290. vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
  291. # Form w[19, w[18], w17], w[16]
  292. vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
  293. mov a, y3 # y3 = a # MAJA
  294. rorx $41, e, y0 # y0 = e >> 41 # S1A
  295. rorx $18, e, y1 # y1 = e >> 18 # S1B
  296. add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
  297. or c, y3 # y3 = a|c # MAJA
  298. mov f, y2 # y2 = f # CH
  299. rorx $34, a, T1 # T1 = a >> 34 # S0B
  300. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  301. xor g, y2 # y2 = f^g # CH
  302. rorx $14, e, y1 # y1 = (e >> 14) # S1
  303. and e, y2 # y2 = (f^g)&e # CH
  304. add h, d # d = k + w + h + d # --
  305. and b, y3 # y3 = (a|c)&b # MAJA
  306. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  307. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  308. rorx $39, a, y1 # y1 = a >> 39 # S0A
  309. add y0, y2 # y2 = S1 + CH # --
  310. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  311. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  312. rorx $28, a, T1 # T1 = (a >> 28) # S0
  313. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  314. mov a, T1 # T1 = a # MAJB
  315. and c, T1 # T1 = a&c # MAJB
  316. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  317. add y1, h # h = k + w + h + S0 # --
  318. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  319. add y3, h # h = t1 + S0 + MAJ # --
  320. RotateState
  321. rotate_Ys
  322. .endm
  323. .macro DO_4ROUNDS
  324. ################################### RND N + 0 #########################################
  325. mov f, y2 # y2 = f # CH
  326. rorx $41, e, y0 # y0 = e >> 41 # S1A
  327. rorx $18, e, y1 # y1 = e >> 18 # S1B
  328. xor g, y2 # y2 = f^g # CH
  329. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  330. rorx $14, e, y1 # y1 = (e >> 14) # S1
  331. and e, y2 # y2 = (f^g)&e # CH
  332. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  333. rorx $34, a, T1 # T1 = a >> 34 # S0B
  334. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  335. rorx $39, a, y1 # y1 = a >> 39 # S0A
  336. mov a, y3 # y3 = a # MAJA
  337. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  338. rorx $28, a, T1 # T1 = (a >> 28) # S0
  339. add frame_XFER(%rsp), h # h = k + w + h # --
  340. or c, y3 # y3 = a|c # MAJA
  341. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  342. mov a, T1 # T1 = a # MAJB
  343. and b, y3 # y3 = (a|c)&b # MAJA
  344. and c, T1 # T1 = a&c # MAJB
  345. add y0, y2 # y2 = S1 + CH # --
  346. add h, d # d = k + w + h + d # --
  347. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  348. add y1, h # h = k + w + h + S0 # --
  349. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  350. RotateState
  351. ################################### RND N + 1 #########################################
  352. add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  353. mov f, y2 # y2 = f # CH
  354. rorx $41, e, y0 # y0 = e >> 41 # S1A
  355. rorx $18, e, y1 # y1 = e >> 18 # S1B
  356. xor g, y2 # y2 = f^g # CH
  357. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  358. rorx $14, e, y1 # y1 = (e >> 14) # S1
  359. and e, y2 # y2 = (f^g)&e # CH
  360. add y3, old_h # h = t1 + S0 + MAJ # --
  361. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  362. rorx $34, a, T1 # T1 = a >> 34 # S0B
  363. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  364. rorx $39, a, y1 # y1 = a >> 39 # S0A
  365. mov a, y3 # y3 = a # MAJA
  366. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  367. rorx $28, a, T1 # T1 = (a >> 28) # S0
  368. add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
  369. or c, y3 # y3 = a|c # MAJA
  370. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  371. mov a, T1 # T1 = a # MAJB
  372. and b, y3 # y3 = (a|c)&b # MAJA
  373. and c, T1 # T1 = a&c # MAJB
  374. add y0, y2 # y2 = S1 + CH # --
  375. add h, d # d = k + w + h + d # --
  376. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  377. add y1, h # h = k + w + h + S0 # --
  378. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  379. RotateState
  380. ################################### RND N + 2 #########################################
  381. add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  382. mov f, y2 # y2 = f # CH
  383. rorx $41, e, y0 # y0 = e >> 41 # S1A
  384. rorx $18, e, y1 # y1 = e >> 18 # S1B
  385. xor g, y2 # y2 = f^g # CH
  386. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  387. rorx $14, e, y1 # y1 = (e >> 14) # S1
  388. and e, y2 # y2 = (f^g)&e # CH
  389. add y3, old_h # h = t1 + S0 + MAJ # --
  390. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  391. rorx $34, a, T1 # T1 = a >> 34 # S0B
  392. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  393. rorx $39, a, y1 # y1 = a >> 39 # S0A
  394. mov a, y3 # y3 = a # MAJA
  395. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  396. rorx $28, a, T1 # T1 = (a >> 28) # S0
  397. add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
  398. or c, y3 # y3 = a|c # MAJA
  399. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  400. mov a, T1 # T1 = a # MAJB
  401. and b, y3 # y3 = (a|c)&b # MAJA
  402. and c, T1 # T1 = a&c # MAJB
  403. add y0, y2 # y2 = S1 + CH # --
  404. add h, d # d = k + w + h + d # --
  405. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  406. add y1, h # h = k + w + h + S0 # --
  407. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  408. RotateState
  409. ################################### RND N + 3 #########################################
  410. add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  411. mov f, y2 # y2 = f # CH
  412. rorx $41, e, y0 # y0 = e >> 41 # S1A
  413. rorx $18, e, y1 # y1 = e >> 18 # S1B
  414. xor g, y2 # y2 = f^g # CH
  415. xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
  416. rorx $14, e, y1 # y1 = (e >> 14) # S1
  417. and e, y2 # y2 = (f^g)&e # CH
  418. add y3, old_h # h = t1 + S0 + MAJ # --
  419. xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
  420. rorx $34, a, T1 # T1 = a >> 34 # S0B
  421. xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
  422. rorx $39, a, y1 # y1 = a >> 39 # S0A
  423. mov a, y3 # y3 = a # MAJA
  424. xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
  425. rorx $28, a, T1 # T1 = (a >> 28) # S0
  426. add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
  427. or c, y3 # y3 = a|c # MAJA
  428. xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
  429. mov a, T1 # T1 = a # MAJB
  430. and b, y3 # y3 = (a|c)&b # MAJA
  431. and c, T1 # T1 = a&c # MAJB
  432. add y0, y2 # y2 = S1 + CH # --
  433. add h, d # d = k + w + h + d # --
  434. or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
  435. add y1, h # h = k + w + h + S0 # --
  436. add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
  437. add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
  438. add y3, h # h = t1 + S0 + MAJ # --
  439. RotateState
  440. .endm
  441. ########################################################################
  442. # void sha512_transform_rorx(void* D, const void* M, uint64_t L)#
  443. # Purpose: Updates the SHA512 digest stored at D with the message stored in M.
  444. # The size of the message pointed to by M must be an integer multiple of SHA512
  445. # message blocks.
  446. # L is the message length in SHA512 blocks
  447. ########################################################################
  448. ENTRY(sha512_transform_rorx)
  449. # Allocate Stack Space
  450. mov %rsp, %rax
  451. sub $frame_size, %rsp
  452. and $~(0x20 - 1), %rsp
  453. mov %rax, frame_RSPSAVE(%rsp)
  454. # Save GPRs
  455. mov %rbx, 8*0+frame_GPRSAVE(%rsp)
  456. mov %r12, 8*1+frame_GPRSAVE(%rsp)
  457. mov %r13, 8*2+frame_GPRSAVE(%rsp)
  458. mov %r14, 8*3+frame_GPRSAVE(%rsp)
  459. mov %r15, 8*4+frame_GPRSAVE(%rsp)
  460. shl $7, NUM_BLKS # convert to bytes
  461. jz done_hash
  462. add INP, NUM_BLKS # pointer to end of data
  463. mov NUM_BLKS, frame_INPEND(%rsp)
  464. ## load initial digest
  465. mov 8*0(CTX1), a
  466. mov 8*1(CTX1), b
  467. mov 8*2(CTX1), c
  468. mov 8*3(CTX1), d
  469. mov 8*4(CTX1), e
  470. mov 8*5(CTX1), f
  471. mov 8*6(CTX1), g
  472. mov 8*7(CTX1), h
  473. # save %rdi (CTX) before it gets clobbered
  474. mov %rdi, frame_CTX(%rsp)
  475. vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
  476. loop0:
  477. lea K512(%rip), TBL
  478. ## byte swap first 16 dwords
  479. COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
  480. COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
  481. COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
  482. COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
  483. mov INP, frame_INP(%rsp)
  484. ## schedule 64 input dwords, by doing 12 rounds of 4 each
  485. movq $4, frame_SRND(%rsp)
  486. .align 16
  487. loop1:
  488. vpaddq (TBL), Y_0, XFER
  489. vmovdqa XFER, frame_XFER(%rsp)
  490. FOUR_ROUNDS_AND_SCHED
  491. vpaddq 1*32(TBL), Y_0, XFER
  492. vmovdqa XFER, frame_XFER(%rsp)
  493. FOUR_ROUNDS_AND_SCHED
  494. vpaddq 2*32(TBL), Y_0, XFER
  495. vmovdqa XFER, frame_XFER(%rsp)
  496. FOUR_ROUNDS_AND_SCHED
  497. vpaddq 3*32(TBL), Y_0, XFER
  498. vmovdqa XFER, frame_XFER(%rsp)
  499. add $(4*32), TBL
  500. FOUR_ROUNDS_AND_SCHED
  501. subq $1, frame_SRND(%rsp)
  502. jne loop1
  503. movq $2, frame_SRND(%rsp)
  504. loop2:
  505. vpaddq (TBL), Y_0, XFER
  506. vmovdqa XFER, frame_XFER(%rsp)
  507. DO_4ROUNDS
  508. vpaddq 1*32(TBL), Y_1, XFER
  509. vmovdqa XFER, frame_XFER(%rsp)
  510. add $(2*32), TBL
  511. DO_4ROUNDS
  512. vmovdqa Y_2, Y_0
  513. vmovdqa Y_3, Y_1
  514. subq $1, frame_SRND(%rsp)
  515. jne loop2
  516. mov frame_CTX(%rsp), CTX2
  517. addm 8*0(CTX2), a
  518. addm 8*1(CTX2), b
  519. addm 8*2(CTX2), c
  520. addm 8*3(CTX2), d
  521. addm 8*4(CTX2), e
  522. addm 8*5(CTX2), f
  523. addm 8*6(CTX2), g
  524. addm 8*7(CTX2), h
  525. mov frame_INP(%rsp), INP
  526. add $128, INP
  527. cmp frame_INPEND(%rsp), INP
  528. jne loop0
  529. done_hash:
  530. # Restore GPRs
  531. mov 8*0+frame_GPRSAVE(%rsp), %rbx
  532. mov 8*1+frame_GPRSAVE(%rsp), %r12
  533. mov 8*2+frame_GPRSAVE(%rsp), %r13
  534. mov 8*3+frame_GPRSAVE(%rsp), %r14
  535. mov 8*4+frame_GPRSAVE(%rsp), %r15
  536. # Restore Stack Pointer
  537. mov frame_RSPSAVE(%rsp), %rsp
  538. ret
  539. ENDPROC(sha512_transform_rorx)
  540. ########################################################################
  541. ### Binary Data
  542. # Mergeable 640-byte rodata section. This allows linker to merge the table
  543. # with other, exactly the same 640-byte fragment of another rodata section
  544. # (if such section exists).
  545. .section .rodata.cst640.K512, "aM", @progbits, 640
  546. .align 64
  547. # K[t] used in SHA512 hashing
  548. K512:
  549. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  550. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  551. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  552. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  553. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  554. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  555. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  556. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  557. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  558. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  559. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  560. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  561. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  562. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  563. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  564. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  565. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  566. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  567. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  568. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  569. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  570. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  571. .quad 0xd192e819d6ef5218,0xd69906245565a910
  572. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  573. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  574. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  575. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  576. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  577. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  578. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  579. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  580. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  581. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  582. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  583. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  584. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  585. .quad 0x28db77f523047d84,0x32caab7b40c72493
  586. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  587. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  588. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
  589. .section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
  590. .align 32
  591. # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
  592. PSHUFFLE_BYTE_FLIP_MASK:
  593. .octa 0x08090a0b0c0d0e0f0001020304050607
  594. .octa 0x18191a1b1c1d1e1f1011121314151617
  595. .section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
  596. .align 32
  597. MASK_YMM_LO:
  598. .octa 0x00000000000000000000000000000000
  599. .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
  600. #endif